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ABSTRACT

An increasing number of applications from finance, meteo-
rology, science and others are producing time series as out-
put. The analysis of the vast amount of time series is key to
understand the phenomena studied, particularly in the sim-
ulation sciences, where the analysis of time series resulting
from simulation allows scientists to refine the model sim-
ulated. Existing approaches to query time series typically
keep a compact representation in main memory, use it to an-
swer queries approximately and then access the exact time
series data on disk to validate the result. The more precise
the in-memory representation, the fewer disk accesses are
needed to validate the result. With the massive sizes of to-
day’s datasets, however, current in-memory representations
oftentimes no longer fit into main memory. To make them
fit, their precision has to be reduced considerably resulting
in substantial disk access which impedes query execution
today and limits scalability for even bigger datasets in the
future.

In this paper we develop RUBIK, a novel approach to com-
pressing and indexing time series. RUBIK exploits that time
series in many applications and particularly in the simula-
tion sciences are similar to each other. It compresses similar
time series, i.e., observation values as well as time informa-
tion, achieving better space efficiency and improved preci-
sion. RUBIK translates threshold queries into two dimen-
sional spatial queries and efficiently executes them on the
compressed time series by exploiting the pruning power of a
tree structure to find the result, thereby outperforming the
state-of-the-art by a factor of between 6 and 23. As our ex-
periments further indicate, exploiting similarity within and
between time series is crucial to make query execution scale
and to ultimately decouple query execution time from the
growth of the data (size and number of time series).

1. INTRODUCTION

Time series are becoming increasingly ubiquitous in many
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applications across different domains, ranging from finance
(e.g., stock information) to science (e.g., sensor readings).
Increasingly powerful hardware, e.g., precise instruments or
sensors and more powerful computers, lead to ever more
and longer time series being recorded. The amount of time
series data is arguably growing the fastest in the simulation
sciences where increasingly powerful supercomputers as well
as nearly unlimited storage capacity encourage scientists to
simulate consistently bigger models (more data points) for
longer periods (increasing number of time steps), resulting
in a rapidly growing number of increasingly long time series.
Already today scientists are overwhelmed with this deluge
of time series data and tools for their efficient analysis are
pivotal to enable scientific breakthroughs [14].

Efficiently querying the wealth of time series data is cru-
cial to extract knowledge, particularly in the simulation sci-
ences where the number and length of time series grow rapidly.
Only analyzing the time series enables the simulation scien-
tists to refine their models and to make them more realistic.
Unfortunately not all data resulting from a simulation can
be analyzed in great detail, but luckily not all data is equally
interesting or important either. Typically only small subsets
of the time series data are interesting and it is sufficient to
find and analyze in detail these subsets. The challenge we
are consequently addressing is to find interesting time series
using threshold queries, i.e., time series where the observed
value exceeds or falls below a threshold. Subsequently, the
interesting subsets can be analyzed in detail with state-of-
the-art analysis methods.

The goal of the approach we develop in this paper is to
find the interesting time series and, in them, interesting pe-
riods of time. More formally, we define a time series as
a discrete set of observations X = x1,x2,...z, at consec-
utive time steps ¢ = 1,2...n (ordered in time). Examples
of time series include temperature measurements over time,
stock tickers, electrocardiograms and others. Given a set
of time series Xy and a query ¢ with a threshold o for the
observation as well as an upper and lower bound t, and
t; (with ¢, > ;) for time, we want to find all time series
X € Xn where z; satisfies the following conditions: z: > o
and t; <t <t, (time-bounded threshold query).

The approach of the state-of-the-art is to compress the
time series data (usually lossy) and use the compressed data
as an index to answer queries approximately. Approximate
answers, typically guaranteed not to allow for false dismissals,
are then validated by reading the exact time series from
disk. Clearly, the more precise the approximation, the fewer
false positives and therefore the fewer slow reads from disk
are necessary. Most state-of-the-art approaches, however,
are designed for time series similarity queries and therefore



compress along the temporal dimension (for example aver-
aging discrete time steps [4]) to avoid the curse of dimen-
sionality [9]. Sacrificing temporal resolution when executing
threshold queries, however, leads to an excessive number of
false positives and, even worse, to false dismissals because in
a reduced feature space the original interval where the time
series exceeds a threshold cannot be identified.

RUBIK, the approach we develop, does not sacrifice tem-
poral resolution to compress, but instead exploits that many
time series are, in general and in the simulation sciences in
particular, very similar to each other. RUBIK therefore en-
codes the time information at the highest resolution and
uses binning to discretize the observation values of the time
series, indexes the resulting range encoded bitmaps (rep-
resenting the time series) with a Quadtree [17] and finally
compresses the leaves of the Quadtree using Word Aligned
Hybrid (WAH [21]). Queries can then efficiently be exe-
cuted on the compressed Quadtree as two dimensional spa-
tial range queries. Exploiting the similarity between time
series and representing them using a Quadtree allows for
a substantially more efficient compression while preserving
time resolution and faster query execution. Using the same
space budget, RUBIK executes queries 9 times faster than
the state-of-the-art and the trend indicates that query ex-
ecution time with RUBIK will increase considerably slower
than related approaches as datasets grow rapidly.

The main contribution of RUBIK consequently lies in
transforming a time series threshold query problem into a
two-dimensional bitmap problem. Additionally, by group-
ing the time series and decomposing each group collectively
using a Quadtree, RUBIK exploits the similarity between
time series to reduce the size of the bit representation while
maintaining high precision as otherwise the number of false
positives imposes an undue penalty on the query execution
(as is the case for competing approaches). Thanks to the
representation as a Quadtree, queries with time and obser-
vation value predicates can be translated into efficient spa-
tial range queries. Doing so enables the evaluation of both
predicates at the same time while the query execution in
related work evaluates predicates sequentially, losing early
filtering power.

The remainder of this paper is organized as follows. In
Section 2 we review related work on time series indexing
and querying methods and in Section 3 we motivate RUBIK.
We give an overview over RUBIK in Section 4 and then
discuss in detail the indexing process in Section 5 as well
as query execution in Section 6. Before demonstrating the
performance of RUBIK in Section 7 we discuss configuration
considerations and we finally draw conclusions in Section 8.

2. RELATED WORK

Indexing time series has received considerable attention
in recent years [16]. In most time series analysis tasks the
major cost factor is access to the disk. The general frame-
work consequently is to use a compressed representation of
the time series in main memory to answer queries approx-
imately. The approximate answers are then verified by ac-
cessing the exact candidate time series on the disk.

An ideal representation can give precise answers and makes
all access to disk unnecessary. In case a representation only
provides approximate answers, all correct results need to be
included in the answer but at the same time false positives
should also be minimized (and therefore unnecessary disk
accesses). Clearly there is a trade-off between the size of the
representation and the quality of the answers, i.e., number

of false positives.

In the following we discuss related work and distinguish
between approaches based on whether they are designed to
use lossy compressions (through dimensionality reduction)
or whether they reduce the size of time series through lossless
compression.

2.1 Lossy Compression

The majority of the work for indexing time series has fo-
cused on determining similarity between time series in gen-
eral and pattern/subsequence matching in particular. Al-
most all approaches for calculating similarity between time
series index all time series with high-dimensional indexes
where each time step equals a dimension. To ensure effi-
ciency — indexes do not scale well to very high dimensions [9]
— many approaches to time series mining reduce the number
of dimensions, i.e., they divide the time series into segments
(along the temporal dimension) and summarize each seg-
ment. Summarizing the time steps to reduce dimensionality
also compresses the time series.

A first class of approaches is data adaptive, i.e., the ap-
proaches encode time series individually to minimize the er-
ror of the encoding. APCA [11], for example, divides each
time series into segments of variable length along the time
dimension and encodes each segment with its mean. SAX [4,
12] (and iSAX) builds on the idea of PAA [10] and APCA
but uses vertical segmentation of the series (i.e., the defini-
tion of breakpoints) to minimize the error for each segment
(and thus for the entire time series). SAX also uses a sym-
bolic representation of time series which has the advantage
of lower error bound guarantees, i.e., the distance measure
on the representation is always equal or smaller than the
distance measure on the real data. Many data mining ap-
proaches can thus be used directly on the representation as
they will only provide false positives, but no false dismissals.

To compute the similarity between time series, MVQ [15]
identifies frequent subsequences, i.e., codewords, in the time
series and assigns each of them a symbol. Each subsequence
in time series can then be represented by the codewords
(or their symbol) its subsequences resemble the most, yield-
ing a very compact encoding. Because it is difficult to find
a suitable resolution (codeword length), MVQ uses several
resolutions and organizes the encoding hierarchically, i.e.,
each frequent subsequence contains shorter frequent subse-
quences. The distance, or similarity, between two time series
is computed based on the weighted frequency of the occur-
rence of codewords in either time series.

GAMPS [7] uses the insight that many time series, par-
ticularly resulting from sensors, are similar or at least use
similar templates (a subdivision of time series into segments
of consecutive time steps). To compress the time series data
the approach identifies frequent segments (also referred to
as templates) among all time series. Each time series is fi-
nally represented as a collection of templates (using scaling),
considerably reducing their size.

A second class of approaches is non data adaptive, i.e., it
encodes all time series with the same encoding (independent
of their individual characteristics). Approaches based on the
discrete fourier transformation (DFT) [6] (or on discrete co-
sine transformation) attempt to preserve the main charac-
teristics of the time series. Fourier transformation is used
to extract dominant features (and to reduce the dimension-
ality) that are then indexed, i.e., their minimum bounding
rectangle (MBR), with a spatial index (R*-Tree [2]). Fea-
tures of subsequences to be matched are also extracted with



DFT and the resulting MBR is executed as range query on
the spatial index.

Approximation with chebyshev polynomials [3] essentially
interpolates the time series (or trajectories) with chebyshev
polynomials. Chebyshev polynomials have the advantage
that they are easy to compute and have lower bound guar-
antees. For smooth trajectories, i.e., time series of measure-
ments, interpolation with Chebyshev polynomials outper-
forms APCA and PAA [3].

2.2 Lossless Compression

Arguably the most renowned indexing approach using com-
pression [21] for scientific data as well as time series is Fast-
Bit [20]. FastBit uses binning and encoding, i.e., discretiza-
tion, on the time series. The resulting bitmaps are com-
pressed using word-aligned hybrid (WAH) compression. Com-
pared to other bitmap compression schemes, WAH strikes a
good balance between space and time efficiency. Thresh-
old queries can efficiently be executed on the compressed
bitmaps but because the compression (the binning) is lossy,
candidate time series have to be retrieved and tested in de-
tail. Detrimental to performance, however, is that the time
information has to be indexed separately. Queries on the ob-
servation values therefore cannot exploit the pruning power
of the time predicate early and vice versa.

3. MOTIVATION

Scientific applications produce so much data today that
we can no longer afford to analyze all of it in great detail. All
the more important are threshold queries to find interesting
events in the deluge of time series originating from scientific
applications that can then be analyzed in all necessary de-
tail. Despite being very simple, their efficient execution is
crucial for explorative access to time series data.

3.1 Limitations of Related Work

The state-of-the-art for indexing time series has been pri-
marily designed for time series mining, i.e., testing for sim-
ilarity and subsequence matching. To avoid the curse of
dimensionality, time series mining approaches [11, 4, 15, 6,
3] typically reduce the dimensionality by segmenting each
time series and approximating each segment with a value a
(e.g., in PAA [11] a is the average of all observations in the
segment).

Both segmentation and approximation, however, are detri-
mental to performance of time bounded-threshold queries q.
Segmentation leads to false positives as the approximation a
may fall above the observation threshold of ¢, but not within
the time thresholds. Even worse, approximation can cause
false dismissals. To avoid any false negatives, the observa-
tion thresholds need to be adjusted with the error e, the
biggest difference between any observation and the approxi-
mation a of its segment. Adjusting the observation threshold
o, however, leads to considerably more false positives as the
threshold is relaxed to o — e.

Compression approaches like GAMPS [7] also rely on seg-
mentation as well as approximation and thus inherit the
same problem like the time series mining approaches dis-
cussed before. Approaches like FastBit [20], on the other
hand, do not index temporal information per se, meaning
that a separate index on time steps needs to be built. Clearly
the pruning power of the time predicate cannot be used when
executing the query using the observation value predicate
and vice versa. Further detrimental to the performance of
FastBit is that it uses run-length encoding, making the eval-

uation of the time predicate directly on the compressed data
impossible. As a consequence, two separate queries have to
be executed on either index directly and the result needs to
be combined. Additionally, FastBit and other bitmap based
approaches do not exploit the full potential of compression
because they treat time series individually.

As already the work in the context of GAMPS [7] shows,
time series frequently have considerable similarity between
them and a compression between time series results in simi-
lar (if not better) space efficiency compared to state-of-the-
art approaches. Preserving temporal resolution (and avoid-
ing coarse approximation) is key to execute time bounded
queries without undue overhead resulting from false posi-
tives. As a consequence, RUBIK primarily compresses be-
tween similar time series but also the time series themselves
without losing the temporal resolution.

3.2 Motivating Application

Many spatial simulations produce time series as output.
In a spatial simulation of material deformation based on
a mesh [1], for example, the temperature (as well as the
change in position) observed of every mesh vertex is recorded
over time. If the temperature increases at a vertex v in the
mesh as a result of the deformation, the temperature at
neighboring vertices IV connected to v in the mesh via edges
will increase as well. The time series measuring temperature
at each neighboring vertex n € N of v will consequently
resemble each other.

Similarly, the simulation of earthquakes [18] based on meshes
produces multitudes of time series with a high degree of
similarity. More interestingly to us, and driving the devel-
opment of RUBIK, are the time series resulting form the
simulation of brain activity. We collaborate with neurosci-
entists in the Blue Brain project (BBP [13]) who simulate
the propagation of voltage through very fine-grained models
of the neocortex populated with millions of neurons. Also in
this scenario, voltage at two neighboring neurons (connected
through synapses over which the voltage leaps) is similar at
one time step in the simulation and consequently the time
series from neighboring neurons will also be similar.

Crucial for making any approach to time series analysis
scale in the future is to compress along both dimensions
where time series are growing, i.e., the number of time steps
and the number of time series.

When growing the models, scientists not only increase the
size (spatial extent) of their models, but also increase their
resolution by orders of magnitude [8] as the same shapes
will be represented with meshes featuring a substantially
higher number of vertices (and edges). The trend to higher
resolution models will also lead to more time series (typically
one time series per vertex). The resulting time series will,
however, have a high degree of similarity because the vertices
are closer in space and compression methods must exploit
the similarity to achieve good compression in face of growing
models.

At the same time, a scalable approach to threshold query
execution must compress along the time dimension to ad-
dress increasingly longer simulations and the resulting time
series. To tackle this growth, exploiting the similarity be-
tween consecutive time steps in a time series is pivotal. Time
series in a broad range of applications, particularly result-
ing from the observation or simulation of natural phenom-
ena (e.g., brain simulations, earthquakes, meteorology etc.),
are in general smooth, i.e., the observation values of most
consecutive time steps only differ by a little, but they have



massive spikes.

4. RUBIK OVERVIEW

To enable efficient and scalable threshold query execu-
tion in the face of growing time series (number and length),
RUBIK takes advantage of the similarity within time series
and between time series in general and of time series re-
sulting from the simulation sciences in particular. Given a
specific time step ¢, the values across different time series
are similar at t; also inside a given time series, the values
between consecutive time steps do not vary much except
for spikes (sudden surges, e.g., of voltage, movement etc.).
RUBIK exploits the similarity of time series by discretiz-
ing them as well as indexing and compressing them with a
Quadtree. Threshold queries based on time and observation
value predicates used to find interesting time series can then
be translated into efficient two dimensional range queries on
the Quadtree. Crucially, RUBIK preserves the time reso-
lution completely and thereby avoids considerable overhead
due to false positives.

More precisely, RUBIK first discretizes/bins the time se-
ries along the observation dimension (the time dimension is
already implicitly discretized). Each binned time step ¢s of
a time series is then range encoded: all bins below the ob-
servation value o at ts are set to 1 while the bins greater or
equal to o are set to 0. Doing so for all time steps in a time
series essentially translates the time series into a two dimen-
sional bitmap with the area under the curve filled with 1’s.
The time dimension is implicitly discretized already due to
the discrete time steps in simulations or due to epochs in
sensor network deployments. Figure 1 shows the binning
and range-encoding of a time series. By discretizing and
range-encoding the time series RUBIK essentially precom-
putes a set of answers for threshold queries that align with
the discretization.
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Figure 1: A two-dimensional time series bitmap.

Binning and range-encoding the time series is crucial for
compression as otherwise time series almost always differ
slightly, rendering efficient compression impossible. Inspired
by the Quadtree-based decomposition of bitmap images [5],
we notice that Quadtree decomposition can be applied to
compress the bitmaps representing the time series. However,
this technique compresses each bitmap individually and does
not exploit the similarity between the time series. To over-
come this limitation, we make clusters of binned time series,

i.e., each cluster comprises of several binned time series (in
fact the bitmaps corresponding to the time series). Doing so
essentially results in the creation of a 3-dimensional bitmap
where the third dimension is the number of time series in the
cluster. Ultimately, we apply the Quadtree decomposition
strategy collectively on the whole cluster of bitmaps, that is
we hierarchically divide each cluster into four blocks of equal
size. The Quadtree decomposition strategy is adapted to ac-
commodate the additional third dimension (number of time
series). If a 3D block of bits contains 0’s and 1’s (in any
of the three dimensions), then it is recursively subdivided
further in the time and the observation dimension. If, on
the other hand, it only contains either 1’s or 0’s then it is no
longer divided. Figure 2 illustrates (using the red lines) how
the cluster of time series is divided into two along the time
and the observation dimension. RUBIK compresses beyond
binning and, in case a block only contains 0’s and 1’s, only
stores this information. Using Quadtree decomposition on a
3D bitmap can lead to cases where a block cannot further be
subdivided in the time and the observation dimension, yet
contains 0’s and 1’s. To efficiently deal with such blocks and
improve space efficiency RUBIK uses Word Aligned Hybrid
compression (WAH [21]) on the mixed bitvector.

Time

Observation
N N N N Bin

Number of
Time Series

=3 PN T T
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Figure 2: A cluster of time series bitmaps, split
along the time and observation dimension with the
purpose of identifying blocks enclosing the same bit
value.

To execute a threshold query with observation and time
predicates, a query on the Quadtree built on the time series
is executed. Each threshold query is translated into a two di-
mensional range query bounded by the time and observation
predicates. During query execution, RUBIK first discretizes
the observation threshold and then traverses the Quadtree
performing query execution on the compressed data. If the
bin b where the query observation threshold falls is enclosed
in blocks that contain only 1’s for all the time steps inside
the query range, all the time series are returned. If a mixed
WAH compressed block is encountered, only the time se-
ries that contain a 1 in b are returned. Like many related
work approaches, RUBIK also works on a lossy compres-
sion/representation of the time series data, thus retrieves
approximate results and consequently has to verify a subset
of the results by reading the exact time series from disk.

5. RUBIK INDEXING

Indexing with RUBIK has three basic steps: first the bin-
ning & encoding of each time series, second, grouping simi-
lar time series into clusters and finally, indexing (as well as
compressing) each time series cluster with a Quadtree.

5.1 Discretization/Binning



Each time series is discretized along the observation di-
mension into n bins B where each bin b € B has an upper
and lower boundary bu and bl. RUBIK uses range encod-
ing to encode the discretized values as bitmaps, i.e., given
the observation value v at a specific point in time, all bins
b € B with both boundaries smaller than v will be set to 1
whereas all bins with any boundary greater than v will be set
to 0. Algorithm 1 illustrates the discretization process with
pseudocode. For the purpose of efficiency, RUBIK’s imple-
mentation wraps the binning/encoding into the building of
the Quadtrees, thereby accelerating the indexing process.

Input: ts: array containing a time series
I: number of time steps of time series
binspign: array of higher bin boundaries
b: number of bins
Output: bitmap: discretized time series (two
dimensional array)
for i = 0; i < [; i++ do
for j = 0; j < b; j++ do
if ts[i] > binspign[j] then
| bitmapli][j] = 1;
end
else
| bitmapli][j] = 0;
end
end
end

return bitmap
Algorithm 1: RUBIK Algorithm for Discretization of one
Time Series

The sizes of the bins can vary, depending on the dataset,
the query workload or both. If, for example, the observa-
tion thresholds of queries are frequently in the same range,
the precision of the index can be improved if the bins in
the range are chosen smaller than outside. Similarly, if the
time series have all or most of their observation values in a
small range at most points in time, precision can be equally
improved by using more (but smaller) bins in this range,
thereby taking advantage of RUBIK’s ability to use bins of
variable width.

5.2 Clustering Time Series

To achieve further compression RUBIK groups similar
time series into clusters and indexes each cluster individ-
ually. Several approaches have been developed in the past
to determine similarity between time series. All of these ap-
proaches can be used to group similar time series into clus-
ters. GAMPS [7], for example, clusters time series based on
shared subsequences.

A simpler approach is to use the inherent local similarity
in the time series. As we argued previously, time series from
nearby locations in simulation datasets are frequently very
similar and so it suffices to use the distance between the lo-
cations where the time series have been recorded to compute
the clusters. More elaborate approaches could be used for
the clustering, but the benefit is not substantial enough to
justify the overhead.

In RUBIK we use a coarse grained binning to determine
similarity between time series. In essence RUBIK calculates
for each time series a coarse grained binning in both di-
mensions corresponding to the Quadtree representation at
a certain level of resolution (an example is shown in Figure

3) and assigns all time series with identical representations
to a cluster. A minimum cluster size is set beforehand so
that very small clusters (or single time series) are grouped
together as one.

Allo Allo Allo Allo

Allo Allo VX Allo

Figure 3: Coarse-grained discretization for cluster-
ing.

The number of clusters (and consequently also their size)
is therefore a crucial configuration parameter. The smaller
the clusters are, the more similar can the time series in
them be and the higher is the compression rate for the clus-
ter (despite WAH not compressing small clusters as well as
bigger ones). At the same time, however, the more clus-
ters there are, the more space is spent on data structures
(like the Quadtree hierarchy) and the more Quadtrees need
to be queried. Clearly there is an interesting trade-off to
be explored between improved compression ratio that the
Quadtree decomposition can achieve in each cluster and in-
creased overhead for querying and storing several Quadtrees.

5.3 Quadtree Index

RUBIK’s indexing process builds a compressed Quadtree-
like structure by recursively splitting the cluster of bitmaps
representing the time series along the observation and time
dimension.

5.3.1 Data Structure

While indexing RUBIK builds a Quadtree that stores in
each node the information about the enclosed bits of the
bitmap, i.e., whether they are only 1’s, only 0’s or both.
More precisely, if a node only contains 1’s it is labeled All 1
and there is no need to store all the enclosed individual bits.
Similarly, if a node would contain only 0’s, it is labeled All 0
and the enclosed bits do not need to be stored individually.
In either case, the node in fact becomes a leaf node as there
is no need to partition it further. When a node contains both
0’s and 1’s it is labeled Mized and RUBIK tries to split it in
both the observation and time dimension. Only if this does
not succeed, the actual values are stored in the leaf node in
a bit bucket.

Consequently only the mixed leaf nodes of the tree store
actual bits in bit buckets. As the bit buckets are mixed, they
cannot be substituted by a single label and we use WAH to
reduce their size. Figure 4 shows an example of the data
structure used in memory: the leaf nodes either store the
(compressed) bit bucket itself or the information that all
bits are 1’s or 0’s. When writing the Quadtree to disk, it is
translated to a leafless Quadtree in which the internal nodes
contain their children. To avoid storing pointers (from nodes
to their children), the leafless Quadtree on disk has fixed
sized nodes, making nodes directly addressable through the
calculation of their address. Mixed nodes are stored in a
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Figure 4: Example Quadtree built by RUBIK in
main memory.

separate file on disk. A hashmap maps a mixed node in the
tree to its offset in the file containing the mixed nodes.

5.3.2 Indexing Algorithm

RUBIK indexes the discretized time series by recursively
splitting the cluster of bitmaps (representing time series)
along the observation and time dimension into blocks of
equal size. If a block only contains either 1’s or 0’s, the
block is not split any further and the compressed block is
stored (labeled as all 1’s or all 0’s) in the tree structure. The
corresponding node in the tree is a leaf node as it will not be
split any further. If, on the other hand, the block is mixed,
it is split in both dimensions again. The corresponding node
in the tree is labeled as mixed. Once a mixed node can no
longer be split further because it has length one in either
the observation or time dimension, its literal representation
is compressed with word aligned hybrid (WAH) and is stored
in the tree as a leaf node.

Figure 5: RUBIK splitting the example cluster in
two steps.

Figure 5 illustrates how the cluster of discretized, range-
encoded time series is split in two steps. Starting with the
cluster depicted at the top, building the tree is done until
the blocks can no longer be divided (after two splits in this
example). Each node in the example is connected with the
block it represents (dashed line). All blocks can be stored

compressed, except one that needs to be stored literal be-
cause the time series of the cluster have different binned
values in the first time step.

Algorithm 2 illustrates the process in pseudocode: the
cluster of discretized time series is recursively split into smaller
blocks until either all blocks are uniform (contain either only
1’s or only 0’s) or can not be split any further. The proce-
dure starts by passing the cluster as well a null root node
into Algorithm 2.

Input: block: three dimensional array containing the
clustered time series
parent: parent node in the Quadtree structure
Output: tree: tree structure representing the
compressed cluster
node = new node
if (parent == null) then
| parent = node
end
else
| attach node to parent
end
if all_one(block) then
| label node as all 1’s
end
else if all_zero(block) then
| label node as all 0’s
end
else
if block can be split then
label node as mixed
split block into 4 blocks along time and
observation dimension
RUBIK (block:, node)
RUBIK (blocks, node)
RUBIK (blocks, node)
RUBIK (blocks, node)

end
else
apply WAH compression to block
label node as mixed
attach compressed block to node
end
end

Algorithm 2: RUBIK(block, node) Indexing Algorithm

Clearly, determining efficiently whether a block is uniform
is key. RUBIK computes the type of a block as follows. It
maintains two vectors TimeStepMin[] and TimeStepMax|],
each of which has the length equal to the number of time
steps. Then RUBIK scans all the time series in the clus-
ter and, for each time step t;, stores in TimeStepMinlt;]
the bin number that corresponds to the minimum value
for that time step among all the time series, and stores in
TimeStepMax[t;] the bin number that corresponds to the
maximum value found for that time step. In other words,
the two vectors record the bin numbers of the minimum
value and maximum value for each time step among all the
time series, respectively. Given a block between time steps
t1 and t2 (t1 < t2) and observation bins b1 and ba (b1 < b2),
RUBIK iterates over [t1,t2]. If every TimeStepMazxt;] is
less than or equal to b1, all the bins of this block have value
0 according the method of encoding used in RUBIK; or if
every TimeStepMin[t;] is greater than bs, all the bins of this
block have value 1; otherwise, the block has mixed values of



0 and 1.

Instead of Quadtrees and WAH we could also use run-
length encoding. Run-length encoding identifies a maximum
run (consecutive bits) that have the same bit value and rep-
resents them with their bit value and a count instead of
storing every bit separately. With RUBIK we attempt to
do the same but in three dimensions, i.e., we find 3D ar-
eas with the same bit value. To simplify the procedure, we
use a Quadtree which essentially predefines the maximum
lengths of the runs in two out of the three dimensions. Re-
maining areas that are mixed (i.e., contain 1’s and 0’s) are
compressed with WAH (in one dimension). This ability of
the Quadtree to identify runs in three dimensions by adapt-
ing its decomposition strategy for a cluster of bitmaps is the
main reason why we chose it as a core component of our
approach.

RUBIK could also use an Octree or a KD-Tree to encode
the cluster and treat splitting as a three dimensional prob-
lem. Either approach would presumably decrease the depth
of the tree as splitting in the third dimension (the number of
time series) would essentially allow to identify uniform sub-
clusters of time series and eliminate the need to subdivide
nodes with bit values differing only in the third dimension.
This would therefore also decrease the number of mixed bit
buckets that need to be compressed individually. Initial ex-
periments, however, showed that the potential of further
decreasing the size of the cluster is small whereas the size
of the tree structure increases (additional nodes for splitting
along the third dimension). For example, splitting a block
that only contains 1’s (or 0’s) in the third dimension (af-
ter it is already split in the observation and time dimension)
unnecessarily increases the size of the tree structure without
bringing any benefits.

6. RUBIK QUERY EXECUTION

To execute a threshold query, RUBIK maps the query on
the observation and time dimension and executes it on the
Quadtree which summarizes a cluster of bitmaps (which rep-
resent time series). More precisely, RUBIK executes a spa-
tial query which is bounded by the upper and lower bound
t, and t; of the time predicate in the temporal dimension.
In the observation dimension RUBIK identifies the bin b in
which the observation threshold falls that is the upper ob-
servation bound of the query while the lower bound is b — 1
(the immediately lower bin of b).

The first step of query execution consists of performing
the spatial query on the Quadtree. The result of this step
is a set of nodes that intersect with the query range. The
second step of answering a threshold query consists of using
the retrieved nodes in order to determine a set of potential
and definite results. Any bitmap (i.e., time series) in the
Quadtree that contains a 1 in bin b will definitely be in the
final result as a 1 signifies that the actual value is bigger
or equal to the upper bound of the bin. Any bitmap in
the Quadtree that contains a 0 in bin b but a 1 in bin b —
1 potentially is a result as the actual value is bigger than
the lower bound and smaller than the upper bound of bin
b. Potential results need to be verified by inspecting the
actual time series as the precise information is lost due to
the discretization. All results which have a 1 in b will also
have a 1in b—1, i.e., all definite results will also be reported
as potential results. To ensure efficient computation of the
result, RUBIK thus first identifies the definite result and
then the potential result to finally only inspect difference
of the two sets in detail (retrieving time series from disk

and analyzing them), i.e., the potential results without the
definite ones. Figure 6 shows examples of a definite result
with a 1 in b (left) and a potential result with a 0 in b and
alin b—1 (right). While the two examples correspond to
the same time series, the threshold queries are different (use
different thresholds) resulting in two different dimensional
queries (shaded).

Definite result Potential result

Figure 6: Example of a definite result (left) and a
potential result (right).

During query execution, RUBIK benefits significantly from
the clustering of the bitmaps, as in the case of uniform nodes
all the enclosed bits of the bitmaps have the same value and
thus there is no need to examine them one by one. Operating
on the WAH compressed bit buckets in order to determine
the values of the individual bits is undoubtly more expen-
sive. However, in case the query is only asking whether
any time series exceeds the threshold but does not need to
know which one does, decompressing and iterating over a
bit bucket is not necessary, as the very fact that a node is
labeled mixed implies that there must be at least one 1.

7. EXPERIMENTAL EVALUATION

In this section we empirically evaluate the performance of
RUBIK. We first describe the setup, the methodology and
the configuration of the experiments. Then we use a real
neuroscience dataset to test and evaluate the performance
of RUBIK on a real world example, while we also compare
it against FastBit. We focus on FastBit as it is the most
broadly used index for the execution of threshold queries on
time series. As a final test, we use a synthetically generated
dataset, where we can control some basic characteristics of
the time series.

7.1 Experimental Setup

Hardware: The experiments are run on Red Hat 6.3
machines equipped with 2 quad CPUs AMD Opteron, 64-bit
@ 2700 MHz, 32 GB RAM and 4 SAS disks of 300GB (10000
RPM) capacity as storage. We only use one of the disks for
the experiments, i.e., no RAID configuration is used.

Software: RUBIK was implemented single-threaded in
C++. Additionally a single-threaded application was im-
plemented in C++4 on top of the FastBit 2.0.1 API in order
to load the data, build the indexes and query them.

Setting: We experimentally compare FastBit’s bitmap
indexing approach against RUBIK. We have implemented
two different approaches to execute time-bounded threshold
queries in FastBit. The first option is to use two separate
indexes, one for the time dimension and one for the obser-
vation value. The second option is to use only one index for
the observation value and filter the returned result accord-
ing to the queried time-bound. This is possible as we are



dealing with time-stepped data which allows to map bits to
time steps. The additional filtering is applied directly on the
bitvectors. The choice between these two options is a trade-
off between storage and computation, because the bitmap
index for the time dimension used in the first option can be
considered as a set of pre-computed filtering masks while in
the second option the required mask is computed on the fly
according to the queried time boundaries.

As discussed in section 5, different strategies could be used
for choosing the bin boundaries. Since the discretization
step is common for both FastBit and RUBIK, the same bin-
ning strategy is used for both approaches for a fair compar-
ison. All bitmap indexes are range-encoded, so essentially
a bitmap index contains bitvectors that are pre-computed
answers to threshold queries with a specified precision con-
figured at building time.

FastBit was compiled without memory map support (us-
ing defined macros) in order to achieve a fair comparison
as RUBIK does not support it. All the structures are ini-
tialized and the whole index is loaded into memory before
querying so that it is guaranteed that no I/O operations are
performed during the measurements. The data page size
used for RUBIK is 96KB and 4KB for FastBit. Before each
experiment, we clear OS caches and disk buffers.

7.2 Experimental Methodology

Neuroscience Dataset: The primary dataset used in
our experiments is obtained from the simulation of brain
activity, provided by the neuro-scientists in the Blue Brain
Project(BBP [13]). The dataset represents the 6th layer of
a rat neocortical column and contains 312349 time series.
The electrical (action potential) simulation is carried out
for 1000 time steps which is thus the length of each time
series. In particular, each time series records sequentially
the voltage value of a neuron at each time step within a
given period of time. An important property of this dataset
is that time series resulting from neighboring neurons have
similar overall patterns. A sample (four time series) of this
dataset is shown in Figure 7. The size of the binary file
containing the time series is 1.2GB.

Synthetic Dataset: To test RUBIK further we gener-
ated synthetic data based on simulated brain activity. Many
models have been proposed for different neuron responses.
Some of them are able to reproduce spiking and bursting be-
havior of known types of cortical neurons. They are based on
ordinary nonlinear differential equations and are convenient
for marked spiking behavior. We use a model more similar
to our real data, i.e., we use a so-called resonate model. For
producing simulated neuron responses we have considered
the model proposed by A. Watson [19] for temporal sensi-
tivity in visual perception. In our experiments we have used
the impulse response of the model, when the excitation is a
spike. A sample (four time series) of this dataset is shown
in Figure 7.

Micro-benchmark: The micro-benchmarks used in our
experiments consist of 60 two-dimensional threshold queries
which attempt to retrieve the time series of interest. Each
threshold query has a time predicate specifying a time period
between two time steps and a voltage predicate specifying a
value range greater than a value selected randomly from all
the possible voltage values.

Approach: In order to obtain accurate results, the query
processing consists of two phases, querying the index and
then filtering to eliminate any false positives that the bin-
ning has introduced. We are focusing only on the first phase,

which essentially calculates two sets of results, one with def-
inite results and one with potential results. The potential
results determine which entries need to be verified by test-
ing the full time series. The query execution time reported
in all the experiments consists of the time required to count
the number of definite results and the number of potential
results. The time for identifying the exact location of the
candidate results and filtering them is not included.

7.3 Comparative Analysis

In this section, we compare the performance of RUBIK
and FastBit when a fixed space budget is provided. The
space budget allocated to the indexes is fixed to 155MB.
Given this space budget RUBIK is able to maintain an ac-
curate in-memory index. For FastBit, we evaluate three dif-
ferent variants by using two indexes and varying the number
of bins dedicated to the time information in {10, 25} and by
using only one voltage index and removing the returned re-
sults that are outside the time range. We refer to them as
FastBit10, FastBit25 and FastBitF respectively. First we
build the indexes on the brain simulation dataset for both
RUBIK and FastBit and measure the index sizes to make
sure that they respect the space budget. Then we run all
the 60 threshold queries in the micro-benchmark and mea-
sure the total query execution time for all the alternative
approaches.

Index Size: Figure 8 shows the index size of RUBIK and
of the three FastBit variants. All the indexes built have a
similar size due to the limitation of the space budget. For
FastBit the size of the time index increases as the number of
bins used for the time information increases, which results
in the opposite trend for the voltage index, which is forced
to sacrifice its resolution (going from 39 to 14 bins) in order
to fit in the allocated budget. FastBitF and RUBIK exploit
all the available space budget for the voltage information.
As RUBIK is able to compress more it is able to use 128
bins, while FastBitF can only use 54.

Query Execution Time: Figure 8 shows the total exe-
cution time of 60 threshold queries. The experiment shows
that FastBit25 is slower than FastBit10. This is because
FastBit10 does not always use the available time index be-
cause of its limited filtering power that renders it useless for
some queries. Also, FastBitF is slightly slower than Fast-
Bit25 as building the mask used to filter on the fly incurs
some processing overhead. Most importantly, however, RU-
BIK runs 6 to 9 times faster than the different variants of
FastBit as it has more pruning power in both, the time and
the voltage dimension.

Accuracy: Figure 8 shows the percentage of hits (results
that do not need to be verified) and the percentage of candi-
dates (results that have to be verified by inspecting the time
series) with respect to the total number of returned results.
We observe that the choice of how the available budget is
split among the time and the voltage information in Fast-
Bit does not have any significant impact on the accuracy.
FastBitF exploits all the available budget for the voltage
index, and subsequently filters out some of the candidates.
Consequently, FastBitF is the FastBit variant with the best
accuracy. However, the accuracy is still not as good as RU-
BIK’s, because FastBitF uses a smaller number of bins for
the voltage index.

7.4 Scalability Analysis

In this section, we study the impact of parameter con-
figurations and dataset characteristics on RUBIK. We vary,
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respectively, the number of time series, the length of time se-
ries, and the number of bins which allows us to test RUBIK
with larger datasets, measure how its performance changes
accordingly and how it compares to FastBit. For the fol-
lowing experiments, no fixed space budget is used. Instead,
we use the same precision for both FastBit and RUBIK,
i.e. both approaches use an equal number of bins with the
bin boundaries being the same, and we measure the differ-
ence in the index size. Our previous experiment shows that
the overall best FastBit variant is FastBitF, as for the same
space budget it offers increased accuracy, while being only
1.4 times slower than the fastest variant (FastBit10). Con-
sequently, in the rest of the experiments we only compare
against FastBitF.

7.4.1 Scaling with Data Volume (increase in the num-
ber of Time Series)

We perform experiments on both the neuroscience and the
synthetic dataset.

Neuroscience Dataset.

In order to scale our original dataset with respect to the
number of time series we use interpolation to increase the
number of time series in the dataset. Starting with 312349
time series, we obtained two datasets containing double and
four times the amount of time series respectively.

Index Size: Figure 9 shows the sizes of the resulting
indexes for each dataset. RUBIK’s index size scales sub-
linearly with the number of time series, that is, the com-
pression rate increases as the number of time series increases.
Consequently, the larger the size of the original time series

dataset is, the more compression gain RUBIK achieves.

Query Execution Time: Figure 9 shows the total query
execution time for FastBitF and RUBIK. As RUBIK groups
time series, it scales well with the increase in their num-
ber because with only one Quadtree traversal the threshold
condition is tested on an increasing number of time series.
FastBit on the other side has to execute the query on increas-
ingly longer bitvectors. As a result, the achieved speedup
over FastBitF increases from 9 to 23.

Query Execution Time Breakdown: Figure 9 shows
a breakdown of the total execution time for RUBIK. The
index operation stands for the time to perform a 2D spatial
range query on the Quadtree (first step of query execution).
The metrics stands for the time to compute an upper and a
lower bound of the number of results (second step of query
execution). The index operation time remains roughly con-
stant, as adding more time series (which fall in the already
existing clusters) does not affect the structure of the tree.
On the other hand, the metrics time increases alongside with
the increase in the data size, as each one of the tree nodes is
now bigger and consequently the number of returned results
that have to be counted is now higher.

Synthetic Dataset.

In order to test the performance more thoroughly, we per-
formed the previous experiment for RUBIK using the syn-
thetic dataset. We first obtained a base dataset of 2.1GB
containing 543900 time series, which we scaled up by inter-
polation. The sizes of the obtained datasets are shown in
Figure 10.

Index Size: Figure 10 shows the size of the indexed data
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and the index size. Clearly, as the dataset size increases, the
compression ratio increases as well.

Query Execution Time Breakdown The query execu-
tion breakdown of Figure 11 exhibits the same trends as in
Figure 9. As we mentioned above, what causes an increase
in the metrics time, is the fact that the number of results
that need to be counted increases as more time series are
added.

Comparison with FastBit: In order to perform a com-
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Figure 12: RUBIK and FastBit index sizes (left) and
query execution time (right).

parison with FastBit on a bigger dataset, we also built Fast-
BitF on the 8GB dataset which contains around 2 million
time series. In this experiment, the memory in the machine
that was used was not enough to build the index. The solu-
tion that FastBit proposes is to split the input in several par-
titions and build one index per partition. Figure 12 shows
the index sizes and the query execution results. For Fast-
BitF the results from different partitions are superimposed.
In this case, RUBIK achieves a speedup of 20, while using
half the space that FastBitF does (for the same binning).

7.4.2  Scaling with Temporal Resolution (increase in
the number of Time Steps)

In order to scale our original neuroscience dataset with
respect to the number of time steps we used interpolation
to generate longer time series. As a result we obtained two
datasets with time series that are 1999 and 3997 time steps
long respectively.

Index Size: Figure 13 shows index sizes. We observe that
FastBit’s WAH compression is able to exploit the increased
similarity in the time dimension.

Query Execution Time: Figure 13 shows the query ex-
ecution time. We note that the time ranges of the queries are
also stretched proportionally to the length of the time series.
As FastBitF scales better than RUBIK with the increase in
the number of time steps, RUBIK’s speedup decreases from
8.5 to 5.5.

Query Execution Time Breakdown: Figure 13 shows
a breakdown analysis of RUBIK’s query execution. The
increase in the number of time steps results in a deeper
Quadtree (as bitmaps become longer in the time dimension
and more subdivision steps are required), which causes the
index operation time to increase.

7.4.3  Scaling with Observation Value Resolution (in-
crease in the number of Bins)



M Index Operations [ Metrics

index size (MB)

O R N WAV O N

RUBIK |FastbitF| RUBIK |FastbitF| RUBIK |FastbitF

query execution time (s)

1000 3997 1000

number of time steps

RUBIK |FastbitF| RUBIK |FastbitF| RUBIK |FasthitF

number of time steps

o

o 14

,g i3 \N
c 1 .

5. SNV

3 06 NN

3 04

>

§ 0.2

A

1000 1999

number of time steps

3997

Figure 13: RUBIK and FastBit index sizes (left), execution time (middle) and RUBIK execution time break-
down (right) depending on the number of time steps (neuroscience dataset).

1600 = 7 M Hits Percentage  KICandidates Percentage
— 1400 =,

o (] 100%

1200 AR _ S
e 1000 g i NN NN h\\\
& 800 o Sz AR 3
x 600 83 NN
S 400 g2 A N
£ 20 - 31 o

5] ' , ' § o 85%
RUBIK |FastbitF| RUBIK |FastbitF| RUBIK |FastbitF| Z. 80%
128 256 128 256 512

number of bins

number of bins

number of bins

Figure 14: RUBIK and FastBit index sizes (left), execution time (middle) and accuracy (right) depending on

the number of bins (neuroscience dataset).

We build the index of RUBIK on the entire brain simu-
lation dataset with three different configurations of number
of bins, namely, 128, 256, and 512.

Index Size: Figure 14 shows the sizes of the different
indexes built for both FastBitF and RUBIK when different
numbers of bins are used. Remarkably, the index size of
RUBIK with 256 bins is only slightly bigger than the one
that FastBitF builds using only 128 bins. Also, we observe
that the index size of FastBitF with 512 bins is 1.4G which
is actually bigger than the indexed data itself (1.2G).

Query Execution Time: In Figure 14 we observe that
FastBitF’s query execution time is independent of the num-
ber of bins. No matter how many bitvectors the bitmap
index has, FastBit only retrieves two of them during query
execution (the bin b where the threshold falls as well as the
immediately lower bin b — 1). RUBIK on the other side is
influenced by the number of bins, because those have an
impact on the internal structure of the tree (the bitmaps
become longer in the observation dimension).

Accuracy: Figure 14 shows the percentage of hits and
candidates of each configuration. We observe that when
more bins are used, the chance of hitting the exact time
series increases and conversely the chance of checking the
candidates decreases quickly, as higher-resolution binning
results in higher indexing precision. As FastBitF uses the
same binning for the voltage index and filtering for the time,
its accuracy is the same (but it requires a larger index).

7.5 Time to Index

RUBIK’s indexing process consists of the following main
steps: after performing one pass over the data, the skeleton
of the Quadtree is built in-memory, then WAH compression

is applied to the mixed bit buckets and both the compressed
bit buckets as well as the Quadtree structure are serialized
on disk. Compared to the different FastBit variants, RUBIK
requires more time to index the datasets (building time can
take from 20 minutes for the smallest dataset tested and up
to 2 hours for the largest one). However, at the same time,
the index needs significantly less space for the same targeted
precision. Additionally, for our use cases indexing is done
once the simulation output becomes available and could be
performed in an incremental fashion. Another alternative is
to index the different clusters in parallel as they are com-
pletely independent. Ultimately, we believe there is room
for improving RUBIK’s indexing performance and we plan
to investigate this as future work.

8. CONCLUSIONS

In this paper, we develop RUBIK, a novel approach for
indexing time series data. RUBIK transforms threshold
queries on time series into a two-dimensional bitmap prob-
lem. By decomposing the time series using a Quadtree, RU-
BIK reduces the size of the bit representation while main-
taining high precision as otherwise the number of false pos-
itives imposes an undue penalty on the query execution.
Thanks to the representation as a Quadtree, queries with
time and observation value predicates can be translated into
efficient spatial range queries.

The representation as Quadtree along with the use of
WAH for compression also exploit that time series in many
application domains and particularly in the simulation sci-
ences are often similar to each other. By using both, Quad-
tree and WAH, RUBIK can efficiently compress similar time
series and will scale particularly well to time series resulting
from increasingly detailed simulation models as our experi-



ments show.

Crucially, our experimental evaluation shows that, be-
cause RUBIK can collectively represent and process a group
of time series as well as exploit the pruning power of the
Quadtree, RUBIK outperforms the state-of-the-art by a fac-
tor of 6 to 23 for query execution while producing a more
space-efficient index.
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