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ABSTRACT
Today’s scientists are quickly moving from in vitro to in
silico experimentation: they no longer analyze natural phe-
nomena in a petri dish, but instead they build models and
simulate them. Managing and analyzing the massive amounts
of data involved in simulations is a major task. Yet, they
lack the tools to efficiently work with data of this size.

One problem many scientists share is the analysis of the
massive spatial models they build. For several types of anal-
ysis they need to interactively follow the structures in the
spatial model, e.g., the arterial tree, neuron fibers, etc., and
issue range queries along the way. Each query takes long
to execute, and the total time for executing a sequence of
queries significantly delays data analysis. Prefetching the
spatial data reduces the response time considerably, but
known approaches do not prefetch with high accuracy.

We develop SCOUT, a structure-aware method for prefetch-
ing data along interactive spatial query sequences. SCOUT
uses an approximate graph model of the structures involved
in past queries and attempts to identify what particular
structure the user follows. Our experiments with neuro-
science data show that SCOUT prefetches with an accuracy
from 71% to 92%, which translates to a speedup of 4x-15x.
SCOUT also improves the prefetching accuracy on datasets
from other scientific domains, such as medicine and biology.

1. INTRODUCTION
By moving from purely in vitro experiments to simulating

models in silico, scientists in many different disciplines such
as biology, physics, neuroscience, etc., have experienced a
drastic paradigm shift in recent years. Analyzing a natu-
ral phenomenon, rebuilding it as a model and simulating it,
often leads to a more profound understanding of the mecha-
nisms behind it. The tools scientists use, however, typically
involve inefficient data management techniques which com-
plicate and delay the analysis of massive models.

To build and analyze spatial models, the scientists use
spatial indexes that help them to efficiently retrieve precisely
defined parts of the model by executing range and other

spatial queries. Many such indexes [28, 22, 15] have been
developed in recent years to provide fast random access to
spatial data. Scientists, however, often need navigational
access to the data, i.e., moving from one location to another
one nearby, based on a certain logic. Support for efficient
navigation through spatial data is still a challenge.

Physicians, bioinformaticians and neuroscientists use nav-
igational access to analyze their data such as the bronchial
tracks of the lung, the arterial tree or the neuron network ex-
tracted from CT scans and then converted into three dimen-
sional representations. In their spatial datasets they follow a
structure, for example lung tracks, artery, neuron branches
etc., and issue range queries along the way. The locations
of the queries are hence not random, but are guided by the
path of interest of the scientist, correlating with structures
in the spatial model.

In these cases navigational access to spatial data happens
as guided spatial query sequence, i.e., as a sequence of n three
dimensional spatial range queries whose locations are deter-
mined by a guiding structure. A guiding structure is one out
of the many spatial structures in the spatial dataset the user
follows and hence it intersects with all of his n range queries.
The spatial structures in a dataset are the structures that
provide the user with a navigational path and have a dataset
specific semantic, e.g., neuron branches, artery and lung air-
way as shown in Figure 1. The range queries in the sequence
are executed interactively; based on the current query result,
the user decides where to go next. The range queries are ad-
jacent to each other, slightly overlapping or with small gaps
between them.

a) b)

Figure 1: Guided spatial query sequences on a 3D model of
(a) a pig’s heart arterial tree and (b) a human lung airway
track with gaps between the queries in the sequence. The
dotted line indicates the guiding structure.

Due to the interactive nature of the problem, the I/O sub-
system is idle during the time that results are analyzed and



during the time the user decides the location of the next
range query. Clearly, prefetching is an excellent technique
to improve performance of navigational access to spatial
data, where data can be prefetched between two consecu-
tive queries. The impact of prefetching is of course minute
if the entire dataset fits into main memory (or SSD or sim-
ilar low latency storage media) or in case the path chosen
is known a priori and where prefetching is hence perfect.
Scientific datasets, however, have been growing rapidly and
many still do not fit into main memory. Similarly, in many
settings, e.g., interactive applications, the path that the user
chooses cannot be known beforehand. For many of today’s
applications based on spatial data, prefetching is thus still
an important method to speed up queries. However, as we
will show, current prefetching approaches for spatial data do
not perform well, because they only rely on previous query
positions.

We therefore develop SCOUT, which instead of using the
position of past queries like other approaches do, considers
the previous query content and identifies the guiding struc-
ture among the many spatial structures in the range query
results. It achieves this by using an approximate graph rep-
resentation of the spatial objects and traverses it to predict
the location of the next query. By using a graph representa-
tion, SCOUT is independent of the complexity or geometry
of the dataset. SCOUT additionally uses heuristics to re-
duce the cost of prediction by building sparser graphs in
subsequent spatial queries. Several optimizations are also
presented that improve prefetch accuracy and speed up com-
puting the prediction when SCOUT is used with a particular
class of spatial indexes.

2. RELATED WORK
Prefetching is a popular technique to hide data transfer

costs, e.g., in client-server communication [9, 25], or when
loading instructions [17] and data [6] into CPU caches.

Prefetching along graph structures is also used in different
contexts. Web pages prefetching [21] uses a page-link graph
to predict the user’s next request (links followed by many
users or similar learning mechanisms are used). For object
oriented databases [13] and data structures [26] like binary
trees and linked lists, tables containing all pairs of vertices
in the graph representation are precomputed. When nav-
igating through the graph, the tables are used to quickly
locate the next vertex. While all these approaches help to
find the next vertices in the graph given the current vertex,
they are orthogonal to the problem we address as SCOUT
targets at finding the set of vertices (the guiding structure)
the user is following.

Research in locating spatial data has focused heavily on
designing indexes [11]. Prefetching spatial data is orthogo-
nal to spatial indexes, except when an index is used to im-
prove prefetching performance. More particular to our prob-
lem, however, are the following approaches used to prefetch
spatial data. We categorize them based on what informa-
tion is used to predict the future location as static methods,
trajectory extrapolation methods and learning approaches.

2.1 Static Methods
Static methods use heuristics for predicting the future

query location and do not consider any past information.
The Layered [32] approach segments the spatial data into
a grid and prefetches all surrounding grid cells for future

queries. The Hilbert-Prefetch [23] works similarly but as-
signs each cell a Hilbert value (based on the cell’s coordi-
nates) and prefetches cells with similar Hilbert values like
the one of the current location.

Instead of the application level, the multimap approach [20]
works at the disk level and ensures that data close in space
is physically stored close together on disk. When reading
entire disk pages from the disk, the I/O subsystem auto-
matically prefetches data around the location queried for
and hence this method is similar to the Layered approach.

2.2 Trajectory Extrapolation Methods
Trajectory extrapolation methods assume that navigational

access to spatial data follows a path. They use the past
query locations, interpolate them with a polynomial and
extrapolate the new location. While the Straight Line Ex-
trapolation [27] uses the last two query positions and a sim-
ple linear extrapolation, the Polynomial approach [4, 5] uses
several previous query positions (more than two) as well as
a polynomial of degree two (or higher) to extrapolate the
next query location. For visualization applications, the Ve-
locity [31] approach additionally uses the user’s velocity on
the motion path to determine the next query location.

Finally, the EWMA [7] approach uses exponential weighted
moving averages to assign each past movement vector of the
query a weight, adds up all vectors and extrapolates the
future movement. The parameter λ controls the weight as-
signed to previous queries: the last query is weighted with
λ, the second to last with (1− λ) ∗ λ, and so on.

2.3 Learning Approaches
User behavior can also be learned and be used to prefetch

data in case users always chose to explore the spatial data
along similar paths or guiding structures. The sequence pat-
tern mining [10] approach collects past user behavior and
mines it (with a clustering algorithm) to anticipate future
user behavior. Other data mining or association rules learn-
ing approaches [2, 8, 29] use apriori algorithms. Different
learning techniques based on Bayesian network [30] and
Markov chains [14] have also been proposed.

For massive models, however, learning from past user be-
havior does not significantly improve prediction accuracy.
Because the models are huge, they contain virtually in-
finitely many possible paths, reducing the probability that
sufficient users take the same paths.

3. MOTIVATION
Our work is motivated by the needs of scientists who

face significant performance challenges when querying spa-
tial data in general, and the Blue Brain Project (BBP [18])
we collaborate with in particular. In the following we first
discuss the neuroscience application, then describe the use
cases in which the neuroscientists’ work can be sped up by
prefetching spatial data and finally illustrate the opportu-
nity for prefetching spatial data. With a set of experiments
we demonstrate the limited accuracy of known approaches
and motivate the need for new prefetching approaches.

3.1 Neuroscience Use Cases
The quest for understanding the human brain, urges the

neuroscientists in the BBP to build and simulate models
of the brain at an unprecedented scale. In their models,
each neuron is represented with several hundred of three-
dimensional cylinders, modeling the structure of the neuron



soma and the branches extending from the soma, bifurcating
several times. Today they build models with 500,000 neu-
rons represented by 2.3 billion cylinders amounting to 165
GB on disk. The amount of data will grow substantially in
the future as the ultimate goal of the Blue Brain Project is
to simulate a model of the human brain which will contain
nearly 86 billion neurons and will require several hundred
Petabytes of disk space.

The neuroscientists in the BBP need to work with guided
spatial query sequences in many different aspects of their
work. Although using state-of-the-art spatial indexes speeds
up access to the spatial data considerably, random reads
in spatial indexes throughout spatial query sequences cre-
ate a bottleneck and slow down the analysis, inadvertently
affecting the productivity of the neuroscientists. Efficient
support of sequences of range queries is therefore key and
has substantial impact on the quality of the neuroscientists’
research. Guided spatial query sequences are pivotal in the
following use cases:

Ad-hoc Queries: These queries are used to correct errors
in the models introduced in the imaging process. They fol-
low the branches of the neuron, execute a range query at
every step and carry out an analysis of the query result.
The type of analysis depends on the error to be rectified. In
some cases, tissue statistics need to be calculated, in others,
structural pattern matching algorithms need to be executed.

Model Building: To place synapses, i.e., the elements con-
necting the neurons, neuroscientists need to follow some of
the branches and detect where their proximity to another
branch falls below a given threshold. Calculating the exact
distance between two branches is a computationally expen-
sive problem.

Walkthrough Visualization: The three-dimensional walk-
through visualization is primarily used for discovering struc-
tural anomalies. The neuroscientist follows the neuron branch
and executes range queries for visualization.

While the query pattern in these use cases is always a guided
spatial query sequence, the use cases differ in parameters
such as volume of the queries, sequence length and so on.

3.2 Prefetch Opportunity
In the use cases described the user executes a query and

waits for the results. Once the result is retrieved, the user
analyzes the results and then issues the next query in the
sequence. The disk, however, remains idle during the time
results are being analyzed and the time can hence be used to
prefetch results of future queries in the sequence. We refer
to this time as the prefetch window. Ideally all data needed
to answer the next query should be read from disk during
the prefetch window. However, because the prediction is not
always entirely accurate, residual I/O is needed to retrieve
the results not prefetched.

Figure 2 illustrates the timeline of resources utilized by
three spatial queries in a sequence. The first query is ex-
ecuted and at the end of it the prediction computation is
started. While the user analyzes the first query result, the
prediction is used to prefetch data into a cache. Upon exe-
cution of the next query by the user, as much data as can be
found is retrieved from the cache. The cache misses/residual
I/O is subsequently retrieved directly from disk.

3rd Query1st Query

DISK

CPU

2nd Query

Prefetching for Future Query

Residual I/O User Analyzing Results

Prediction Computation

Time

Figure 2: Resource usage timeline for guided spatial query
sequences.

3.3 Accuracy of the State-of-the-Art
We demonstrate the limitations of existing prefetching ap-

proaches by measuring the prediction accuracy for query se-
quences executed on a 450 million cylinder model from our
collaboration with neuroscientists. We use synthetic query
sequences so we can more easily vary the volume of each
single query. The sequences have a length of 25 queries
(a complete description of the experimental setup follows
in Section 7.1).
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Figure 3: Prediction accuracy of state-of-the-art approaches.

We compare the best approaches from Section 2, i.e.,
EWMA (with the λ that yields best accuracy) as well as the
Polynomial interpolation (with varying degrees and using as
many recent query locations to interpolate as their degree
plus one) and measure the prediction accuracy as the cache
hit rate1. The results as a function of the volume of the
query are shown in Figure 3.

Interpolating the query positions with the Polynomial ap-
proaches is not a good approximation of the neuron struc-
ture the scientist is following, as even the best Polynomial
interpolation approach never exceeds a prediction accuracy
of 37%. Furthermore, because polynomials with a higher de-
gree tend to oscillate, the accuracy drops with an increasing
degree. Weighting the previous query positions and giving
the most recent ones more weight improves the accuracy as
the results of EWMA show. Still, even in its best configu-
ration (λ = 0.3), EWMA’s hit rate does not exceed 44%.

A common problem of all approaches is that the predic-
tion accuracy drops substantially as the volume of query in-
creases. The accuracy drops because in large queries there is
a higher probability that the structure being followed bifur-
cates or bends, leading to a jagged query trace that cannot
be interpolated well. Clearly only relying on previous query

1Percentage of data read from the prefetch cache rather than
from disk.



positions is not enough to reliably predict the future posi-
tion of the query. In this paper we demonstrate that the
content of past queries must also be considered to improve
prediction accuracy.

3.4 SCOUT Overview
As we demonstrated with the motivation experiments,

taking into account only the locations of previous queries
is not enough to predict future query locations with high
enough accuracy. To support scientists in executing guided
spatial range query sequences efficiently, SCOUT therefore
not only considers the locations of previous queries, but also
their content. While the result of query q in the sequence is
loaded, SCOUT already starts to reconstruct the structures
in q and approximates them with a graph. Once the graph
is constructed, it is traversed to find the locations where
it exits q. At the exit locations, the graph (and not the
query locations) is extrapolated linearly to predict the next
query locations. By also considering the content of previ-
ous queries, SCOUT achieves a significantly higher prefetch
accuracy.

4. PREDICTION
SCOUT accesses the spatial data through a spatial index

and stores the spatial data in the prefetch cache. Any spatial
index can be used as long as it can execute spatial range
queries. User requests are served out of the prefetch cache
and are loaded into it in case of cache misses. To speed up
the prediction process, building the graph and retrieving the
range query result is interleaved: while the result is read, the
graph is already assembled.

To predict the location of the next query, SCOUT uses
the content of the last queries and reduces the structures
to a graph. Each range query result contains several struc-
tures, making it very hard to predict the next query loca-
tion. By considering the result of several past sequential
range queries, SCOUT can reduce the number of structures
the user may be following and can predict the next location.

In the following we discuss how to find guiding structure
information in spatial datasets, how SCOUT represents this
guiding structure information efficiently as a graph, how it
reduces the candidate set of possible structures the user is
following and finally, how the candidate set is used to predict
future query locations.

4.1 Guiding Structure Information
In many spatial datasets the guiding structures, i.e., the

structures the user may follow, are explicit. For example in
the case of datasets like road networks [16], models of the
lung [1] or the arterial tree [12] the guiding structure are
explicitly represented by spatial structures which define the
routes in road networks, bronchial tracks and arteries re-
spectively. SCOUT can directly use explicit representations
of guiding structure information to build a graph.

In other datasets the guiding structure, however, is not
explicit but implicit. In the case of earthquake simulation
based on unstructured meshes for ground models, for ex-
ample, the dataset contains interesting features like seismic
fault lines the user may follow. The guiding structures in
this example, however, are not explicitly but implicitly rep-
resented by regions of high density in the meshes.

SCOUT cannot directly use implicit guiding structures
directly and a preprocessing step is required to make the
guiding structures explicit. The transformation can be done

manually through analysis or algorithms like medial axis
transformation [19, 24] can be used to identify the topolog-
ical skeleton which oftentimes correlates with the guiding
structure. The particular method chosen to identify the im-
plicit structure depends on the dataset (as well as its seman-
tics) and is outside the scope of SCOUT.

4.2 Graph Representation
With an explicit guiding structure in the dataset, SCOUT

can predict the next query location by summarizing the spa-
tial strucures in the query result as a graph representation.
Many scientific applications already use spatial datasets with
an underlying graph structure, where vertices of a graph are
represented by spatial objects and edges represent two ob-
jects connected with each other. Lung airway track models
are an excellent example where the spatial model is repre-
sented with polygon meshes (as is common in many graphics
and GIS applications). Given the common representation of
polygon meshes as a list of polygon vertices and a list of
polygons faces (the latter referencing the former), SCOUT
can easily extract a graph with vertices represented by poly-
gon faces and edges connecting adjacent polygon faces.

In case no underlying graph representation is available,
SCOUT builds one on the fly. An example is the pig’s
heart arterial tree where arteries are represented using three-
dimensional objects(cylinders) which, unlike polygon meshes,
do not have adjacency information. Graphs are built based
on spatial proximity, i.e., where objects are represented by
vertices and spatially close objects are connected with edges.
Given a set of n spatial objects to build the graph a brute
force algorithm requires O(n2) pairwise proximity compar-
isons of objects. To speed up the graph building process
SCOUT uses spatial grid hashing. Grid hashing partitions
the entire three-dimensional space of range query into equi-
volume grid cells and each object is mapped to grid cells
based on how many grid cells it intersects with. Finding the
intersection between an arbitrary geometry object and the
grid cell can be time consuming and we thus use any one
of the three most commonly used geometry simplification
techniques. A minimum bounding rectangle surrounding the
object, a straight line or a point can be used depending on
the geometry of the object. For example in our arterial tree
dataset we approximate the cylindrical object by a straight
line as illustrated in Figure 4. Objects mapped to the same
grid cells are then connected with edges in the graph repre-
sentation. The guiding structure is one of the many paths
in this graph representation.

Figure 4: Building the approximate graph by mapping ob-
jects to grid cells and connecting them if they occupy the
same cell.

Grid hashing is controlled by setting the resolution, i.e.,
volume of the grid cells. If the resolution is too coarse, many
spatially distant objects map to the same grid cell, thereby
increasing the number of edges in the resulting graph. Too
coarse a resolution also increases the time needed to cre-
ate the graph, because all objects in the same cell need to



be connected pairwise. More importantly, predictions be-
come less accurate because a coarse resolution leads to more
edges than the brute force technique. Excess edges can im-
ply structures that are not present in the dataset and may
mislead the prediction process. If, on the other hand, the
resolution is too fine, objects that are close together and
should be connected, end up in different cells. As a re-
sult, the graph is sparser(fewer edges) when compared to
the one obtained through the brute force technique. The
graph traversal in the prediction process will run into many
dead ends and hence the prediction accuracy will be lower.
Our strategy is to use a fine resolution and work with sparser
approximate graph representation. In fact, the constructed
graph does not need to be entirely precise, because it is used
as a hint for future query locations. As we show in Section
7.4.5, accurate predictions can be obtained with approxi-
mate graphs.

4.3 Iterative Candidate Pruning
In every query result there are many different spatial struc-

tures and the user may be following any one of them, making
the prediction of the location of the next query very difficult.
To identify the structure the user follows, SCOUT exploits
the fact that all queries in the guided spatial range query
sequence must contain the structure followed. SCOUT in-
spects the two recent query results to identify the set of
structures x that exit the (n − 1)th query and the set of
structures e that enter the nth (the most recent) query. The
intersection x and e is the candidate set and contains the
guiding structure the user follows. By repeating this process
for subsequent queries in the sequence, candidates can be
pruned, effectively reducing the set of candidates as shown
in Figure 5.

n+3

n+2
n+1

n

Figure 5: Pruning the irrelevant structures (solid lines) from
the candidate set (dashed lines) in subsequent queries (solid
squares) of the sequence.

With many queries in a sequence pruning reduces the can-
didate set considerably. Already after only a few queries,
the one structure followed can be identified. In case of the
ad-hoc queries use case, the structure followed is oftentimes
identified after six queries. In case of a reset, i.e., when the
user decides to abandon following a particular spatial struc-
ture in favour of another, the candidate set again contains
all spatial structures from the last range query result.

4.4 Predicting Future Query Locations
Based on the candidate set and the graph of all struc-

tures in the nth query SCOUT predicts the future query
locations. It starts at the edges representing the structures
in the candidate set and traverses the graph depth first to
find the locations where the graph exits the query. Perform-
ing this traversal is efficient and is linear in terms of number

of edges and vertices of the graph representation. Pruning
the candidate set further reduces the cost of traversing the
graph and it decreases with the increase in number of range
queries in the sequence.

SCOUT uses the edges exiting the current query and ex-
trapolates them linearly to predict the locations of the next
queries. More complex approaches like extrapolation with
higher order curves do not yield better results.

5. PREFETCHING
We have so far only discussed the ideal case where sub-

sequent queries are adjacent without gaps in-between and
where the duration of the prefetch window is known. In
practice neither of these assumptions holds and in the fol-
lowing we discuss how to adapt the prefetching strategy.

5.1 Prefetch Window Duration
Estimating the duration DW of the prefetch window, i.e.,

how long the computation (visualizing the query result or
others) takes and how long the user needs to determine the
next query location is difficult. Underestimating DW means
we do not make the most of the prefetch window and waste
resources; overestimating it means we will not be able to
fully execute the query at the predicted location. To com-
plicate matters, DW can vary between queries.

Instead of estimating DW , SCOUT uses an incremental
prefetch technique which stops once the user issues the next
range query in the sequence. It is important that in the lim-
ited time window SCOUT prefetches data closer to the exit
location of the candidate structure E with higher priority
because prefetching data far away from E is more likely to
be prefetched unnecessarily. This strategy is illustrated in
Figure 6.
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Figure 6: Incremental prefetching queries pi (dashed lines)
are executed along the extrapolated axis starting at E.

To implement this strategy we require to read the data
in a particular spatial order from disk, i.e., data close to E
first. Only few spatial indexes, however, permit to retrieve
the query result in a particular order. To work with arbi-
trary spatial indexes, SCOUT executes a prefetch query pi
with a small region ri to prefetch data from the predicted
location. It then iteratively increases the volume of each
subsequent prefetching query such that the region ri+1 of
the next prefetching query pi+1 is bigger. The center of the
prefetching queries is shifted along the extrapolated axis of
the candidate structure, until the prefetch window duration
ends.

Because the intersection of ri and ri+1 is not empty, some
of the content of pi is retrieved again when executing pi+1.
Data is, however, not read repeatedly from disk because the
result of pi is still in the cache and hence this operation
incurs only little or no overhead.



5.2 Prefetching Strategies
Predicting the future query location is simple if there is

only one structure in the candidate set. Oftentimes the can-
didate set, however, is bigger because it is either a) the first
query of the sequence and SCOUT has not yet reduced the
candidate set or b) the structure the user follows bifurcates
into two or several structures. We use two strategies to deal
with multiple candidate structures.

5.2.1 Deep Prefetching
An aggressive strategy picks any one structure at random

out of the candidate set C and uses it for predicting the
next query location as shown in Figure 7 (a). The entire
prefetch window duration is used to retrieve D data from
this location. Intuitively, this strategy predicts correctly
with a probability 1

|C| (assuming disjoint prefetch locations).

On average D
|C| data is correctly prefetched but the prefetch

accuracy varies widely, resulting in varying execution times.
While SCOUT does not use any application specific infor-

mation, it is nevertheless possible to improve results by using
application specific heuristics that allows picking the correct
structure out of the candidate set C, thereby improving the
average accuracy of the deep prefetching strategy. For exam-
ple in the context road networks, the user may issue query
sequences to retrieve data along the road with the highest
speed limit. If the dataset contains semantic information
about speed limits, it can be used to pick the one structure
from the candidate set.

5.2.2 Broad Prefetching
Broad prefetching is a defensive strategy that gives all

of the structures in the candidate set C equal weight and
prefetches at all predicted locations proportionally as is shown
in Figure 7 (b). Assuming a prefetch window during which
D data is prefetched, D

|C| will be prefetched at each location.

Because the next query will be executed at one of these loca-
tions, D

|C| is prefetched correctly for each query individually

and on average. Prefetching at several locations thus does
not increase prefetching accuracy, but the variation in pre-
diction accuracy decreases.

The queries at several predicted locations may overlap
because their respective exit locations are close. Instead of
retrieving the overlapping content several times (from cache
or disk), the regions R1 and R2 of two overlapping queries
are expanded until the area of R1 ∪ R2 is equal to the sum
of the areas R1 and R2.

a) b)

Figure 7: Deep (a) and Broad Prefetching (b).

Clearly, executing several small prefetching queries in-
stead of only one big query incurs additional overhead. For
a small number of queries the overhead is insignificant but
for several thousand small queries the overhead may become
substantial. In this case it is necessary to limit the number
of structures considered for prefetching.

If the number of prefetching queries is limited to a number
d, their locations should be chosen so that areas where many

candidate structures exit the query are prefetched. We use
a k-means approach [3] to find d clusters and, to ensure that
we prefetch around an exit location of a candidate, choose
an exit location at random in each cluster. Because k-means
has a smoothed polynomial complexity, it does not impose
an undue overhead for our application.

5.3 Gaps Between Queries
In some use cases, the queries are not adjacent to each

other but have gaps between them. In the case of visualiza-
tion, scenes with a distance between them are rendered to
create the illusion of high speed movement. For our neuro-
science use case, for example, the scientist wants to analyze
regions along the same neuron branch with gap intervals to
ensure the isolation of the local electrical field.

To support these scenarios we use linear extrapolation
from the exit locations of the guiding structures and we es-
timate the gap distance. The gaps between queries can be
of any size, but they are typically governed by a particular
characteristic of the use case, e.g., velocity of visualization,
and remain the same throughout a sequence of queries. We
thus use the distance between the last two queries as a pre-
diction for the next gap.

Linear extrapolation predicts the next query location ac-
curately in case of small gaps. The larger the gap, however,
the more likely is the guiding structure to twist and bend
after exiting the recent query and the less likely it becomes
that a linear extrapolation will approximate the structure.
For larger gaps the prediction accuracy thus drops. As we
show in Section 6.3 the prediction accuracy can be improved
considerably by using a particular class of spatial indexes.

6. OPTIMIZATIONS
We design SCOUT to work with any spatial access method/

index. If, however, it is possible to use an index that a) al-
lows the retrieval of pages from disk in a particular spatial
order and b) stores the relative positions of objects (neigh-
borhood information), then we can optimize graph building
as well as prediction in case of gaps.

6.1 Ordered Retrieval of Spatial Data
Both FLAT [28] and DLS [22] are example indexes that

allow for the ordered retrieval of spatial data. The indexes
work by maintaining neighborhood information for each ob-
ject. Both indexes execute queries using a two phase ap-
proach. First, they find an arbitrary object located inside
the query region and then, using the neighborhood infor-
mation, recursively visit the neighbors until no more results
inside the query region can be found.

While DLS works mainly for convex tetrahedral meshes by
using the neighborhood information already present in the
dataset, FLAT on the other hand works on arbitrary spatial
datasets by first computing the spatial neighborhood infor-
mation as a pre-processing step. Using this information the
retrieval order of the pages can be controlled. This, however,
is not possible with traditional indexes such as variants of
R-tree [15], because they lack neighborhood information. In
the following we discuss how we can exploit this ordered re-
trieval to reduce the time for building the graph and how to
improve the prediction accuracy in case of gaps.

6.2 Sparse Graph Construction
SCOUT builds the graph and traverses it starting from

the edges representing the candidate set to the locations



where they exit the query region. We interleave the process
of building the graph with retrieving the result, i.e., each
page that is part of the result is added to the graph once
it is read from disk. Traversing the graph to determine the
exit locations, however, can only be done once the graph is
complete, i.e., when the entire result is retrieved.

E

nth query

(n-1)th query

Figure 8: Construction of sparse graph (dotted) using only
the relevant pages around the candidate structure (solid
curve).

We can start the traversal earlier if we use indexes where
we control the order in which the result pages are retrieved.
We retrieve the pages we need for building the graph first
and traverse the graph while we load the remaining pages
of the result. More particularly, we retrieve the pages at
the exit locations of the previous query first, build the sub-
graphs of each page P , start to traverse the subgraph and
find the locations X where the subgraph exits the page P .
Subsequently, we recursively repeat this process and retrieve
all neighboring pages of P at X.

With this mechanism we ensure that we only retrieve
those pages that contain objects reachable from the exit lo-
cations E of the previous query as shown in Figure 8. Once
all the pages containing the parts of the graph that are reach-
able from E have been retrieved, the remaining pages that
are relevant for the user but irrelevant for the prediction are
read. While the remaining pages are being read, the pre-
diction process can already start to traverse the graph to
determine the new exit locations and hence to predict the
new query locations.

This approach has two benefits: first, it reduces the cost
for building and traversing the graph and second, the pre-
diction process is already finished once the query result is
retrieved and prefetching can start immediately.

6.3 Gap Traversal
Linear extrapolation for predicting the next query loca-

tion works well for small gaps, but fails to give good pre-
diction accuracy for bigger gaps. The prediction accuracy
is lower because for a big gap the guiding structure is more
likely to bifurcate and bend, making it hard to approximate
it correctly with a linear extrapolation.

By using a spatial index like FLAT [28] or DLS [22], we
can extract exactly those pages needed to follow the struc-
tures that exit the current query. We use a similar approach
like the one used in Section 6.2 for sparse graph construc-
tion but we continue the traversal outside the query region.
Starting from the exit locations of the last query, we load
exactly those pages P that neighbor the exit locations and
build the subgraph of P ’s content. We traverse the sub-
graphs of all P , identify the exit locations E and load the
neighboring pages at E. The process is repeated recursively
to load exactly those pages needed to reconstruct the graph
outside the query region, as illustrated in Figure 9. The
traversal ends once the estimated gap distance is reached.

The grey grid in Figure 9 represents the data pages con-
taining spatial objects. The shaded grid cells illustrate the
pages visited in the gap region. Here the guiding structure is
a neuron fiber which can bifurcate and change its trajectory.

Gap Distance

Figure 9: Traversing pages in the gap region using neuron
fiber as a guiding structure.

The gap traversal technique requires that we retrieve data
between queries that is not required by the user and we
hence trade additional I/O for a better prediction accuracy.
To minimize the overhead (which can be substantial for large
gaps) we set the gap I/O budget, a maximum allowable limit
of pages retrieved in the gap. In case no extra I/O can be
spent for bridging the gap, we resort to a backup mechanism,
e.g., linear extrapolation from the point where the traversal
was stopped.

7. EXPERIMENTAL EVALUATION
In this section we first describe the experimental setup

and demonstrate the benefit of SCOUT by benchmarking
it with microbenchmarks designed with the use cases of the
BBP as a basis. We also study the performance of SCOUT
with a sensitivity analysis.

7.1 Setup and Methodology
The experiments are run on a Linux Ubuntu 2.6 ma-

chine equipped with 2 quad CPUs AMD Opteron, 64-bit
@ 2700MHz and 16GB RAM. The storage consists of 4 SAS
disks of 300GB capacity each, striped to a total of 1TB.

For the measurements we use a brain tissue model with
a volume of 285mm3 containing 100,000 neurons. The neu-
rons are modeled with 450 million three-dimensional cylin-
ders amounting to 33GB on disk. Each cylinder is described
by two end points and a radius for each endpoint. With
79% of the 33GB dataset, the majority of the data is used
to describe the geometry (the cylinders) while the remain-
ing 21% are used to describe additional attributes like the
identifiers and type of the spatial objects. The additional
information is, however, not used by SCOUT as we do not
exploit any application specific information. For building
the graph, SCOUT reduces the cylinder to a line segment
by solely using the two endpoints.

We use two versions of prefetching algorithms for experi-
ments. The simple version SCOUT is coupled with widely
used R-Tree(STR Bulkloaded) [15] spatial index for access-
ing data. The optimized version SCOUT-OPT 2 implements
the techniques described in Section 6 and therefore must
be coupled with FLAT [28]. We compare these algorithms
against the Straight Line Extrapolation, EWMA λ=0.3 and
Hilbert Prefetch approaches as described in Sections 2 and 3.

Spatial indexes have tunable configuration parameters.
For both indexes we use a 4KB page size and a fanout of
2SCOUT-OPT is only used in experiments which contain
gaps in the query sequences. In the absence of gaps SCOUT
and SCOUT-OPT have the same performance.



87 objects per page, both indexes are bulk loaded using a
fill factor of 100%. These parameters can affect the perfor-
mance of the index and thus indirectly the performance of
prefetching with SCOUT. Tuning spatial indexes is, how-
ever, outside the scope of this paper.

We allow 4GB of memory to cache prefetched data. We
leave the remaining 12GB of RAM for the user to perform
his analysis. After executing each sequence of queries, we
clear the prefetch cache, the operating system cache and the
disk buffers.

7.2 Microbenchmark Design
In the following we define the microbenchmarks used in

the experiments. Our microbenchmarks are designed based
on query templates used in the real use cases and have dif-
ferent values for each different parameter, i.e., volume of the
query, sequence length and gap distances as set by the neu-
roscientists. We use 30 sequences for all the benchmarks, all
other parameters are summarized in Figure 10.

We also use input from the neuroscientists to set the
prefetch window duration. If d time is required to retrieve
the data from disk for one query of a particular use case,
and it takes u time to process the data, then we define the
prefetch window ratio as r = u/d. Therefore, if (0 < r ≤ 1)
then the use case is I/O bound, whereas if (r > 1) the use
case is CPU bound. This ratio is used to simulate the effect
of different algorithms processing the data in the use cases.
SCOUT, however, does not estimate the prefetch window
duration but instead uses the incremental prefetching dis-
cussed in Section 5.1.

7.2.1 Ad-hoc Queries
Neuroscientists frequently execute queries to correct er-

rors in the models introduced while scanning. Their algo-
rithms first find the spatial objects belonging to a neuron
of interest and then validate them against many predeter-
mined test cases. The tests performed at every step depend
on the type of error to be rectified, in some cases tissue
statistics need to be calculated while in others structural
pattern matching algorithms need to be executed.

We define two ad-hoc queries benchmarks that differ pri-
marily in the prefetch window duration. Tests based on
statistical analysis are generally computationally cheap and
therefore we set the prefetch window ratio to 0.8. For pat-
tern matching, on the other hand, algorithms are more time
consuming and we set the prefetch window ratio to 1.4.

7.2.2 Model Building
To place synapses neuroscientists follow some of the branches

and detect where their proximity to another branch falls be-
low a given threshold. Computing the exact distance be-
tween two branches is computationally expensive and there-
fore there is a big window of opportunity to prefetch data
(prefetch window ratio of 2). We design a model building
benchmark with rather a small query volume of 20,000µm3

and the query sequence typically consists of 35 spatial queries.

7.2.3 Walkthrough Visualization
The three-dimensional walkthrough visualization is pri-

marily used to monitor fiber reconstruction and to help in
discovering structural anomalies. In this use case, a series of
view frustum culling3 operations is required along the neu-

3The view frustum is the volume that contains everything
that is potentially (there may be occlusions) visible on the
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Figure 10: The parameters of the microbenchmarks.

ron branch the neuroscientist follows. The frustum culling
directly translates into a sequence of spatial queries with
a volume (enclosing the view frustum) of 30,000µm3. We
design two walkthrough visualization benchmarks: a first
one inspired by a low quality, but fast polygon rendering
algorithm which uses a 1.2 prefetch window ratio and a sec-
ond based on a more time consuming ray tracing algorithm
(better quality) which uses a 1.6 prefetch window ratio.

In some cases, users issue query sequences with gaps, for
example, to increase the speed of the walkthrough visu-
alization. We design two additional different benchmarks
for visualization with gaps, with similar parameters as the
aforementioned visualization benchmarks, but with a gap
distance as described in Figure 10.

7.3 Experimental Results
We compare SCOUT to related approaches for execut-

ing the microbenchmarks described in Section 7.2. SCOUT
is compared against the best variants of the related ap-
proaches: Straight Line Extrapolation approach, EWMA
0.3 and Hilbert prefetching.

In a first experiment we use the benchmarks without gaps
and measure the accuracy of prediction as the cache hit rate.
The results are shown in Figure 11(a). Clearly, SCOUT
outperforms the other approaches, even exceeding an accu-
racy of 90%. In the model building benchmark the longer
prefetch window duration helps in increasing the predic-
tion accuracy. The reason is that more spatially close data
is cached with the incremental prefetch strategy. The vi-
sualization benchmarks on the other hand have a shorter
prefetch window, but longer sequences of queries. This al-
lows SCOUT to reduce the candidate set effectively by us-
ing iterative candidate pruning and hence helps to detect the
guiding structure with higher probability. SCOUT, however,
is comparatively less accurate for the ad-hoc query bench-
marks because a) the query sequences are shorter, b) the
prefetch window is shorter and c) the volume of the queries
is bigger (which makes it likelier that the guiding struc-
ture bifurcates). Comparing the results of the two ad-hoc
queries benchmarks clearly shows that with a larger prefetch
window (bigger opportunity), the prefetching accuracy also
increases. The corresponding difference in accuracy when
running the two visualization benchmarks is not as signifi-
cant. In the second experiment we measure the speedup of

screen. Culling is the process of extracting the spatial data
that is enclosed inside the view frustum.



the query response time when using a prefetching approach
compared to not using prefetching at all. The results are
shown in Figure 11(b) and correlate with the accuracy.
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Figure 11: (a) Accuracy of the approaches for all mi-
crobenchmarks. (b) Speedup of the approaches for all mi-
crobenchmarks (compared to no prefetching).

When running benchmarks with gaps between queries the
accuracy of SCOUT is slightly higher than the accuracy
of trajectory extrapolation techniques. The reason is that
SCOUT, in case of gaps also uses a straight line extrapo-
lation, in addition to traversing the candidate structures.
SCOUT-OPT, on the other hand, performs much better be-
cause it uses FLAT to traverse the gap by following the can-
didate structures and only retrieves the data needed. Fig-
ure 12 (right) shows the speedup of query sequence response
time. Although SCOUT is slightly more accurate than tra-
jectory extrapolation techniques, it does not yield higher
speedup, because with gaps the prediction step becomes a
substantial overhead. Indeed, SCOUT has no way to prune
candidates in the gap region and is forced to traverse the
entire graph for each query in the sequence.
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Figure 12: Accuracy and speedup of benchmark with gaps
between queries.

7.4 Prediction Accuracy Sensitivity Analysis
In the following experiments we test how SCOUT’s accu-

racy (and the speedup therewith) depends on the different

parameters of the query sequence. Unless stated otherwise
we experiment with a neuroscience dataset containing 450
million elements executing for each experiment 50 sequences
of 25 queries, each query having volume of 80,000 µm3 and
a prefetch window ratio of 1. Because the performance of
SCOUT-OPT is the same as that of SCOUT in the absence
of gaps, we only measure the performance of SCOUT-OPT
for benchmarks with gaps.

7.4.1 Volume of Query
To measure the effect of increasing the volume of the

query, we repeat the experiments by increasing the volume
of the query by 35,000 µm3. The results in Figure 13 (a)
show that the accuracy drops gradually with the increase in
volume of the query: the larger the volume, the more likely is
it that the candidate structures bifurcate, resulting in more
branches that the user may be following and thereby making
it harder to detect the one structure the user is following.
The speedup drops accordingly from 9 to 4.5.

7.4.2 Dataset Density
We measure the effect of increasing the dataset size by

increasing the number of neurons (or spatial objects it is
modeled with). For each experiment we increase the size
and along with it spatial density by adding 50 million more
objects in the volume of 285 mm3, which allows us to test
if SCOUT will scale to more dense, future models. As Fig-
ure 13 (b) shows, despite the increased data density, the
accuracy stays at around 80% while the speedup remains
constant (around 5.5). As data density increases, more data
must be retrieved, but also, the user analysis takes longer,
translating into a proportionally longer prefetch window.

7.4.3 Sequence Length
The effect of increasing the sequence length is shown in

Figure 13 (c) where we increase the number of queries in
each sequence by 10. Longer query sequences increase the
prediction accuracy substantially, reaching 93.1%. As we
argued previously, by using the iterative candidate pruning
mechanism, the longer a query sequence, the smaller the
candidate set, and hence the better SCOUT can predict the
future query location. The speedup increases accordingly
from 7x to 20x.

7.4.4 Prefetch Window
By increasing the prefetch window ratio we allow more

time for prefetching. As shown in Figure 13 (d), the ac-
curacy increases from 29% to 88% as the ratio is increased
from 0.1 to 2.5, illustrating that SCOUT becomes more ef-
fective for computationally intense use cases. The opposite
also holds true: when SCOUT is used with I/O bound use
cases the prefetch opportunity decreases, resulting in a lower
prefetch accuracy because less data can be prefetched. In-
terestingly, varying the prefetch window has the same effect
as varying the prefetch cache size. A small sized cache will
halt prefetching prematurely once it becomes full, leading
to lower accuracy. Similarly, accuracy increases for bigger
cache sizes as it does with a longer prefetch window.

7.4.5 Graph Precision
The grid hashing mechanism helps to efficiently build an

approximate graph representation of the spatial dataset as
described in Section 4.2. In a next experiment we measure
the effect of the grid resolution on the prefetch accuracy. To
make the grid resolution coarser we decrease the number of
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Figure 13: Sensitivity analysis of prediction accuracy.

grid cells by a factor of eight in every experiment. As the re-
sults in Figure 13 (e) show, even with only 512 grid cells the
approximate graph delivers good prediction accuracy, but
drops substantially once the resolution is decreased further.

7.4.6 Gap Distance
We increase the gap distance between the queries of a se-

quence and measure the effect on prediction accuracy. We
test the impact on both SCOUT and SCOUT-OPT. The
results in Figure 13 (f) show that an increase in the gap
distance has a negative effect on the prediction accuracy.
SCOUT-OPT performs much better because of the gap traver-
sal technique (Section 6.3). However, the accuracy decreases
as the gap distance is increased because longer gaps require
more I/O. We use a fixed I/O budget of 10% of the pages
used in the recent query to ensure that the gap traversal
does not become an overhead.

8. SCOUT ANALYSIS
In the following subsections we analyze SCOUT by testing

it with several synthetic queries. We vary the characteristics
of the query sequences and quantify the cost of prediction.

8.1 Query Response Time Breakdown
To understand the overhead of SCOUT in the face of ev-

ermore dense, future datasets, we break down the query
response time into graph building time, prediction (graph
traversal) and residual I/Os (time needed to retrieve data
due to misprediction) while increasing the dataset density.
With an increase in data density, also the result size grows.

The results in Figure 14 show that the time needed to
build the graph remains around 15% of the total time and
hence using optimizations such as grid based hashing enable
building the graph on the fly instead of precomputing it.
The prediction time based on the graph traversal takes up
to 6% of the time. The trend also indicates that there is no
increase in the relative cost of modeling and prediction as
the result size grows.
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Figure 14: SCOUT time breakdown for graph building time,
prediction time and time for retrieving remaining data after
prefetching.

8.2 Graph Building Cost
The graph building time depends on the number of spatial

objects in the query region. To understand the relationship
between the result set size and the graph building time we
execute 35 sequences containing 25 queries each. For the
measurement, we add up the graph building time for all 25
queries in the sequence and plot it against the total results
obtained for the 25 queries.
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As the results in Figure 15 show, the graph building for
SCOUT depends linearly on the number of results in the
query. The relation is linear because we use all of the spa-



tial objects in the result set to construct the graph. For
SCOUT-OPT the graph building time scales even better
than SCOUT because the graph built only uses spatial ob-
jects belonging to candidates structures, using the sparse
graph construction approach.

We also measure the memory needed to store the major
data structures, i.e., the graph (adjacency list) and queues
used for graph traversal, required by SCOUT and SCOUT-
OPT. The memory required relative to the space needed for
the query results is nearly 24% for SCOUT and because it
only builds the subgraph needed for prediction, only 6% for
SCOUT-OPT.

8.3 Prediction Cost
The iterative candidate pruning technique reduces the

time to traverse the graph structure in subsequent queries
because it reduces the candidate set and thus only the sub-
graph reachable from the edges representing the candidate
set needs to be traversed.
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Figure 16: Graph traversal operations required for a se-
quence of 10 spatial queries.

We illustrate this with an experiment where we use 50 se-
quences with 10 queries each and measure the time taken for
prediction divided by the number of elements in the result
of each query. Figure 16 shows that the prediction time per
result element of each query indeed decreases the further
we progress in the sequence. Because it uses sparse graph
construction, SCOUT-OPT generally takes less time for the
prediction/graph traversal.

8.4 Applicability
Applications of guided spatial query sequences are fre-

quent in scientific applications, for instance for analyzing
kidney models, water pollution studies using a river net-
work, animal herd migration studies using terrain models,
spatial analysis of epidemiological models etc. Other than
our neuroscience application, we test SCOUT on an arterial
tree model of the pig’s heart [12]. The dataset contains 2.1
million 3D cylinders (154MB on disk). We also use human
lung airway models [1] containing 7.1 million (527MB on
disk) triangular surface meshes shown in Figure 1.

SCOUT infers the guiding structure rather than relying
on the user to provide this information in the application
layer. In fact in the development of SCOUT we do not make
any application or dataset specific assumptions and hence,
it can potentially be used in other non-scientific domains.
An example use case is fetching spatial data in proximity to
a road network route from a mobile device. In this case no
time consuming analysis is required on the results, however,
data can still be prefetched during the time the user needs
to make a decision what route to follow. Consequently, ac-
curate prefetching becomes key for effectively using the lim-
ited prefetch memory available on the device. We therefore

use a road network of North America [16] modeled with 7.2
million two-dimensional line segments (531MB on disk).

0

10

20

30

40

50

60

70

80

90

100

C
a

ch
e

 H
it

 R
a

te
 [

%
]

EWMA Straight Line Hilbert SCOUT

Lung Airway 

Model

Pig Arterial

Tree

North America 

Road Network

0

10

20

30

40

50

60

70

80

90

100

C
a

ch
e

 H
it

 R
a

te
 [

%
]

a)

b)

Lung Airway 

Model

Pig Arterial

Tree

North America 

Road Network

Figure 17: Prediction accuracy comparison for various spa-
tial datasets using (a) small (b) large volume queries.

For each dataset we compare the prediction accuracy by
executing 50 sequences of two different volume of queries,
small volume queries are 5× 10−7 smaller than the dataset
volume and large volume queries are 5×10−4 times smaller.
Each sequence contains 25 spatial range queries and the
queries are generated by making a random walk on the graph
representation of the entire dataset. We use a prefetch win-
dow ratio of one.

As shown in Figure 17 (a), compared to other approaches
SCOUT performs better for the lung airway model and road
networks. For the arterial tree, however, trajectory ex-
trapolation approaches provide higher accuracy, up to 96%
(EWMA), while SCOUT only achieves a prediction accu-
racy of up to 90.1%. SCOUT does not perform well because
the dataset consists of arterial branches, i.e., smooth struc-
tures that can be interpolated very well with polynomials
(or the weighted movement vectors of EWMA). For large
queries, on the other hand, SCOUT performs better in all
cases and predicts with up to 73% accuracy as is shown in
Figure 17 (b). For the arterial tree SCOUT performs better
because with the increase of volume of query the arterial
branches are more likely to bifurcate and bend, making it
more difficult to interpolate them with polynomials.

8.5 Limitations
Curve extrapolation techniques can outperform SCOUT

in situations where the query sequence can be well approx-
imated by straight lines or polynomials as the experiments
in Figure 17(a) (in Section 8.4) with the arterial tree dataset
and small volume queries show. This is typically the case
when the dataset contains simple structures that are closely
followed with small queries. Even in this case, however,
SCOUT prefetches with more than 90% accuracy. In case
the queries have larger volumes the query trace becomes
more jagged, they can no longer be approximated well with
curves and SCOUT therefore clearly outerperforms curve
extrapolation approaches.



Although SCOUT oftentimes identifies the correct struc-
ture after only few queries in the sequence, the guiding struc-
ture can bifurcate, making the identification of the structure
followed more difficult. Application specific heuristics can
be used for selecting the branches. However, for the sake of
general applicability, we refrain from using any such tech-
nique. After all, SCOUT’s high accuracy of 75% to 92% in
our experiments leaves little room for improvement.

9. CONCLUSIONS
Scientists frequently use guided spatial query sequences

to analyze their vast spatial datasets. Prefetching the spa-
tial data is an excellent approach to speed up the query se-
quences, state-of-the-art prefetching approaches for spatial
data, however, do not predict future query locations accu-
rately. To speed up the execution of the query sequences we
develop SCOUT, a novel prefetching approach that consid-
erably departs from the state of the art, because it does not
only consider the last query positions, but uses the content
of the last queries to predict the future query position.

SCOUT exploits that the user does not move through the
data randomly, but typically follows a structure. It reliably
identifies the structure followed (or at least it reduces the
candidate set considerably) by summarizing the structures
to a graph representation. SCOUT prefetches with an ac-
curacy of up to 92% and achieves a speed up of up to 15×
on neuroscience workloads.

Because we do not make any particular assumptions about
the characteristics of spatial datasets when designing SCOUT,
it can also be used in different applications and domains.
With experiments we show that it considerably speeds up
navigational access to datasets from other domains as well.
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