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Introduction

0.1 Contact details

Lecturer: Dr David Ham
Email: David.Ham@imperial.ac.uk
Office: 3.55
Phone: 020 7594 6439 (x46439)

0.2 Aims

The course will cover the basic techniques which underlie the computational mathe-
matical techniques in common use in the Earth sciences. It will provide an overview
of the capabilities and limitations of scientific computation including the concepts of
error and conditioning. The course will cover techniques applicable to both observa-
tional data and simulation and will have an emphasis on the practical implementation
of the methods studied in the Python programming language.

0.3 Objectives

By the end of this course, you should be able to:

• write Python code for a number of important and useful mathematical algo-
rithms

• understand the sources of error in algorithms

• be able to apply numerical techniques to solve problems which occur in geo-
science such as curve fitting, solving systems of equations and root finding
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ii INTRODUCTION

0.4 Assumed knowledge

The prerequisites for this module are Maths Methods 1 and 2, and Programming for
Geoscientists. This module will use and build upon the material from those courses
extensively. Particular use will be made of:

Maths methods 1 Newton-Raphson iteration, matrices and vectors.

Maths methods 2 Taylor series.

Programming for Geoscientists writing and debugging short programmes in Python.

0.5 Lecture plan

The module will cover the numerical implementation of many of the areas of mathe-
matics which will have been covered at school and in previous university modules.

We will start by looking at basic arithmetic: addition, subtraction and multiplication.
We will examine the impact of using binary arithmetic on a computer with finite
number lengths.

The following three weeks will focus on the numerical implementation of calculus:
first differentiation and then integration. Week 5, root finding, is concerned with
numerical methods for automatically solving equations on a computer. In weeks 6
and 7 we will examine numerical linear algebra: calculation and equation solving
with matrices and vectors. This leads up to the final week in which we will learn to
solve overdetermined systems in a least squares sense and apply this knowledge to
the problem of fitting curves to scientific data.

Lecture 1 Binary arithmetic

Lecture 2 Floating point numbers, round-off error and Approximating functions

Lecture 3 Taylor series and numerical integration

Lecture 4 Numerical differentiation

Lecture 5 Root finding

Lecture 6 Numerical linear algebra

Lecture 7 LU factorisation

Lecture 8 Curve fitting and least squares solutions
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0.6 Course text

The course will be primarily taught from lecture notes, which will be issued each
week. You will also find it useful to refer back to the course text for Programming for
Geoscientists:

Langtangen, Hans Petter A primer on scientific computing with Python, Springer, 2009.

0.7 Assessment

0.7.1 Exam

There will be a question associated with this module on one of the combined exams.
As usual, a choice of two questions will be provided of which students taking this
module must answer at least one. The exam will focus on the mathematical parts of
the module.

0.7.2 Programming exercise

The one piece of assessed coursework will be a programming exercise which will take
place at some point during the reading week at the end of the term. You will be
given some mathematical expressions or algorithms and asked to write programmes
in Python which implement them. The programming exercise will focus on testing
the programming parts of the module.

0.8 Coursework

The lecture notes contain exercises and the last hour of each lecture will be devoted
to working on exercises. The lecturer and demonstrators will be available to provide
help and immediate feedback. In addition, every two weeks you should hand in
the solutions to those two weeks exercises in order to receive written feedback. The
submission dates for the exercises have already been set up on ESESIS.

It is likely that you will need to devote additional time to completing the exercises
outside of the lectures.

The coursework is not assessable. The solutions you hand in will be corrected but no
numerical marks will be given. The coursework is therefore your opportunity to gain
feedback on your progress with no penalty for failure. You are encouraged to hand in
your best attempt at a solution even if it is wrong in some way so that you receive
feedback in the form of corrections.
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0.8.1 The course directory

There are various example programs, code and data to assist with the exercises. These
are to be found in the /numerical-methods-1 directory on student.ese.ic.ac.uk,
which is the machine you log in to from the department labs. The exercises will
indicate which files you need. You should copy the files to the directory you are
working in before using them. It is a good idea to create a new working directory
for each topic covered in the course so as to maintain some order in your work and
reduce possibilities for confusion.

0.9 What to hand in

There are various sorts of question in this module, each of which has different outputs
which need to be handed in. ESESIS has been configured to expect both a written
part and an online part to each set of exercises. Please follow the instructions in the
subsequent paragraphs carefully in determining what to hand in online and what to
hand in on paper.

0.9.1 Programs

Some questions will ask you to write a program, or a module containing particular
functions. For these questions, you should submit the source code online but also
submit printouts. The demonstrator will run your source code on a computer to check
for any errors and will provide written feedback on the printouts.

The easiest way to obtain printouts of your programs is using a2ps. For example, if
you have a Python file named foo.py then:

> a2ps foo.py

will print a nicely formatted version of foo.py to the college print system.

ESESIS will only allow you to upload a single file for each assignment so you need
to bundle together the files you intend to upload in a single archive file. The easiest
way to do this is to place all the files you intend to upload into a single directory. For
example, suppose you had placed all the files you wish to upload for weeks 1 and 2
in a directory called week_1_2. From the directory above week_1_2 you could then type:

> tar cfvz week_1_2.tgz week_1_2

This will create week_1_2.tgz containing the whole week_1_2 directory. You can list
the contents of the tgz file to double check what you are submitting using:

> tar tfvz week_1_2.tgz

See section 0.10 below for guidance as to what should be in the programs you hand
in.



0.10. COMPONENTS OF A CORRECT PROGRAM v

0.9.2 Computer output

Some questions require you to produce plots or graphs using Python. You should
print these out and submit them as hard copy. Always ensure that your axes are
labelled and that there is a legend showing what the lines mean. The xlabel, ylabel
and legend Python commands are particularly useful for this. You should also neatly
write a short caption indicating what the plot shows and which exercise it answers.
Do not leave the poor demonstrator to guess why you are handing in this plot!

If you wish to embed your plots in a typed document in LATEX or a word processor,
you may do so but this is not required and it is perfectly acceptable to neatly write on
the printouts.

0.9.3 Mathematical calculations and proofs

Where a question asks you to make a mathematical calculation or a proof, you should
write out your answer showing your working. Students often have particular diffi-
culty working out how much detail to write down in proof questions. You should
take the proof of theorem 3.3 as an example of a good proof answer.

0.10 Components of a correct program

0.10.1 Interfaces

Software is comprised of components which have to work together. This is achieved
by strictly sticking to specified interfaces. Coursework questions will specify module
and function names and interfaces. They may also specify particular exceptions which
are to be raised in the event of erroneous input or the failure of an algorithm.

0.10.2 Comments and style

A program is not just a series of instructions for a computer, it’s also a medium
for communicating your ideas to the next programmer. You are expected to pro-
vide a docstring for every function describing what that function does. In addition,
your code should be commented to a standard that it would be immediately ob-
vious to another student what each line of the program does. Be careful, though,
over-commenting can obscure the meaning of a program just as much as too few
comments.

A consistent and clear programming style is also essential to readability. Ask yourself
do the variable names make sense? Is the indentation consistent? Does the way in
which the program is split into modules and functions aid or obscure understanding?
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0.10.3 Functionality

Ensure that you carefully read the question and that your program does exactly what
is required of it. Use test data to ensure the right answer and, where available, test
your program against the “official” version in Numpy or Scitools.

0.11 Plagiarism

You are encouraged to read widely online and to help each other in solving coding
problems, but directly copying code from other sources without attribution is pla-
giarism just like copying text. It’s also surprisingly easy to tell when code has been
copied: an experienced programmer will see differences of coding style just as easily
as differences of writing style in text.

We may also ask you to explain what a particular line of your code does!

Remember, the coursework is not assessable so you gain precisely no marks by cheat-
ing. The in-class programming exercise, however, is assessed so you need to be able
to write programs by yourself to pass this module.

0.12 Misuse of computers during lectures

It is an unfair distraction to the students around you if you are web surfing, checking
email or browsing social media during the lectures. Students caught engaging in this
behaviour will be asked to leave the lecture.

0.13 Notation

These notes contain many Python programmes and snippets of Python code. In com-
mon with the course text “A Primer on Scientific Programming with Python” by Hans
Petter Langtangen, Python code is placed on a pale blue background with complete
programmes distinguished by a coloured bar at the left. For example, the famous
one-line program with which all texts start is rendered:

#!/usr/bin/env python

print 'Hello World!'

To avoid endless repetition, the initial line #!/usr/bin/env python will be omitted
in the examples through the text. Occasionally, examples of input on the Linux
command line will be given. These are distinguished by a grey rather than a blue
background. For example:

> a2ps foo.py
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0.14 Extension material*

Some parts of these notes extend the basic course material. Extension material will
be marked with an asterisk (*). These sections are present for the benefit of those
students who are interested in taking the module a little further, but don’t worry,
they won’t be on the exam! There are a few exercises marked with a double asterisk
(**). This is particularly challenging material to be attempted by the very brave.
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Chapter 1

Binary arithmetic

If we are to use computers to do our arithmetic, one of the most important details
of which we must be aware is how computers store numbers and do arithmetic on
them. As in pen-and-paper mathematics, there are different sorts of number system.
For example, in the mathematical world, we are familiar with the integers (whole
numbers), rational numbers (fractions) and real numbers (the whole of the number
line), just to name a few. We know that the properties of arithmetic operations are
different too, for example

?
2 cannot be evaluated in the integers or the rationals, only

in the reals. Conversely, if we have the list [“cat”, “dog”, “goldfish”, “giraffe”], it
makes no sense to ask “what is in the 1.5th place in this list”. Another way of saying
“it makes no sense to ask” is to say that this operation is not defined. This is an
important concept in computer arithmetic, to which we will return later. However for
this lecture, we will concentrate on integers, the whole numbers.

1.1 Binary integer arithmetic

In the binary system, instead of digits we have binary digits, or bits. Whereas a
decimal digit can take any one of the ten values in the set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u, a
binary digit can only take the values 0 or 1. All computers in current use operate on
the binary system for one simple reason: an electrical circuit exists in two basic states,
off and on. Binary arithmetic is the natural result of representing numbers as sets of
electrical circuits switching off and on.

1.1.1 Counting

So if 0 and 1 are the only digits available, how do we write the number two in base
two? The analogous question in the decimal system is “how do you write down the
number ten”. The answer, which you have known since primary school, is to use
successive powers of the base in a place value system. So ten is written as 10 in base
ten, where this notation is understood to mean “one times ten plus zero times one”.
So the number two is written in base two as 102, which means “one times two plus

1
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zero times one”. Notice the subscript 2 which is used to distinguish binary numbers
from decimal ones.

We can also write 112 and understand that this means “one times two plus one times
one”, in other words, 3. What about four? This is analogous to the number one
hundred in base ten which is written 100. Four is written as 1002 which is understood
as “one times two squared plus zero times two plus zero times one”. Following this
pattern, we can write the numbers from zero to, say, nineteen in base 2:

0 = 02 10 = 10102

1 = 12 11 = 10112

2 = 102 12 = 11002

3 = 112 13 = 11012

4 = 1002 14 = 11102

5 = 1012 15 = 11112

6 = 1102 16 = 100002

7 = 1112 17 = 100012

8 = 10002 18 = 100102

9 = 10012 19 = 100112

1.1.2 Addition

The addition rules for binary numbers are directly analogous to those for decimal
numbers: when any column overflows then an extra value is carried to the next col-
umn. For example, if we calculate two plus three, we have:

102

112+
1012

Notice that adding the two ones in the twos column produces zero twos plus a carried
1 in the fours column.

Exercise 1.1. Compute the following by first converting to binary:

1. 7+3

2. 15+1

1.1.3 Multiplication

Multiplication is achieved in exactly the same manner as long multiplication for dec-
imal numbers. Of course in binary this is a particularly easy operation since at each
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step, the first operand is multiplied by either 1 or 0. For example, five times five is
written:

1012

1012�
1012

0002

1012 +
110012

Notice the carry in the eights place when calculating the final summation.

Exercise 1.2. Calculate the following by first converting to binary:

1. 5� 3

2. 6� 6

Exercise 1.3. Calculate 3� 2 and 3� 4 in binary. What is the rule for multiplying by a
power of 2 in binary?

1.2 Some notation

There is a standard set of notation associated with the different mathematical number
systems which it is useful to be aware of:

Z integers: the whole numbers.
Q rationals: a

b for a, b P Z.
R reals: the whole number line.
C complex numbers: a + bi for a, b P R where i =

?�1.

1.3 Unsigned integers

A feature of all of the sets of numbers in the preceding section is that they are infinite:
there are an infinite number of possible integers, and there are an infinite number of
rationals and reals even between 0 and 1. However, computers have a fixed amount
of storage and are built to work on binary numbers with a fixed size. Let’s first
consider integers. A computer integer is expressed as a fixed number of binary digits,
or bits. Let’s confine ourselves to the positive numbers and zero, a set referred to in
computing as the unsigned integers. An unsigned 3 bit integer represents numbers
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as follows:
22 21 20

4 2 1 decimal
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

So a 3 bit unsigned integer is only capable of representing the numbers from 0 to 7.
Equivalently, an n bit unsigned integer can contain the numbers from 0 to 2n � 1.

1.4 Signed integers

Of course we will want to represent negative numbers too. The most straightforward
way to do this, and the solution which was common in the early days of computing,
is to simply add one bit to the start of the number and designate 0 for + and 1 for -.
In this system, our 3 bit unsigned integer becomes a 4 bit signed integer:

22 21 20

sign 4 2 1 signed decimal
1 1 1 1 �7
1 1 1 0 �6
1 1 0 1 �5
1 1 0 0 �4
1 0 1 1 �3
1 0 1 0 �2
1 0 0 1 �1
1 0 0 0 �0
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7

We can immediately observe two peculiarities with this system. First, there are two
zeros with different signs. Second, the binary rule for counting is different for positive
and negative numbers. For positive numbers, the rule is the rule we would expect.
However if k is negative then k + 1 has to be evaluated as �(�k � 1). This way of
storing integers is known as sign magnitude.

The approach which is taken for integers on almost all modern computer systems is
known as two’s compliment. In this case, the number -1 is defined as the bit pattern
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such that adding 1 produces 0. This has the result that -1 is represented by a bit
pattern of all 1s. We can illustrate this for a 4 bit signed integer, as follows:

11112

12+
� 100002

Note that the carried 1 in the 25 column is dropped because our number format only
supports 4 columns. The 4 bit two’s compliment signed integers are:

22 21 20

sign 4 2 1 signed decimal
1 0 0 0 �8
1 0 0 1 �7
1 0 1 0 �6
1 0 1 1 �5
1 1 0 0 �4
1 1 0 1 �3
1 1 1 0 �2
1 1 1 1 �1
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7

We can see in this representation that there is a single zero and that the rule for count-
ing (and therefore for addition) is the same for positive and negative numbers. It turns
out that the rule for multiplication is also exactly the same for signed and unsigned
arithmetic, but we won’t cover the details here. In fact, the machine implementation
of unsigned and two’s compliment signed n bit integer addition and subtraction is
exactly the same: it’s only the interpretation of some of the numbers as negative which
differs.

1.4.1 Calculating the negative of a number

Two’s complement arithmetic also gives us an easy mechanism for finding the bit
pattern corresponding to a negative number. The hint is in the word “complement”.
The complement of a binary number is the number which results from changing all
the zeros to ones and all the ones to zeros. So in 4 bit binary, the complement of 2
(00102) is 11012. If we add these two numbers then we have 11112, which is -1. If we
think about this for just a second, it becomes obvious that the sum of a number and
its binary complement is always -1. If we write x̄ for the complement of x, then:

x + x̄ = �1
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with a little rearrangement, this becomes:

�x = x̄ + 1

So we now have an algorithm for finding the negative of x:

1. Compute x̄ by changing all the zeros in x to one and all the ones to zero.

2. Add one to x̄.

To gain some intuition into this result, it is useful to note that �x is the number which,
when added to x, yields 0. In contrast, x̄ when added to x gives -1. Consequently, �x
must be one more than x.

Exercise 1.4. Calculate 5� 6 by rewriting the problem as 5+ (�6), and rewriting both
operands as signed 4 bit binary integers. Next, add using the rules for unsigned
addition from section 1.1.2. Verify that your answer, when interpreted as a signed
integer, is �1

Exercise 1.5. Calculate 2��2 by first converting both operands to signed integers,
then multiply using the rules for unsigned integers from section 1.1.3. Verify that
your answer, when interpreted as a signed integer, is �4.

1.4.2 Determining integer size

How do we know what is the biggest integer available on our computer? In Python
there is a special variable for this in the sys package. The largest ordinary integer in
python can be found with:

import sys

print sys.maxint

So how big is that in bytes? We can assume that sys.maxint must be 2n�1 � 1 where
n is the number of bits in the number. So:

b = 2n�1 � 1

log2(b) = log2

(
2n�1 � 1

)
Now for large n, log2

(
2n�1 � 1

) � log2
(
2n�1) so:

log2(b) � log2

(
2n�1

)
= n� 1

Happily, the numeric Python module numpy contains a function for taking the base 2
logarithm of a number so we can try:

import sys

import numpy

print numpy.log2(sys.maxint)
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On my computer, this produces 63.0 so my integers are 64 bit, a sensible answer. The
other answer which you may well see on a modern computer is 32 bit. 32 and 64 are
the only default integer bit lengths in current use.

1.4.3 Integer overflow

So what is sys.maxint+1? The answer depends on the computer system. In Python,
data types are very flexible so the answer is a larger integer type:

import sys

sys.maxint +1

Out [1]: 9223372036854775808L

Note the L at the end of the answer. This indicates a long integer, which is a Python
data type with essentially no maximum size. Long integers are very flexible but,
because they are not directly handled by the hardware, computations with them can
be very slow.

With a little trickery, we can force Python to calculate sys.maxint+1 in hardware. To
do this, we use an array. We will encounter arrays again later but for now, the only
thing we need to know is that the data type of an array is fixed when it is created so
Python won’t perform the promotion to long integer:

import sys

import numpy

numpy.array(sys.maxint )+1

Out [2]: -9223372036854775808

This is the negative of the answer we expect! What has happened? Remember that for
two’s compliment signed integers, the rules for addition are the same as for unsigned
integers. Let’s look back to our example of 4-bit integers. The largest signed value is
7, or 01112. Let’s add 1:

01112

12+
10002

As an unsigned integer, 10002 is 8. However, in two’s compliment it’s -8. In other
words, integer addition “wraps around”. This process is known as overflow and
accounting for it is important in any algorithm which uses large integers.

Exercise 1.6. What is numpy.array(sys.maxint)*2? Why is this the case?
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Chapter 2

Floating point numbers

2.1 Floating point numbers

Fixed sized numbers present even stronger problems for representing real numbers
than for integers, as there are infinitely many reals between every two integers. It is
also fairly common to wish to represent real numbers at a huge range of scales. For
example, the angular velocity of the earth is approximately 7.3� 10�5 rad/s while the
age of the Earth is around 1.4� 1017 s.

In fact, scientific notation gives us a hint as to how computers deal with these num-
bers. A floating point number is represented as follows:

s1.m� 2e�b (2.1)

Where: s is the sign (0 for +, � for minus), m is known as the mantissa and e is
the exponent. b is the exponent bias which is present to enable the exponent to take
negative values, since e is represented as an unsigned integer.

Lets unpack this notation a little. Why do we know that the first digit of the mantissa
is always a 1? Well actually scientific notation is ambiguous: 3.0� 100 is the same
as 0.3� 101. However it’s much more efficient to have a single storage form for each
number. Floating point arithmetic therefore adopts the convention that the exponent
will be set so that the digit before the point is non-zero. This is known as the normal
form of the number. For example, the normal form of 3.0 is 3.0 � 100. Of course
computer floating point arithmetic is binary so the normal form of 3.0 is actually
1.12 � 21. Since there are only two binary digits (1 and 0), by choosing that the first
digit is not zero we have actually exactly chosen it to be 1. Because we know that
the first digit will be a 1, we don’t actually have to store it. We can “steal” the extra
digit. Suppose we have a very small floating point number with 1 sign bit, 4 bits of
mantissa and 3 bits of exponent. For simplicity we’ll assume the bias is 0. Standard
floating point numbers have the sign bit first, followed by the exponent and then the
mantissa. So the number 3.0 will look like:

s e e e 1 m m m m
� 22 21 20 20 2�1 2�2 2�3 2�4

0 0 1 0 1 1 0 0 0

9
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Recall that we don’t actually store the 1 bit so the number will appear as 00101000.

This isn’t actually a very useful floating point number format, though, because we
have no capacity to store negative exponents so we can’t store any numbers with
absolute value less than 1. Our exponent can take values from 1 to 61. We therefore
choose a bias of 3 with the result that our effective exponent runs from -2 to +3. In
this representation, the number 3 becomes:

s e e e 1 m m m m
� 22 21 20 20 2�1 2�2 2�3 2�4

0 1 0 0 1 1 0 0 0

The binary representation of 3.0 is therefore 01001000.

Exercise 2.1. Find the binary representation of the following numbers in a floating
point format with one sign bit, a 3 bit exponent, a 4 bit mantissa and a bias of 3:

1. 1.0

2. 0.5

3. 10

2.1.1 Round-off error

Because floating point numbers have only finite precision, there are always numbers
which can’t be represented. In particular, it is not true that an arithmetic operation on
two floating point numbers, if calculated exactly, will always result in a number which
can be represented exactly. We are already familiar with this concept from decimal
notation. For example there is no exact finite precision decimal representation of 1

3 .

By the definition of floating point numbers, the relative distance between adjacent
representable numbers is fixed. Indeed, the largest relative gap in floating point num-
bers is given by the difference between 1 and the next floating point number greater
than 1. In the case of our 8 bit floating point representation, the next number greater
than 1 is given by 1 + 2�4 so the relative gap is 2�4 = 0.0625. More generally, if we
have an nm bit mantissa, then the relative gap is 2�nm . This means that for every
floating point number x, there is another floating point number y for which:

|x� y|
|x| ¤ 2�nm (2.2)

Another way of saying this is that for every real number x which lies within the range
of our floating point numbers, there is a floating point number x1 which lies not more
than half this distance away:

|x� x1| ¤ 1
2

2�nm |x| (2.3)

1an exponent value of zero or all ones has special meaning: see section 2.1.5



2.1. FLOATING POINT NUMBERS 11

This quantity has a special name, machine epsilon:

εmachine =
1
2

2�nm (2.4)

= 2�nm�1 (2.5)

The difference between a real number and its nearest floating point equivalent is
known as round-off error. The relative round-off error is guaranteed to be no more
than εmachine.

2.1.2 IEEE standard floating point numbers

The floating point numbers in use on essentially all modern computers employ many
more bits than our simple 8. The Institute of Electronic and Electrical Engineers
standards define various sizes:

precision total size sign bits mantissa bits exponent bits exponent bias
half 16 1 11 5 15
single 32 1 23 8 127
double 64 1 52 11 1023
quad 128 1 112 15 1383

These values do not include the implicit 1 bit in the mantissa. In Python, the default
is double precision and it is exceptionally rare to use any other size. For applications
written in languages other than Python, single precision is often used. Quad precision
is reserved for special applications and tends to be slow as hardware tends to only
natively support single and double precision. Half precision floating point numbers
are essentially never used in modern practice.

Exercise 2.2. Calculate εmachine for IEEE single and double precision floating point
numbers.

Exercise 2.3. Using the value of machine epsilon for double precision numbers, use
Python to calculate 1.0+eps and 1.0+2*eps. What is the answer?

2.1.3 Floating point arithmetic

The four basic operations of arithmetic all have floating point equivalents, which,
when it is necessary to make a distinction, are usually written: `, a, b, and c. If we
write d for any floating point operation and � for the corresponding exact operation,
then the fundamental rule of floating point arithmetic is that for any floating point
numbers x and y, there exists some ε with |ε| ¤ εmachine such that:

xd y = (1 + ε)(x � y) (2.6)

In other words, the largest relative error which can occur in a single floating point
operation is εmachine.
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2.1.4 Catastrophic cancellation

A relative error of εmachine might seem acceptable for all practical purposes, especially
for double precision floats as εmachine is really rather small. However, a particular
problem occurs when adding and subtracting numbers which are very close together.
Suppose we have some number x and a much smaller number δ and we calculate:

y = x + δ (2.7)
z = y� x (2.8)

Clearly in exact arithmetic, z = δ. What happens in floating point?

y = (1 + ε1)(x + δ)

= x + δ + ε1x + ε1δ
(2.9)

for some |ε1|   εmachine. Then for some |ε2|   εmachine:

z = y� x
= (1 + ε2)(δ + ε1x + ε1δ)

= δ + ε1x + ε1δ + ε2δ + ε2ε1x + ε2ε1δ.
(2.10)

Most of the terms are guaranteed to be very small compared with the correct answer
of δ but x is much larger than δ so ε1x may actually be significant. For sufficiently
unfortunate input values and especially for repeated additions and subtractions of
numbers very close together, the answer can end up with no correct digits!

Exercise 2.4. The expression (1� x)10 can be expanded as

1� 10x + 45x2 � 120x3 + 210x4 � 252x5 + 210x6 � 120x7 + 45x8 � 10x9 + x10.

Use Python to evaluate this expression using the bracket form and then the expanded
formula for the values 0.91, 0.92, 0.93, 0.94, 0.95 and 0.96. Which formula is more
accurate? Why? Hint: how can you tell you have the correct answer?

2.1.5 Special values: 0, Inf and NaN*

The astute reader will have noticed a problem with the floating point format described
here. If the first digit of the mantissa is always implicitly 1, how do we represent the
number 0.? The answer is that the value 0 in the exponent field is treated as special.
For our 8 bit floating point format, 0. is represented by:

s e e e 1 m m m m
� 22 21 20 20 2�1 2�2 2�3 2�4

0 0 0 0 1 0 0 0 0

so the actual stored value is 00000000. There is also a separate -0. value:

s e e e 1 m m m m
� 22 21 20 20 2�1 2�2 2�3 2�4

1 0 0 0 1 0 0 0 0
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or 10000000. Positive and negative zero obey the usual sign rules for multiplication
and division but compare equal. That is 1.0*-0.0 returns -0.0 but 0.0==-0.0 is True.

Just as for integers, the problem of overflow occurs for floats: for any given size of
floating point number, there are values too large to be represented. A related issue
occurs if division by zero or another undefined operation occurs. For plain Python
floating point numbers, the response in each of these cases is that an exception occurs:

In [97]: 10.**400

-------------------------------------------------------------

OverflowError Traceback (most recent call last)

/home/dham/<ipython console > in <module >()

OverflowError: (34, 'Numerical result out of range')

In [98]: 0./0.

-------------------------------------------------------------

ZeroDivisionError Traceback (most recent call last)

/home/dham/<ipython console > in <module >()

ZeroDivisionError: float division

However as was the case with integer overflow, if we use a numeric Python array then
we receive the floating point answer direct from the hardware:

In [101]: 0.0/ numpy.array ([0.0])

Out [101]: numpy.array([ NaN])

In [102]: numpy.array ([10.])**400

Out [102]: numpy.array([ Inf])

These are two more special floating point values. Inf is short for infinity but should
really be thought of as “a value too big to be represented”. Inf is a signed quan-
tity and follows the usual rules for positive and negative numbers so, for example
-1./numpy.array([0.])==numpy.array([-Inf]). NaN means “not a number” and is
returned in circumstances where even the sign of the answer is unknown. Some of
the properties of the special floating point numbers are summarised in the following
tables. In each case, x is an arbitrary finite positive floating point number. For each
table, the row label comes before the operator and the column label after.

== x �x 0.0 �0.0 Inf -Inf NaN

x T F F F F F F
�x F T F F F F F
0.0 F F T F F F F

�0.0 F F F T F F F
Inf F F F F T F F
-Inf F F F F F T F
NaN F F F F F F F
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Notice that NaN compares false to itself!

¡ x �x 0.0 �0.0 Inf -Inf NaN

x F T T T F T F
�x F F F F F T F
0.0 F T F F F T F

�0.0 F T F F F T F
Inf T T T T F T F
-Inf F F F F F F F
NaN F F F F F F F

Once again, notice that NaN always compares false.

+ x �x 0.0 �0.0 Inf -Inf NaN

x 2x 0.0 x x Inf -Inf NaN

�x 0.0 �2x �x �x Inf -Inf NaN

0.0 x �x 0.0 0.0 Inf -Inf NaN

�0.0 x �x 0.0 �0.0 Inf -Inf NaN

Inf Inf Inf Inf Inf Inf NaN NaN

-Inf -Inf -Inf -Inf -Inf NaN -Inf NaN

NaN NaN NaN NaN NaN NaN NaN NaN

� x �x 0.0 �0.0 Inf -Inf NaN

x x2 �x2 0.0 �0.0 Inf -Inf NaN

�x �x2 x2 �0.0 0.0 -Inf Inf NaN

0.0 0.0 �0.0 0.0 �0.0 NaN NaN NaN

�0.0 �0.0 0.0 �0.0 0.0 NaN NaN NaN

Inf Inf -Inf NaN NaN Inf -Inf NaN

-Inf -Inf Inf NaN NaN -Inf Inf NaN

NaN NaN NaN NaN NaN NaN NaN NaN

� x �x 0.0 �0.0 Inf -Inf NaN

x 1.0 �1.0 Inf -Inf 0.0 �0.0 NaN

�x �1.0 1.0 -Inf Inf �0.0 0.0 NaN

0.0 0.0 �0.0 NaN NaN 0.0 �0.0 NaN

�0.0 �0.0 0.0 NaN NaN �0.0 0.0 NaN

Inf Inf -Inf Inf -Inf NaN NaN NaN

-Inf -Inf Inf -Inf Inf NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Exercise 2.5. * Write a program in Python which produces each of the tables above. It
will be easier to use �1.0 rather than �x.

2.2 Python representation of integers and floats

Python’s very flexible typing system means that it is often not necessary to pay atten-
tion to whether a number is an integer or a float. However it helps to know what the
rules are.
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2.2.1 Literals

Any number written without a decimal point is automatically stored as an integer,
any number with a decimal point is a float. So, for example, 1 is an integer but 1. or
1.0 is a float.

It is also possible to enter floats in scientific notation using the letter e to separate the
mantissa from the exponent. So, for example, 5.e2 means 5� 102 or in other words
500.. Note that the base of the exponent is 10, not 2.

2.2.2 Casting to type

It is also possible to use a function to force a value to be a float or an integer. For
example float(10) is the floating point value 10.0. The corresponding function int

operates by truncating the fractional part towards zero so, for example int(1.9) is
the integer 1 and int(-1.9) is the integer -1. Using a function to change the type of
a value is known as casting.

2.2.3 Special values

A special case of casting occurs if for some reason we wish to produce the special
values Inf, -Inf and NaN. These are created with the commands float('Inf'),
float('-Inf') and float('NaN') respectively.

2.3 Complex numbers

Python also has inbuilt support for complex numbers. For this, see section 1.6 in
Langtangen.

2.4 Further exercises*

You learnt in Maths Methods 1 that the exponential function can be represented as
the series:

ex =
8̧

i=0

xi

i!
(2.11)

Exercise 2.6. * Write a Python module series.py containing a function exp_series(x,n)

which approximates exp x using the first n terms of the sum in equation 2.11. Check
your work by ensuring that exp_series(1.0,100) returns the same result as math.exp(1.0).
Hint: Cast x to float to ensure your function does the right thing if the user enters an
integer.
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Exercise 2.7. * Evaluate e1 using your function for values of n ranging from 1 to 10.
Now do the same for e�5. What goes wrong? Hint: look at section 2.1.4

Exercise 2.8. ** Using the identity:

e�x =
1
ex ,

produce a modified function exp_safe(x,n) which behaves correctly for negative in-
puts. Include exp_safe in your series module.

2.5 Further reading

The seminal work on floating point arithmetic is Goldberg, D. 1991. What every com-
puter scientist should know about floating-point arithmetic. ACM Comput. Surv. 23, 1
(Mar. 1991), 5-48. DOI=http://doi.acm.org/10.1145/103162.103163



Chapter 3

Function approximation and big O
notation.

3.1 Approximating functions

Now that we have covered the basic arithmetic operations, we can move on to consider
functions. For the purposes of this module, we will only be interested in functions of
one variable. The multi-variable case is more complex but the same principles apply.
So, suppose we have a function y = f (x). This function contains infinite information,
for it takes a value y for each of an infinite set of inputs x. On a finite computer, this
is a problem. Faced with the same problem for real numbers, we adopted the floating
point system in which real arithmetic is approximated by a finite set of numbers.

We can adopt a similar approach for functions. First, we assume that we are only
interested in the values of a function over some finite interval [a, b]. For most scientific
purposes this is a completely reasonable assumption. Next we divide the interval into
n equal-sized intervals with width h = (b� a)/n. As a first approximation, we could
take the value of the function over each interval to be the value which the function
takes at the left-hand end of that interval. Figure 3.1 illustrates this approach for the
function:

f (x) = sin(x) (3.1)

on the interval [0, π]. Remember that we wanted to approximate our function at in-
finitely many points by a function which only requires finite storage on a computer.
This approximation achieves this: we only need to record the five x values corre-
sponding to the ends of the intervals and the four f (x) values.

3.1.1 Plotting piecewise constant approximations

We can write a very short Python function which will plot a piecewise approximation
to given function over a given interval using a given number of equal sub-intervals:

def plot_constant(f, a, b, n):

17
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Figure 3.1: Piecewise constant approximation to the function sin(x) using four equal
intervals. The approximate function is shown in blue, the actual function in black.
The blue dots show the left-hand end of each interval and the shaded area indicates
the error in the approximation.

'''plot_constant(f, a, b, n)

Plot a piecewise constant approximation to f over the

interval [a,b] using n equal width intervals.'''

# Import the plotting system.

import pylab

# Calculate the width of one interval.

# Cast (b-a) to float to prevent integer division.

h=float(b-a)/n

# Create a new figure.

fig=pylab.figure ()

# Plot each interval.

for i in range(n):

x=(h*i, h*(i+1))

y=(f(x[0]), f(x[0]))

pylab.plot(x,y,'b')

# Expand the margins by 10% in each direction so we can see

# the edge lines.

pylab.margins (0.1)

The function is available in /numerical-methods-1/approximation.py. Copy this file
to your working directory and run the function by executing ipython -pylab on the
command line and then typing:
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In [1]: from approximation import *

In [2]: def f(x):

...: return sin(x)

...:

In [3]: plot_constant(f, 0, pi , 4)

The approximation module also contains the function plot_constant_error, which
produces plots similar to figure 3.1.

Exercise 3.1. Write a short Python script named plot_x_squared.py which uses
approximation.plot_constant_error to produce plots of approximations to the func-
tion x2 on the interval [0, 1] with n = 2, 3, 4, 5. Your script should be run by running
ipython -pylab and then typing:

execfile("plot_x_squared.py")

Hint: your script could have the following form:

1. import the approximation module.

2. define a function which returns x2.

3. loop over the list [2,3,4,5] calling approximation.plot_constant_error to pro-
duce the actual plots.

You should submit plot_x_squared.py online and in hard copy. There is no need to
submit printouts of the plots.

3.2 Better approximations

Figure 3.1 is actually quite a bad approximation to sin(x). We can see this both
because our piecewise constant approximation doesn’t look much like a sine curve
and also because the error, the area in blue, is large compared with the area under
the curve. So what can we do about this? The first answer is that we can use more
intervals: the smaller the intervals, the smaller the error. The second answer is that
we can use a better approximation to the line than a series of horizontal lines. The
approximation which is one step up from a horizontal line is to take the value at
each end of each interval and draw a sloped line between them. Figure 3.2 shows
approximations to sin(x) using piecewise constant and piecewise linear functions
with various numbers of sub-intervals.

Two things are apparent by observation. The first is that the greater the number
of intervals, the smaller the visible error. The second is that the piecewise linear
approximation has much lower error than the piecewise constant approximation. We
can make this a bit more formal by actually writing down the error we have made.
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Figure 3.2: Piecewise constant (left) and piecewise linear (right) approximations to the
function sin(x). Notice that the error is far lower for a given number of intervals in
the linear approximation.
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The error is the area between the actual function and our approximate function1. If
we write f̂ (x) for the approximate function, then we know from secondary school
calculus that:

E =

» b

a
| f (x)� f̂ (x)|dx (3.2)

To actually calculate this integral, we can split it into a sum of integrals, one over each
sub-interval:

E =
n�1̧

i=0

» a+h(i+1)

a+hi
| f (x)� f̂ (x)|dx h =

b� a
n

(3.3)

Note that x = a + ih is the left hand end of the i-th interval while x = a + (i + 1)h is
the right hand end of that interval.

This makes our life a little easier since we can write an explicit expression for f̂ on
each sub-interval since it’s just constant:

f̂ (x) = f (ih), a + ih ¤ x   a + (i + 1)h (3.4)

We could now substitute in f (x) = sin(x) and attempt to work out this integral by
hand, but actually it’s easier to just use a Python routine provided the scipy.integrate
module to integrate this expression numerically:

def constant_error(f, a, b, n):

'''Return the integral of the error when f is approximated

over the interval [a,b] by n equal width piecewise constant

functions.'''

import scipy.integrate as si

error=0

h=float(b-a)/n

for i in range(n):

l=a+i*h

r=a+(i+1)*h

def f_err(x):

return abs(f(x)-f(l))

# si.quad is the numerical integration routine.

error+=si.quad(f_err ,l,r)[0]

return error

We can do the same calculation for the error in the piecewise linear case. This time we
need to use the equation for a straight line y = y0 +m(x� x0) where m is the gradient

1There are different sorts of error we could measure. For example we might be interested in the
error in f (x0) for a given fixed x0. The error we’re using here measures the error over the whole
interval [a, b], we’ll meet some other errors later.
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of our line and (x0, y0) is our starting point. Our starting point is (a + ih, f (a + ih))
and we can calculate the gradient of a straight line using its two end points:

f̂ (x) = f (a+ ih)+ (x� (a+ ih))
f (a + (i + 1)h)� f (a + ih)

h
, a+ ih ¤ x   a+(i+ 1)h

(3.5)
This yields a very similar error function for the piecewise linear case:

def linear_error(f, a, b, n):

'''Return the integral of the error when f is approximated

over the interval [a,b] by n equal width piecewise linear

functions.'''

import scipy.integrate as si

error=0

h=float(b-a)/n

for i in range(n):

l=a+i*h

r=a+(i+1)*h

dy=f(r)-f(l)

def f_err(x):

x_bar=(x-l)

return abs(f(x)-(f(l)+x_bar*dy/h))

error+=si.quad(f_err ,l,r)[0]

return error

By evaluating those two functions for various numbers of sub-intervals, we can calcu-
late how the error in each approximation decreases as the interval width falls. Figure
3.3 shows this for our usual example of sin(x).

Figure 3.3 accords with our observations that error falls with h and that the piecewise
linear approximation has much lower error for a given h than does the piecewise
constant approximation. However something even more interesting is apparent if we
look at the shape of each of the two curves. As h becomes small, the error in the
piecewise constant starts to look like a straight line. For small h, the piecewise linear
approximation is curved, perhaps more like a quadratic function.

Understanding this behaviour is very important, because in general we do not know
an expression for the function we are approximating or the value of the error. How-
ever if we know that the error is linear in h, then if we double out number of sub-
intervals then the error will halve. If we know that the error is quadratic in h then
doubling the number of sub-intervals will cause the error to reduce by a factor of 4,
which is much better.
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Figure 3.3: Error in piecewise constant and piecewise linear approximations of sin(x)
on the interval [0, π] as a function of sub-interval width h.

3.3 Big O notation

Because the study of the scaling of functions is so important, there is a special set of
notation which has grown up to express it.

Definition 3.1. A function f (x) is O(α(x)) as x Ñ a if there exists some positive
constant c such that for any choice of x sufficiently close to a:

| f (x)|   cα(x)

Most often, α will be xn for some power n.

Big O notation gives an upper bound on the magnitude of a function. This is useful in
two important contexts, we want to know that the error in a calculation gets smaller at
a particular rate as we use smaller steps. We also often want to know that the amount
of work, for example the number of floating point operations, will not increase faster
than a particular rate as we increase the problem size. At the moment we’re concerned
with the former of these: showing that the error is small.

We’re interested in particular in the case were the error E(h) is O(hn) as h Ñ 0. One
critical result to notice is that hn approaches zero faster for higher values of n. The
symbol O is usually pronounced “order”, so if f is O(h2), we would say “ f is order
h squared”.
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The following program plots xn for increasing n demonstrating this point:

import pylab

import time

# 101 evenly spaced points in [0,1]

x=pylab.linspace (0 ,1,101)

for i in range (20):

pylab.plot(x, x**(i+1))

pylab.draw() # Force plot update.

time.sleep (0.3)

To actually see the animation, run ipython -pylab and run this program in that con-
text.

The consequence of this result is the following:

Theorem 3.2. If E(h) is O(hn) as h Ñ 0 then E(h) is O(hm) as h Ñ 0 for all m ¡ 0 less
than n.

When we talk about the order of convergence of a numerical method, we mean the
maximum value of n for which E(h) is O(hn) as h Ñ 0. If we are talking about errors,
we are always interested in the case where h Ñ 0 so it is usual to leave this out and
just say E(h) is O(hn).

Another very important, if counterintuitive, result is the addition rule for O:

Theorem 3.3. If E(h) is O(hn) and F(h) is O(hn) then E(h) + F(h) is O(hn).

Proof: By the definition of O, we have:

|E(h)|   c1hn (3.6)
|F(h)|   c2hn (3.7)

for some c1 ¡ 0, some c2 ¡ 0 and for h sufficiently close to zero. Adding these two
inequalities, we have:

|E(h)|+ |F(h)|   (c1 + c2)hn (3.8)

But we also know2 that:

|E(h) + F(h)| ¤ |E(h)|+ |F(h)| (3.9)

So if we write c3 = c1 + c2 then we have:

|E(h) + F(h)|   c3hn (3.10)

with c3 ¡ 0 for h sufficiently close to zero. Hence by the definition of O, E(h) + F(h)
is O(hn).

Q.E.D.
2This result is known as the triangle inequality. To see that it is true note that where E(h) and F(h)

have the same sign, |E(h) + F(h)| = |E(h)|+ |F(h)|. However where E(h) and F(h) different sign, they
partially cancel so |E(h) + F(h)|   |E(h)|+ |F(h)|
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Exercise 3.2. Suppose that E(h) is O(hn). If we define:

F(h) = E(h)/h (3.11)

prove that F(h) is O(hn�1)

3.3.1 Numerically estimating the order of convergence

Suppose our error E(h) is actually converging at approximately the rate of hn. Then
we could write:

|E(h)| � chn (3.12)

For some unknown constant c. Suppose we know the error in our method for two
resolutions, h1 and h2, then we can write:

|E(h1)| � chn
1 (3.13)

|E(h2)| � chn
2 . (3.14)

Equivalently: ����E(h1)

E(h2)

���� �
(

h1

h2

)n
(3.15)

By taking logarithms, we can find an expression for n:

ln
(����E(h1)

E(h2)

����
)
� n ln

(
h1

h2

)
(3.16)

n �
ln
(���E(h1)

E(h2)

���)
ln
(

h1
h2

) (3.17)

Suppose now that we have a sequence of error values for decreasing h. If the order of
convergence of our method is n then we would expect the right hand side of equation
(3.17) to converge to n as we move along the sequence.

Turning this statement around, if we have a sequence of error values for decreasing h
then we can estimate the order of convergence by evaluating equation (3.17) for each
adjacent pair of h and E values.

Exercise 3.3. Write a Python module convergence containing a function convergence(h,s)

which takes a sequence of h values and a matching sequence of error values s and re-
turns a sequence of estimates of convergence orders using equation (3.17).

Copy /numerical-methods-1/test_convergence.py to your working directory. You
can run the same test of your code that the demonstrators will use by running:

> python test_convergence.py

You can also test your function by hand by running ipython and typing:
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import convergence

from test_convergence import S1 ,S2,h

convergence.convergence(h,S1)

convergence.convergence(h,S2)

In the first case, your convergence function should return a sequence which converges
towards 1.0, in the second case your sequence should converge towards 2.0.
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Taylor series and numerical integration

4.1 Taylor series and error

From maths methods 2, you know that a smooth function can be approximated close
to a point x0 by a Taylor series, the formula for which is:

f (x0 + h) =
8̧

k=0

hk

k!
f (k)(x0) (4.1)

The derivation of the Taylor series is presented in appendix A. When we actually use
a Taylor series to approximate a function, we can’t evaluate the whole infinite series,
instead we evaluate the first few terms. It is therefore interesting to investigate what
sort of error we make by just summing a finite number of terms in the series.

Let’s look at the k-th term of the Taylor series:

fk =
hk

k!
f (k)(x0) (4.2)

The factor:
f (k)(x0)

k!
(4.3)

is just a constant value so we can replace this by some constant ck so that:

fk = ckhk (4.4)

That is, fk is O(hk).

Suppose we evaluate n terms of the series. Using O notation for the remaining terms,
we have:

f (x0 + h) =
n�1̧

k=0

hk

k!
f (k)(x0) +

8̧

k=n

O(hk) (4.5)

Next we can look back at theorem 3.3, the addition rule for O. This tells us that if
we add several functions which are O(hk) for various values of k, the result will be

27
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O(hm) where m is the least of the k values1. In our case, the least order is n so we
may write:

f (x0 + h) =
n�1̧

k=0

hk

k!
f (k)(x0) +O(hn) (4.6)

In other words, if we approximate a smooth function by the first n terms of a Taylor
series, then the error in the value f (x0 + h) is O(hn).

4.2 Adding O(hn) error terms

In the preceding section we used expressions of the form:

f (x0 + h) =
n�1̧

k=0

akhk +O(hn) (4.7)

This is a new use of the O notation: previously we merely used O as a property of
a function in statements of the form “ f (h) is O(hn)”. Adding O(hn) to the end of
an expression is a very common practice to indicate the size of an error term. The
notation “+O(hn)” should be understood as meaning “plus an unknown function
which is O(hn)”.

This notation has a couple of possibly surprising properties. First, adding multiple O
terms never cancels to zero. For example, suppose we have two equations:

f (h) = ah + bh2 +O(h3) (4.8)

g(h) = ch + dh2 +O(h3) (4.9)

If we subtract g from f then we have:

f (h)� g(h) = ah + bh2 � ch� dh2 +O(h3) (4.10)

This is because each use of O is potentially a different unknown error function. Sub-
tracting them from each other therefore does not result in cancellation. In accordance
with the addition rule for O (theorem 3.3), if error terms with different powers of h
are added, only the term with the smallest power need be kept.

Second, the O term, by convention, is always positive. The absolute value signs in the
definition of O (definition 3.1) mean that the sign of a function does not change its O
properties.

4.3 Taylor series and function approximation

The Taylor series is possibly the most important tool in numerical analysis. To demon-
strate this, we can apply it to our function approximations from the previous chapter.

1In explaining this, we intentionally skip over sum of the subtleties of infinite sums. The result
stated is correct in all cases where the radius of convergence of the Taylor series is not 0.
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Let’s start with our piecewise constant approximation. In the i-th interval, the expres-
sion for this approximation is:

f̂ (x) = f (a + ih) a + ih ¤ x   a + (i + 1)h (4.11)

Remember that:
h =

b� a
n

(4.12)

where h is the sub-interval width, b is the right hand limit of the whole interval, a is
the left hand limit and n is the number of sub-intervals.

In order to work out the error, we can write the original function as a Taylor series:

f (a + ih + δx) = f (a + ih) +O(δx) δx = x� (a + ih) (4.13)

Now we can write the error at a single point as:

E(x) =
��� f (x)� f̂ (x)

���
= | f (a + ih) +O(δx)� f (a + ih)|
= |O(δx)|

(4.14)

Due to the arbitrary constant in the definition of O, we can drop the absolute value
signs and simpy say that the error is O(δx). That’s not quite what we were after,
though, because we really wanted an expression for the error in terms of the interval
size h. Fortunately we know how to relate δx and h. Remember that for any x we can
find the interval containing x and label it i. This implies

a + ih ¤ x   a + (i + 1)h (4.15)

In equation 4.13 we then defined:

δx = x� (a + ih) (4.16)

By combining these together we see that δx   h. From this it can be shown that the
error in the piecewise constant approximation is O(h).
Exercise 4.1. If F(h) is O(δx) and 0   δx   h, prove that F is O(h).

4.4 The error in the piecewise linear approximation

We can apply the same technique, in slightly more complex form, to derive the error
in the piecewise linear approximation.

Assume we wish to evaluate the piecewise approximation f̂ at a point x and that
a + ih   x   a + (i + 1)h. To simplify the notation a bit, we will introduce l and l + h
as the ends of the interval containing x. That is,

l = a + ih (4.17)
l + h = a + (i + 1)h (4.18)
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We’ll also write δx = x � l for the position of x in the interval. The piecewise linear
approximation given in equation 3.5 therefore becomes:

f̂ (l + δx) = f (l) + δx
f (l + h)� f (l)

h
(4.19)

Now, we can write f (l + h) as a Taylor series centred on l:

f (l + h) = f (l) + h f 1(l) +O(h2) (4.20)

If we substitute this into equation 4.19, we have:

f̂ (l + δx) = f (l) + δx
f (l) + h f 1(l) +O(h2)� f (l)

h

= f (l) + δx f 1(l) +
δx
h
O(h2)

(4.21)

If we note that 0   δx   h then we can conclude that the error term is still bounded
by O(h2):

f̂ (l + δx) = f (l) + δx f 1(l) +O(h2) (4.22)

This looks quite close to what we’re after, but we want the error in f̂ (l + δx) as
compared with f (l + δx), so we now write a Taylor series expansion for the original
function f (l + δx) centred at l:

f (l + δx) = f (l) + δx f 1(l) +O(h2) (4.23)

As before, we have used 0   δx   h to write the error term as O(h2) rather than
O(δx2). We can rearrange this to isolate the terms on the right hand side of equation
4.22:

f (l) + δx f 1(l) = f (l + δx) +O(h2) (4.24)

We can substitute this last equation into equation 4.22 in order to finally write:

f̂ (l + δx) = f (l + δx) +O(h2) (4.25)

We can therefore conclude that the pointwise error in the piecewise linear approxi-
mation of a (smooth) function is O(h2). Another way to say this is to describe the
piecewise linear approximation as second order.

4.5 Types of error

In everyday parlance, the word “error” means a mistake, or something which is
wrong. In science and in scientific computing in particular, error has a different
meaning. In these contexts, “error” is the difference between a computed result and
the “true” result. There are a number of forms of error, some of the most important
of which are:

Rounding error is due to the finite precision of floating point arithmetic. It is the dif-
ference between the result of a floating point operation and the infinite precision
result.
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Truncation error is due to ignoring the higher order terms in an infinite series, such
as a Taylor series.

Model error is due to the approximations made in our description of the real world.
For example, if we model a pendulum neglecting friction in the fulcrum and air
resistance, these are model errors.

Error is an inevitable part of science but, as we saw with the catastrophic cancella-
tion examples, it is essential to remain aware of error in calculations lest it come to
dominate the actual result!

4.6 Numerical Integration

In section 3.2, we were interested in the error integrated over the whole interval [a, b].
This is particularly relevant for one very important use of numerical mathematics:
integrating functions which we don’t know how to integrate analytically. Let’s first
consider the piecewise linear approximation to a function. On a single interval, [l, l +
h], we can use equation 4.25 to write:» l+h

l
f̂ (x)dx =

» l+h

l
f (x)dx +

» l+h

l
O(h2)dx (4.26)

We understand the first two terms of this equation: the integral of the piecewise linear
approximation is equal to the integral of the original equation plus an error term. But
what happens when we integrate O(h2)? Remember, the notation O(h2) when used
as an error term, means an unknown function E(x) which is O(h2). The integral of
the error function is bounded by the maximum magnitude of that function multiplied
by the width of the interval over which integration occurs. That is:» l+h

l
E(x)dx   h

(
max

l x x+h
E(x)

)
(4.27)

Figure 4.1 illustrates this bound. The blue shaded area is the true error on the left of
the inequality, while the right of the inequality is the sum of the blue and pink areas.

We know E(x) is O(h2) for any x in [l, l + h] so in particular, it is O(h2) at its maximum.
This means that the integral error is hO(h2). By inverting the division rule for O
(exercise 3.2) this yields the result that the error is O(h3).

4.6.1 Evaluating the trapezoidal rule

The shape of the approximate integration area shown in figure 4.1 gives this form of
numerical integration its name: the trapezoidal rule. To actually evaluate the integral,
we can write out the definition of f̂ and integrate it. Using equation 4.19, we have:» l+h

l
f̂ (x)dx =

» h

0
f (l) + δx

f (l + h)� f (l)
h

dδx (4.28)



32 CHAPTER 4. TAYLOR SERIES AND NUMERICAL INTEGRATION

l l + h

Figure 4.1: Integration of the piecewise linear approximation to a function over one
sub-interval [l, l + h]. The approximate integral is shown in green and the error in
blue. The maximum pointwise error is shown by a red line and the bound on the
integral error is given by the pink area plus the blue area. It is clear that the sum of
the pink area and the blue area is greater than the blue area on its own.

Note that we have changed variable to δx in the right hand side integral. This is a
very easy integral to evaluate:

» l+h

l
f̂ (x)dx = h f (l) +

h2

2
f (l + h)� f (l)

h

= h f (l) +
h
2
( f (l + h)� f (l))

=
h
2

f (l) +
h
2

f (l + h)

(4.29)

We can combine this with the error result to write a single statement for the trape-
zoidal rule and its error:» l+h

l
f (x) =

h
2

f (l) +
h
2

f (l + h) +O(h3) (4.30)

4.6.2 The multi-interval trapezoidal rule

The formula above is a useful integration rule for a single sub-interval, but we really
need to integrate over [a, b] divided into any number of sub-intervals. Fortunately
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this is easily achieved by applying equation 4.30 to each sub-interval:» b

a
f (x)dx =

n�1̧

i=0

(
h
2

f (a + ih) +
h
2

f (a + (i + 1)h) +O(h3)

)
n =

b� a
h

(4.31)

This gives us a rule for calculating the integral, but what happens to the error? We
sum the n error terms, each of which is O(h3). If we sum a fixed number of O(h3)
error terms then we already know that the result will be O(h3). However, n isn’t fixed,
it’s a function of h so as h becomes small, n becomes ever larger. Let’s write Ei(h) as
the i-th error term. We can once again bound the error using the largest error term:

n�1̧

i=0

Ei(h)   n
(

max
0¤i n

|Ei(h)|
)
=

a� b
h

(
max
0¤i n

|Ei(h)|
)

(4.32)

Now, Ei(h) is O(h3) and we know from exercise 3.2 that dividing an O(h3) by h
produces an O(h2) function. b � a is the length of the whole interval and doesn’t
change when we change the number of sub-intervals, so it will be absorbed in the
arbitrary constant, c, in the definition of O. We can therefore conclude that the overall
error in the multi-interval trapezoidal rule is O(h2):» b

a
f (x)dx =

n�1̧

i=0

(
h
2

f (a + ih) +
h
2

f (a + (i + 1)h)
)
+O(h2) n =

b� a
h

(4.33)

The analysis above does not depend on the particular characteristics of the trapezoidal
rule: it is a general rule that the multi-interval error term will be one order lower than
that for the single interval. The general term form the single interval error is the local
truncation error while multi-interval term is the global truncation error.

4.6.3 Simpson’s rule

We can obtain a still more accurate representation of the integral of a function, f , over
a single sub-interval [l, l + h] by approximating f with a quadratic function. Figure
4.2 illustrates this approximation.

Since a quadratic function is defined by the function value at three points (as opposed
to two for a linear function and one for a constant function), Simpson’s rule employs
the value of the function at the centre of the interval as well as the end points. We
will state without proof that the formula for Simpson’s rule on a single interval is:» l+h

l
f (x)dx = h

(
1
6

f (l) +
2
3

f
(

l +
1
2

h
)
+

1
6

f (l + h)
)
+O(h5) (4.34)

Using the same argument as above, the formula for Simpson’s rule over multiple
intervals is:» b

a
f (x)dx =

n�1̧

i=0

h
(

1
6

f (a + ih) +
2
3

f
(

a +
(

i +
1
2

)
h
)
+

h
6

f (a + (i + 1)h)
)
+O(h4)

n =
b� a

h
(4.35)
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l l + h
2 l + h

Figure 4.2: Simpson’s rule approximates the integral of f (x) on the interval [l, l + h]
using a qudratic function.

4.7 Numerical Quadrature

The trapezoidal rule and Simpson’s rule are two specific examples of the general
system of numerical integration known as numerical quadrature. The basic prin-
ciple of numerical quadrature is that the integral of a function can be calculated
by evaluating that function at a particular set of points and computing a weighted
sum of those values. The general form of a quadrature rule is a set of quadrature
points txj|j = 0 . . . q � 1u in the interval [0, 1] and a set of corresponding weights
twj|j = 0 . . . q� 1u. The integral on a single sub-interval [l, l + h] is then approximated
using the formula: » l+h

l
f (x)dx �

q�1̧

j=0

wjh f (l + xjh) (4.36)

In order to calculate the integral over the full interval [a, b], this procedure is repeated
for each sub-interval: » b

a
f (x)dx �

n�1̧

i=0

q�1̧

j=0

wjh f (a + ih + xjh) (4.37)

The trapezoidal rule and Simpson’s rule are two members of a more general family
known as the Newton-Cotes formulae. Table 4.1 shows three of its members.

Some patterns are apparent in these quadrature rules. The first is that the quadrature
points are equally spaced in the interval [0, 1]. This is characteristic of the Newton-
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Name Quadrature points (xj) Weights (wj) Global truncation error

trapezoidal rule [0, 1]
[

1
2 , 1

2

]
O(h2)

Simpson’s rule
[
0, 1

2 , 1
] [

1
6 , 2

3 , 1
6

]
O(h4)

Boole’s rule
[
0, 1

4 , 1
2 , 3

4 , 1
] [

7
90 , 16

45 , 6
45 , 16

45 , 7
90

]
O(h6)

Table 4.1: Newton-Cotes quadrature rules. This form of the rules is for h in the
interval [0, 1]. Other sources may use other defintions of h with appropriate rescaling
of the weights.

Cotes quadrature rules but is not true for all families of quadrature. For instance, the
widely used Gauss-Lobatto quadrature rules employ unevenly spaced points. The
second pattern to notice is that the quadrature weights always sum to 1. This is a
general pattern which has to be true for all quadrature formulae on the interval [0, 1].
To see why this is so, consider the constant function f (x) = 1. A quadrature rule
which can not even evaluate the integral of this function would be rather useless.

A further important pattern is that more accurate quadrature rules generally require
the function to be evaluated at more quadrature points.

The file /numerical-methods-1/newton_cotes.py contains Python code for these
quadrature rules. The module contains a dictionary newton_cotes containing the
three quadrature rules from table 4.1 under the keys “trapezoidal”, “Simpson” and
“Boole” respectively. Each quadrature rule is represented by an object of class Quadrature
containing a member x, which is the array of quadrature points and w, the array of
weights. This can be accessed as follows:

In [1]: import newton_cotes

In [2]: q=newton_cotes.newton_cotes["Simpson"]

In [3]: q.x

Out [3]: array ([ 0. , 0.5, 1. ])

In [4]: q.w

Out [4]: array ([ 0.16666667 , 0.66666667 , 0.16666667])

Exercise 4.2. Write a Python module named quadrature containing a function
quad(f, a, b, n, rule). quadrature.quad should calculate:» b

a
f (x)dx

numerically using equation 4.37 over n sub-intervals. The argument rule should
be a string containing “trapezoidal”, “Simpson” or “Boole” and you should use the
corresponding quadrature points and weights from the newton_cotes module. If rule
is not one of the known quadrature rules, your function should raise ValueError with
an appropriate error message.

You can use the script test_quadrature.py from /numerical-methods-1 to test your
function by typing:
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> python test_quadrature.py

For this test to work, test_quadrature.py, quadrature.py and newton_cotes.py must
all be in the same directory.

4.8 Quadrature in Python

The scipy.integrate module contains a very sophisiticated quadrature function quad

which will evaluate integrals numerically to a very high precision. For a simple case,
we can try integrating f (x) = x tan(x) on the interval [0, 1]:

In [1]: from numpy import tan

In [2]: from scipy.integrate import quad

In [3]: def f(x):

...: return x*tan(x)

...:

In [4]: quad(f,0,1)

Out [4]: (0.42808830136517606 , 1.1548411421164902e-14)

The first number in the output is the answer, the second is an error estimate.

Exercise 4.3. f (x) = x tan(x) is a very simple example of a function with no simple in-
tegral. Write a python script integrate_x_tan.py which uses your quadrature.quad
function to integrate this function on the interval [0, 1] using each of the quadrature
rules above and for n = 2, 4, 8, 16. Using your convergence function from exercise
3.3, check that the integral converges at the expected rate from table 4.1 for each
quadrature rule. Use scipy.integrate.quad to generate a “true” answer in order to
compute the error for your convergence calculations. Your script should print out the
convergence rate estimates along with suitable documentation.



Chapter 5

Numerical Differentiation

5.1 Forward differencing

Just as numerical quadrature enables us to integrate functions by simply evaluat-
ing the function at a number of points, we can also calculate approximations to the
derivatives of a function using weighted sums of function evaluations.

Remember the elementary definition of the derivative of a function f at a point x0:

f 1(x0) = lim
hÑ0

f (x + h)� f (x)
h

(5.1)

We can turn this into an approximation rule for f 1(x) by replacing the limit as h
approaches 0 with a small but finite h:

f 1(x0) � f (x0 + h)� f (x)
h

, h ¡ 0 (5.2)

Figure 5.1 illustrates this approximation. Because the approximate gradient is calcu-
lated using values of x greater than x0, this algorithm is known as the forward difference
method.

So how accurate is this method? For this we can fall back on our old friend the Taylor
series. We can write:

f (x0 + h) = f (x0) + h f 1(x0) +O(h2) (5.3)

If we rearrange this expression to isolate the gradient term f 1(x0) on the left hand
side, we find:

h f 1(x0) = f (x0 + h)� f (x0) +O(h2) (5.4)

f 1(x0) =
f (x0 + h)� f (x0)

h
+O(h) (5.5)

So the forward difference method is first order.

37
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x0 x0 + h

Figure 5.1: Forward difference method for approximating f 1(x0). The derivative is
approximated by the slope of the red line, while the true derivative is the slope of the
blue line.

5.2 Central differencing

Compared with our algorithms for numerical integration, a first order method is not
very impressive. In an attempt to derive a more accurate method, we can observe that
all of the higher order integration methods have quadrature coefficients which are
symmetric on each interval. Let’s then try to form a differentiation rule by applying
more symmetry. To do this, we’ll try using two Taylor series expansions, one in the
positive x direction from x0 and one in the negative direction. Because we hope to
achieve better than first order, we include an extra term in the series:

f (x0 + h) = f (x0) + h f 1(x0) +
h2

2
f 2(x0) +O(h3) (5.6)

f (x0 � h) = f (x0)� h f 1(x0) +
(�h)2

2
f 2(x0) +O((�h)3) (5.7)

Using the fact that (�h)2 = h2 and the absolute value signs from the definition of O,
this is equivalent to:

f (x0 + h) = f (x0) + h f 1(x0) +
h2

2
f 2(x0) +O(h3) (5.8)

f (x0 � h) = f (x0)� h f 1(x0) +
h2

2
f 2(x0) +O(h3) (5.9)

Remember that we are looking for an expression for f 1(x0). Noticing the sign change
between the derivative terms in the two equations, we subtract equation 5.9 from
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equation 5.8 to give:

f (x0 + h)� f (x0 � h) = 2h f 1(x0) +O(h3) (5.10)

Rearranging a little, we have:

f 1(x0) =
f (x0 + h)� f (x0 � h)

2h
+O(h2) (5.11)

This indicates that we have been successful: by taking an interval symmetric about x0,
we have created a second order approximation for the derivative of f . This symmetry
gives the scheme its name: the central difference method. Figure 5.2 illustrates this
scheme.

x0 x0 + hx0 − h

Figure 5.2: Central difference method for approximating f 1(x0). The derivative is
approximated by the slope of the red line, while the true derivative is the slope of the
blue line.

Exercise 5.1. Create a python module named differentiation containing a function
forward_difference(f,x,h) which uses the forward difference method to approxi-
mate the derivative of f at the point x using a step size of h.

Exercise 5.2. Add a second function central_difference(f,x,h) to your
differentiation module. This should approximate the derivative of f at x using
the central difference method with the value of h supplied.

You can use the script test_derivative.py from the /numerical-methods-1 directory
to test your differentiation functions.
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Exercise 5.3. Write a Python script plot_derivative_error.py which uses your
differentiation module to calculate the derivative of f (x) = ex at the point x = 1.
Your script should plot the error in the derivative of f at x = 1 with 100 values of
h between 0.0001 and 0.1 for each of the forward difference method and the central
difference method.

Label the x axis h and the y axis error using the pylab.xlabel and pylab.ylabel

commands. Also include a legend labelling the lines corresponding to central and
forward difference methods using the pylab.legend command. Give your figure a
suitable title using pylab.title.

Submit your plot_derivative_error.py script. There is no need to submit a printout
of the plot.

5.3 Calculating second derivatives

Numerical differentiation may be extended to the second derivative by noting that the
second derivative is the derivative of the first derivative. That is, if we define:

g(x) = f 1(x) (5.12)

then
f 2(x) = g1(x) (5.13)

We have noted above that the central difference method, being second order, is supe-
rior to the forward difference method so we will choose to extend that.

In order to calculate f 2(x0) using a central difference method, we first calculate f 1(x)
for each of two half intervals, one to the left of x0 and one to the right:

f 1(x0 +
h
2
) � f (x0 + h)� f (x0)

h
(5.14)

f 1(x0 � h
2
) � f (x0)� f (x0 � h)

h
(5.15)

We can now calculate the second derivative using these two values. Note that we
know f 1(x) at the points x0 � h

2 , which are only h rather than 2h apart. Hence:

f 2(x0) �
f 1(x0 +

h
2 )� f 1(x0 � h

2 )

h
(5.16)

�
f (x0+h)� f (x0)

h � f (x0)� f (x0�h)
h

h
(5.17)

� f (x0 + h)� 2 f (x0) + f (x0 � h)
h2 (5.18)

Exercise 5.4. By substituting power series for f (x + h) and f (x � h) into the right
hand side of equation 5.18, prove that the central difference method for the second
derivative is O(h2).
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5.4 A very brief primer on numerical methods for ODEs*

One of the most important applications of numerical mathematics in the sciences is
the numerical solution of differential equations. This is a vast topic which rapidly
becomes somewhat advanced, so we will restrict ourselves here to a very brief in-
troduction to the solution of first order ordinary differential equations (ODEs). A
much more comprehensive treatment of this subject is to be found in the Numerical
Methods 2 module.

Suppose we have the general first order ODE:

x1(t) = f (x, t) (5.19)
x(t0) = x0 (5.20)

That is, the derivative of x with respect to t is some known function of x and t, and
we also know the initial condition of x.

If we manage to solve this equation analytically, the solution will be a function x(t)
which is defined for every t ¡ t0. In common with all of the numerical methods
we have encountered in this module, our objective will be to find an approximate
solution to equation 5.19 at a finite set of points. In this case, we will attempt to find
approximate solutions at t = t0, t0 + h, t0 + 2h, t0 + 3h, . . ..

It is frequently useful to think of the independent variable, t, as representing time. A
numerical method steps forward in time units of h, attempting to calculate x(t + h) in
using the previously calculated value x(t).

5.4.1 Euler’s method*

To derive a numerical method, we can first turn once again to the Taylor series. In
this case, we could write:

x(t + h) = x(t) + hx1(t) +O(h2) (5.21)

Using the definition of our ODE from equation 5.19, we can substitute in for x1(t):

x(t + h) = x(t) + h f (t, x(t)) +O(h2) (5.22)

Notice that the value of x used in the evaluation of f is that at time t. This simple
scheme is named Euler’s method after the 18th century Swiss mathematician, Leonard
Euler.

The formula given is used to calculate the value of x one time step forward from the
last known value. The error is therefore the local truncation error. If we actually wish
to know the value at some fixed time T then we will have to calculate (T� t0)/h steps
of the method. Using the same argument presented in section 4.6.2, this sum over
O(1/h) steps results in a global truncation error for Euler’s method of O(h). In other
words, Euler’s method is first order.
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To illustrate Euler’s method, and convey the fundamental idea of all time stepping
methods, we’ll use Euler’s method to solve one of the simplest of all ODEs:

x1(t) = x (5.23)
x(0) = 1 (5.24)

We know, of course, that the solution to this equation is x = et, but let’s ignore that
for one moment and evaluate x(0.1) using Euler’s method with steps of 0.05. The first
step is:

x(0.05) � x(0) + 0.05x1(0) (5.25)
� 1 + .05� 1 (5.26)
� 1.05 (5.27)

Now that we know x(0.05), we can calculate the second step:

x(0.1) � x(0.05) + 0.05x(0.05) (5.28)
� 1.05 + .05� 1.05 (5.29)
� 1.1025 (5.30)

Now the actual value of e0.1 is around 1.1051 so we’re a couple of percent off even
over a very short time interval.

Exercise 5.5. * Write a python module named ode containing a function
ode.euler(f,x_0,t_0,T,h) which calculates the approximate solution of the system:

x1(t) = f (x, t)
x(t0) = x0

using steps of size h from t0 to T. Your function should return (t,x) where t is the
array t, t + h, t + 2h . . . T and x is the corresponding array of approximate solutions.

You could test your function by solving the simple ODE above using decreasing values
of h and checking that you converge to the analytic solution at O(h).

5.4.2 Heun’s method*

Euler’s method is first order because it calculates the derivative using only the in-
formation available at the beginning of the time step. As we observed for numerical
integration and differentiation, higher order convergence can be obtained if we also
employ information from other points in the interval. The method known as Heun’s
method may be derived by attempting to use derivative information at both the start
and the end of the interval:

x(t + h) � x(t) +
h
2
(x1(t) + x1(t + h)) (5.31)

� x(t) +
h
2
(

f (x, t) + f (t + h, x(t + h))
)

(5.32)
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The difficulty with this approach is that we now require x(t + h) in order to calculate
the final term in the equation, and that’s what we set out to calculate so we don’t
know it yet! The solution to this dilemma adopted in Heun’s method is to use a first
guess at x(t + h) calculated using Euler’s method:

x̃(t + h) = x(t) + h f (x, t) (5.33)

x(t + h) � x(t) +
h
2
(

f (x, t) + f (t + h, x̃(t + h))
)

(5.34)

The generic term for schemes of this type is predictor-corrector. The initial calculation
of x̃(t + h) is used to predict the new value of x and then this is used in a more
accurate calculation to produce a more correct value. We will state without derivation
or proof that the global truncation error in Heun’s method is O(h2).

Exercise 5.6. * Add a function heun(f,x_0,t_0,T,h) to your ode module. The func-
tion should solve the same problem as ode.euler but use Heun’s method rather than
Euler’s method.

Exercise 5.7. * Produce a Python script plot_ode.py which uses ode.euler and ode.heun

to produce a plot comparing Euler’s method and Heun’s method to the analytic so-
lution of the ODE:

x1(t) = x (5.35)
x(0) = 1 (5.36)

Use h = 0.5 and calculate the solution in the range [0, 2.5]. Ensure that your plot has
labelled x and t axes, a title and a legend. If you choose to submit an answer to this
exercise, you need only submit your Python code, it is not necessary to print the plot.
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Chapter 6

Root finding

One of the most common mathematical tasks we encounter is the need to solve equa-
tions. That is to say, for some function f (x) and a value b, we wish to know for which
x it is true that f (x) = b.

In fact, this problem can be reduced to the special case of finding the values of x for
which a given function takes the value zero. Suppose we wish to solve f (x) = b. We
can simply define a new function g(x) = f (x)� b with the result that our problem is
now to solve g(x) = 0.

Quite a lot of the algebra which you learned at school is directed to solving this
problem for particular sorts of functions. For example, if g(x) is of the form ax2 +
bx + c then the quadratic formula can be used to solve g(x) = 0. However for some
functions an algebraic solution may be difficult to find or may not even exist, or we
might not have an algebraic representation of our function at all! In these cases, how
do we solve the equation?

6.1 The bisection method

The simplest root-finding algorithm is the bisection method. It relies on the fact that,
for a continuous function f , if f (x0)   0 and f (x1) ¡ 0 then f (x1) = 0 for some x1

in the interval (x1, x2). This seemingly obvious result is known as the Bolzano theo-
rem after the 18th-19th century Bohemian mathematician Bernhard Placidus Johann
Nepomuk Bolzano. It is a special case of the intermediate value theorem.

The basic idea of the algorithm is that we know that the root lies in the interval
[xl, xr]. We can now successively halve this interval and check in which half the root
now lies. We keep the half of the interval in which the root is to be found and discard
the other half. By repeating this operation, we obtain successively smaller intervals
which contain the root. Figure 6.2 illustrates the application of the bisection method.
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x0
x1x′

Figure 6.1: The Bolzano theorem: if f (x0)   0 and f (x1) ¡ 0 then there must exist a
point x1 such that f (x1) = 0

6.1.1 Implementing the bisection method

We can write out the bisection algorithm using a notation known as pseudocode. Pseu-
docode is a mechanism for writing out sequences of mathematical operations without
writing the particular syntactic details of a given programming language. Assume we
have xl and xr such that f (xl) f (xr)   0. That is to say, f (xl) and f (xr) have different
signs. The bisection method is then:

xc Ð xl+xr
2

if f (xc) f (xl) ¡ 0 then
xl Ð xc

else
xr Ð xc

The only symbol here which we’re not already familiar with isÐwhich is pseudocode
for assigment. In Python, that’s the same as =.

The algorithm above is just one step of the bisection method. How many steps should
we take? The usual answer is that we will accept an approximate root x1 if | f (x1)|   ε
for some small ε which we specify. We can therefore expand our algorithm to include
multiple steps and a stopping criterion:
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x0
x1x2

x3
x4

x5

Figure 6.2: The bisection method finds the root by successively halving an interval
known to contain that root. The process starts with the interval [x0, x1]; the subsequent
xn are the results of the method.

repeat
xc Ð xl+xr

2
if f (xc) f (xl) ¡ 0 then

xl Ð xc
else

xr Ð xc
until | f (xc)|   ε

Note that the pseudocode explains the steps to be taken by an algorithm but doesn’t
necessarily line up one for one with statements in a particular language. For example,
the repeat. . . until construct needs to be translated to an appropriate Python loop.

The algorithm so far evaluates f (xl) on every step. This is fine if f is a simple function
which is cheap to evaluate, but f might just as well be a huge and complex piece of
code with a massive computation cost. We might therefore choose to introduce some
temporary variables to prevent unnecessary re-evaluation of f :

fl Ð f (xl)
repeat

xc Ð xl+xr
2

fc Ð f (xc)
if fc fl ¡ 0 then

xl Ð xc
fl Ð fc

else
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xr Ð xc
until | f (xc)|   ε

Exercise 6.1. Create a Python module root_finding containing a function
bisection(f,x_0,x_1,epsilon,record). This function should solve f (x) = 0 start-
ing with the interval [x0, x1] and applying the bisection method using epsilon as the
convergence threshold ε. If record is False, then the function should return the final
xc: the best estimate of the root. If record is True then the function should return
a sequence of pairs (xc, f (xc)) constructed from each successive estimate of the root.
The default value of record should be False.

If if f (x0) and f (x1) have the same sign, your function should raise ValueError with
an appropriate error message. If ε ¤ 0, your function should also raise ValueError,
but with a message appropriate to that error.

You can test your function using test_root_finding.py from /numerical-methods-1

by typing:

> python test_root_finding.py bisection

6.2 Iterative algorithms

The bisection method is an example of an iterative algorithm. That is to say, it is a
process which produces a series of better and better approximations to the correct an-
swer which converge to the exact answer as the sequence becomes infinitely long. We
might question what use an algorithm is which might only produce the right answer
if we run it for ever. However in reality, almost no quantities in science are known ex-
actly: if there is already error in the input data and rounding error in the calculations
then any answer we give will by necessity to be approximate. Iterative methods can
be a very powerful tool in very quickly producing an approximate answer to a given
accuracy.

6.3 Newton’s method

Newton’s method, also known as Newton-Raphson iteration is an iterative root-
finding algorithm which uses the derivative of the function to provide more infor-
mation about where to search for the root. We can derive Newton’s method using the
first two terms of the Taylor series for a function f starting at our initial guess x1:

f (x1 + h) = f (x1) + h f 1(x1) +O(h2) (6.1)

We wish to know what we need to set h to so that f (x1 + h) = 0 so we impose this
condition and solve for h:

h � � f (x1)

f 1(x1)
(6.2)
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x0

x1

x2

Figure 6.3: Newton’s method finds the root by approximating f (x) by a straight line
at each iteration.

To form an iterative method, we use h to update the last estimate of the root:

xn+1 = xn + h (6.3)

= xn � f (xn)

f 1(xn)
(6.4)

Figure 6.3 illustrates the application of this method. It is noticable that x2 is far closer
to the actual root than even x5 for the bisection method on the same problem.

6.3.1 Implementing Newton’s method

Newton’s method may be written in pseudocode as:
repeat

fx Ð f (x)
x Ð x� fx

f 1(x)
until (| fx|   ε) or maximum iterations exceeded.

Once again we have used a temporary variable fx to avoid evaluating f (x) too many
times. Note that we have included a maximum iteration count since Newton’s method
is not guaranteed to converge.

Exercise 6.2. Add a function newton(f, dfdx, x_0, epsilon, N, record) to your
root_finding module. The arguments have the same meaning as those for the bisection
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function with the addition of dfdx, which should be the function which is the first
derivative of f, and N, which is the maximum permitted number of iterations. The
default value of N should be 100 and your function should raise ArithmeticError

with an appropriate error message if this number of iterations is exceded. The output
should depend on record in exactly the same manner as that of bisection.

Test your implementation using the test_root_finding.py script, passing newton as
the argument instead of bisection

Exercise 6.3. Newton’s method requires the derivative of the function to be known.
Instead, we can use the last two iterations to approximate the derivative:

f 1(xn) � f (xn)� f (xn�1)

xn � xn�1

This leads to the secant method:

xn+1 = xn � f (xn)

(
xn � xn�1

f (xn)� f (xn�1)

)
Write a function secant(f, x0, x1, epsilon, N, record) which uses the secant
method to solve f (x) = 0. The function arguments should have the same mean-
ing as in the newton function except that x0 and x1 are the two starting points and, of
course, there is no need for dfdx.

Your secant function can be tested using the test_root_finding.py script with an
argument of secant.

6.4 Rates of convergence

We now have three different root finding algorithms: the bisection method, Newton’s
method and the secant method from exercise 6.3. Which of these should we choose
if we need to find a root? Part of the answer is that we might wish to choose the
method which converges in the smallest number of iterations. In other words we
want to study the rate of convergence.

The measure of convergence relevant to sequences of iterations is called Q-convergence
because it is calculated from the quotient of adjacent sequence iterations.

Definition 6.1. A sequence xk converges to x� with Q-convergence order p if:

limkÑ8
|xk+1 � x�|
|xk � x�|p   1 (6.5)

For example, if a sequence converges Q-quadratically then for sufficiently large k,
the error at least squares for each iteration. The Q-convergence order (Q-order) of a
sequence is the largest p for which the sequence exhibits Q-convergence.
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Note that the convergence rate is formally achieved in the infinite limit. What this
is in essence saying is that the first iterations of the sequence may converge at other
rates but they should settle down to the expected rate of convergence.

We are interested in numerically estimating the order of convergence. We assume
therefore that there is a p and a µ such that:

|xk+1 � x�|
|xk � x�|p � µ (6.6)

In other words we assume that by setting k high enough we have approximately
converged to the limit case. Rearranging, we have:

|xk+1 � x�| � µ|xk � x�|p (6.7)

We can also apply the same formula to the previous iteration in the sequence:

|xk � x�| � µ|xk�1 � x�|p (6.8)

By dividing these two approximate equations, we can eliminate µ:

|xk+1 � x�|
|xk � x�| �

( |xk � x�|
|xk�1 � x�|

)p
(6.9)

Recall that we’re looking for an expression for p so we take the logarithm of each side:

log
( |xk+1 � x�|
|xk � x�|

)
� p log

( |xk � x�|
|xk�1 � x�|

)
(6.10)

Hence:

p �
log
(
|xk+1�x�|
|xk�x�|

)
log
(

|xk�x�|
|xk�1�x�|

) (6.11)

This expression still assumes that we know precisely the root to which the sequence
is converging. In practice, we usually only have the sequence of iterations we have
generated. Provided our sequence is well converged, we might choose to use the last
member of the sequence to approximate the “true” limit value. Using the Pythonic
notation of -1 to indicate the last index in a sequence, this gives the formula:

p �
log
(
|xk+1�x�1|
|xk�x�1|

)
log
(

|xk�x�1|
|xk�1�x�1|

) (6.12)

Exercise 6.4. Add a function q_convergence(s) to your convergence module. s is
sequence of values. The return value should be a list of p values calculated from the
input according to equation (6.12).

The module test_q_convergence in /numerical-methods-1 contains two sequences
S1 and S2 which you can use to check your work. S1 converges at a Q-order approach-
ing 1 while S2 converges at a Q-order approaching 2. You can automatically apply
these tests by running test_q_convergence.py as a script.
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Exercise 6.5. Write a script find_sin_root.py which uses each of your three root
finding methods to solve the equation:

x5 = 1

For the bisection method, use [0, 1.5] as the starting interval. Start Newton’s method
from x0 = 0 and use x1 = 0.25 for the secant method.

For each method, print the sequence of approximate roots generated. Also print
estimates the order of convergence of each method on each function. You may need
to make ε very small to get really good convergence.

6.5 Breakdown of Newton’s method*

In exercise 6.5 you will have observed that Newton’s method converges faster than
the bisection method. This more rapid convergence comes, however, at a cost. While
the bisection method is guaranteed to converge to the root and its accuracy is limited
only by the accuracy with which the function f can be evaluated, there are a number
of circumstances in which Newton’s method can converge only slowly or even not at
all.

6.5.1 Slow convergence*

At a multiple root, such as the root x = 0 for f (x) = x2, the derivative of the function
f 1(x) is zero. This makes the calculation of h less accurate as both the numerator
and the denominator in equation (6.3) are tending to zero. The result of this is that
Newton’s method converges at first order instead of its usual second order.

Exercise 6.6. * Use Newton’s method to solve x2 = 0 with an initial condition of x = 1.
Calculate the rate of convergence numerically.

6.5.2 Finding the wrong root*

If a function has more than one root, then an initial guess too far from the root may
result in a very large first step which places the next iterate closer to another root. In
this case, Newton’s method may well converge to a root other than the one sought.

Exercise 6.7. * Use Newton’s method to solve sin x = 0 with a starting guess of
x = 1.7. To which answer does the sequence converge?

6.5.3 Divergence*

If a function becomes very flat as its value becomes large, then Newton’s method may
set off in the wrong direction and diverge to infinity.
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Exercise 6.8. * Use Newton’s method to attempt to solve arctan x = 0 starting at
x = 1.5. The derivative of arctan x is 1./(1. + x2).

6.6 Summary of root finding algorithms

We have met three root-finding algorithms here. They illustrate trade-offs which are
common in numerical computing.

The bisection method requires minimal information about the function and always
converges, but has a slow rate of convergence.

Newton’s method often converges very fast but may converge slowly or not at all. It
also requires us to know the gradient of the function we are solving.‘

The secant method comes between the previous two methods in speed and does not
require us to know the gradient of the function but can break down in the same
ways as Newton’s method.
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Chapter 7

Numerical linear algebra

We met matrices in Maths Methods I and learned about matrix multiplication and
how to solve linear systems by means of matrices. The linear systems encountered
in science can be huge: many millions of rows and columns. It is therefore very
important to have techniques for matrix operations on the computer.

7.1 Arrays: Python for vectors and matrices

In chapter 4 of Langtangen, which you have already covered in Programming for
Geoscientists, you met Python array objects. These can be used to work with vectors
and matrices. To do this we need to introduce the concept of the rank of an array.
To put it simply, the rank is the number of indices which you need to describe the
position of the entries in an array. A vector is an array with rank one while a matrix
is an array with rank two1.

This brings us to one of the most confusing terms in the array nomenclature: dimen-
sion. To a physicist, this is usually the length of a vector. However in computing it
is usually used to refer to which of the indices of an array we are referring to. So a
matrix (that is, a rank 2 array) has two dimensions and a vector (of any length) just
the one.

The physicist’s dimension is known as extent in computing. An array has an extent in
each (computing) dimension. At this stage, an example might help:

In [133]: from numpy import *

In [134]: A=array ([[1., 2.],[3., 4.],[5., 6.]])

In [135]: print(A)

[[ 1. 2.]

[ 3. 4.]

1Array is a computing term. Mathematicians tend to use the word tensor, which you might en-
counter in a later module
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[ 5. 6.]]

In [136]: rank(a)

Out [136]: 2

A is a rank 2 array (i.e. a matrix). Its extent in dimension 0 is 3 and its extent in
dimension 1 is 2. The vector composed of the extent of an array in each dimension is
called its shape. To return to our example:

In [157]: A.shape

Out [157]: (3, 2)

7.1.1 Array notation and counting from zero

It is a widely used convention in mathematics that matrices and vectors are typeset
with particular character types and weights. This makes formulae easier to read as it
is possible to see the type of a symbol from its typography. We will use upright capital
letters for matrices (for example A). Vectors will be given by bold lower case letters
(a). There are two common uses of subscripts, and this can lead to some confusion.
A bold lower case letter with a subscript, such as ai indicates the i-th member of of a
set of vectors. We might write the whole set as taiu. A subscript can also be used to
indicate the i-th component of a vector. This is, naturally, a scalar so we write this in
italic: ai is the i-th component of the vector a.

Python arrays (as well as lists, tuples and everything else in Python) are enumerated
from 0. This means that the first entry in a vector x is x[0]. This is a cause of
potential confusion as mathematicians often number vectors and matrices from 1. To
try to avoid this confusion, in this course we will generally number from zero both in
mathematical notation (x0) and Python syntax (x[0])

7.1.2 Slicing and dicing

List slices were introduced in Langtangen section 2.1.9. They were extended to arrays
in section 4.2.2 and to multidimensional arrays in section 4.6.

As a brief reminder, the colon is used to indicate a range of values. Suppose we have
a matrix A. The first column of A is given by A[:,0] while the last row of of A is
A[-1,:].

Slices can also extend over part of a dimension. The slice can be thought of as starting
before the number given. So if x is a vector then x[0:] is the whole vector but x[:0] is
a zero length vector containing nothing at all!
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7.1.3 Creating arrays

There are many ways to create new array objects in Python but two are particularly
important. One, which we met above, is to cast a sequence to an array:

array ([1. ,2. ,3.])

A rank 2 array can be created by casting a sequence of sequences:

array ([[1. ,2.] ,[3. ,4.]])

In this case, the outermost sequence corresponds to the first dimension of the array.
This means that the inner sequences correspond to the rows of a matrix, which is
probably what you expect.

The second important mechanism is using the numpy.zeros function. This function re-
turns an array with value 0.0 in every element and with shape given by the argument.
For example, to create a 3-vector call:

zeros (3)

or to create a matrix with 3 rows and 4 columns, call:

zeros ((3 ,4))

Note the second set of brackets: zeros takes exactly one argument but that argument
can be a scalar or a (rank 1) sequence.

Once an array of zeros has been created, the entries can be populated by assigning
singly or to slices.

7.2 Dot products and matrix multiplication

Let’s think about the dot product and matrix multiplication operators which we met
in maths methods 1. Assume that A and B are matrices and x and y are vectors
and for simplicity lets assume that the matrices are square and the extent of both the
matrices and the vectors is n. Then we can write down the following mathematical
identities:

Ay =
n�1̧

i=0

A:,iyi (7.1)

x � y =
n�1̧

i=0

xiyi (7.2)

xA =
n�1̧

i=0

xiAi,: (7.3)

AB =
n�1̧

i=0

A:,iBi,: (7.4)
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The similarity between these statements is striking. In fact, the dot product and
matrix multiplication are really the same operator. If C and D are arrays then we
multiply them by writing numpy.dot(C,D). The answer is achieved by summing over
the last dimension of C and the first dimension of D. The operation is only defined if
the extents of C and D match along these dimensions and an exception will be raised
if they do not.

From this definition we can draw some other conclusions. The first is that:

rank(dot(C,D)) == rank(C) + rank(D) - 2

What does this mean if C and D are both vectors? Well vectors have rank 1 so this
statement says that the rank of the dot product of two vectors is zero. This is correct.
You can think of a scalar value as being a rank zero array. Python even agrees:

In [163]: rank (1.0)

Out [163]: 0

7.3 Linear systems

One of the most important classes of problems to be able to solve is the matrix equa-
tion:

Ax = b (7.5)

in which A is known square matrix, b is a known vector and x is an unknown vector.
Before we move on to methods for solving this sort of system, we’ll spend some time
on what this equation means and trying to understand the question it poses.

7.4 Span and linear independence

Let’s look at the matrix A in a slightly different way. Rather than thinking of A as a
set of row vectors, let’s think of a as a collection of columns:

A =

A:,0 A:,1 � � � A:,n

 (7.6)

the matrix product Ax can then be thought of as a weighted sum of the columns of A:

Ax = x0A:,0 + x1A:,1 + � � �+ xnA:,1 (7.7)

This is also described as a linear combination of the columns of A.

What form to linear combinations of vectors take? If we have a single vector a then
the linear combinations of that vector (xa) are simply the line passing through that
vector. Figure 7.1 illustrates this.
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a

Figure 7.1: The span of a single vector, a, is the set xa for all x P R.

If we have a set of vectors taiu then the set of linear combinations of those vectors is
called the span of that set. The span of a single vector (other than the zero vector) is a
line passing through that vector.

What about two vectors a0 and a1? Well now we have two options. Either a0 = xa1
for some x P R, or there is no such x. In the first case, the two vectors are colinear and
their span is just the line in which they both lie. In the second case, the two vectors
are not colinear and their span is the plane in which the two vectors lie. If the vectors
are two-dimensional (a0, a1 P R2) then that plane is simply equal to R2. On the other
hand if the vectors lie in R3 or a higher dimensional space, then their span is the plane
in that space passing through those two vectors.

For a set of three vectors, there are now three possibilities. The first is that all three
vectors are scalar multiples of each other:

a0 = x1a1 = x2a2 (7.8)

for some x1, x2 P R. In this case the span of the set is one-dimensional. The next
possibility is that the vectors are not all colinear one of the vectors in the set can be
written as a weighted sum of the other two:

a0 = x1a1 + x2a2 (7.9)

for some x1, x2 P R. In this case the span is once again a plane and all three vectors
lie in that plane. The final option is that none of the vectors can be written as a linear
combination of the other two, in which case the span is three dimensional: either all
of R3 if the vectors lie in R3 or a three-dimensional subspace of the space if larger.

If none of a set of vectors can be written as a linear combination of the others, then
that set is said to be linearly independent.
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Definition 7.1. A set of vectors ta0, . . . , anu is linearly dependent if and only if there
exists a set of coefficents tx0, . . . , xnu such that:

ņ

i=0

xiai = 0 (7.10)

and at least one of the coefficients xi is not zero.

Definition 7.2. A set of vectors is linearly independent if and only if it is not linearly
dependent.

Let’s look back at our matrix A. We can rephrase the matrix equation:

Ax = b (7.11)

as the question: which linear combination of the columns of A gives b As we’ve
just seen, and as you learned in Mathematical Methods 1, the answer may be that no
linear combination of the columns of A gives b or it may be that there is more than
one combination which works.

If A is n � n then we’ve seen above that the span of its columns, which we write
span(A) is a subspace of Rn with dimension somewhere between 0 and n. Further,
the span(A) is only n-dimensional if the columns of A form a linearly independent
set. This leads us to a whole list of properties which are equivalent for a n� n square
matrix A:

1. The columns of A are linearly independent.

2. The span of the columns of A is Rn.

3. A is invertible. i.e. there exists a matrix A�1 such that AA�1 = I

4. Ax = b has a unique solution for every b P Rn.

5. The unique solution to Ax = 0 is the zero vector, 0.

Using the knowledge of eigenvalues and determinants gained in Maths Methods I,
we can add two more items to this list:

6. det(A) � 0.

7. 0 is not an eigenvalue of A.

As a reminder:

Definition 7.3. λ is an eigenvalue of a matrix A if there exists some non-zero vector v
such that:

Av = λv (7.12)
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Exercise 7.1. If A is a square matrix whose columns are not linearly independent,
show that the equation:

Ax = 0 (7.13)

has a non-zero solution.

Exercise 7.2. Use the result from the previous exercise to argue that 0 is an eigenvalue
of A.

7.4.1 Matrix rank

Unfortunately at this stage we encounter a very confusing clash of terminology. The
dimension of the span of a matrix is known as the rank of that matrix. This has nothing
to do with the concept of the rank of an array. All matrices are rank 2 arrays. We will
therefore avoid talking about the matrix rank (i.e. the dimension of the column span)
as much as possible. However, there is one important piece of terminology which it
is hard to avoid. A matrix whose column span has the maximum possible dimension
is said to have full rank. For a n�m matrix, this maximum rank is min(n, m).

We can now add an additional equivalent statement to the list above:

8. A has full rank.

7.5 Matrices as a basis for Rn

Yet another way that we can think of the columns of a matrix A is as the axes of a
coordinate system. In this interpretation, the matrix equation

Ax = b (7.14)

means: what are the coordinates of the vector b in the coordinate system given by the
columns of A?

To illustrate this, think of the matrix whose columns are the usual three-dimensional
basis vectors i, j and k: i j k

 =

1 0 0
0 1 0
0 0 1

 � I (7.15)

If we pose the equation:
Ix = b (7.16)

then we are asking: what are the coordinates of b with respect to the usual basis? The
answer is, of course, x = b.

So we can think of an n� n square matrix of full rank as an alternative set of basis
vectors for Rn.
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7.6 Solving triangular systems

A lower triangular matrix is one in which all of the entries above the diagonal are zero.

L =


L0,0 0 � � � 0
L1,0 L1,1 � � � 0

...
... . . . 0

Ln,0 Ln,1 � � � Ln,n

 (7.17)

Solving a matrix equation involving a lower triangular matrix is easy. Let’s write:

Lx = b (7.18)

We just have to remember the rule for matrix-vector multiplication. We first multiply
the first row of L by x and set it equal to the first entry in b:

L0,0x0 + 0 � x1: = b0 (7.19)

Here we’re writing 0 to mean a vector of all zeros and copying Python’s array slice
notation so x1: means the second and subsequent entries in x.

Hence:
x0 = b0/L0,0 (7.20)

In the second row, we get:

L1,0x0 + L1,1x1 + 0 � x3: = b1 (7.21)

Since we already know x0, we can write this as:

x1 = (b1 � L1,0x0) /L1,1 (7.22)

This pattern continues: for each row we can use the fact that we already know all the
preceding x values. The expression for the n-th row of L is therefore:

xn = (bn � Ln,:n � x:n) /Ln,n (7.23)

Exercise 7.3. Create a module called linear_algebra. Write a function
solve_lower(L,b) which solves the matrix problem Lx = b if L is lower trian-
gular and returns the answer x. If L is not lower triangular, you should raise a
ValueError exception. Hint: you can check that you’ve got the right answer by calcu-
lating dot(L,x)-b.

Exercise 7.4. The functions in /numerical-methods-1/random_matrices.py are useful
for generating matrices and vectors to test linear algebra problems. By using the test:

if __name__ =='__main__ ':

# Test code goes here.
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it is possible to include code in your linear_algebra.py file which is only executed
when the file is used as a script rather than as a module. Add test code in this form to
linear_algebra.py which solves Lx = b for random lower triangular matrices L of
various sizes and corresponding random vectors b. You should check that the answer
is correct and print appropriate messages for success or failure.

Exercise 7.5. An upper triangular matrix is, naturally, a matrix in which the entries
below the diagonal are all zero. Write another function for your module, this time
solve_upper(U,b) to solve an upper triangular problem. You should raise ValueError
if the matrix U is not actually upper triangular. Hint: work backwards from the last
row of the matrix.

Extend your test code to also test solve_upper.

7.7 The LU factorisation

We now know how to solve problems of the form Lx = b and Ux = b where L and
U are lower and upper triangular respectively. This might not seem like a very useful
piece of information since most matrices we are likely to encounter in practice are
unlikely to be lower or upper triangular. Suppose, though, that we were able to write
a general matrix A in the form:

A = LU (7.24)

Then we could rewrite the problem

Ax = b (7.25)

as:
LUx = b (7.26)

Now if we create a new unknown vector c which we define by:

Ux = c (7.27)

then we can substitute into equation (7.26) to create:

Lc = b (7.28)

We know how to solve equation (7.28) for c. Once we have c then we know how to
solve equation (7.27) for x.

The challenge, then is to find a way to rewrite A as LU.

7.7.1 Gaussian elimination revisited

In Maths Methods 1 you learned how to solve the matrix equation Ax = b using
Gaussian elimination. We’ll revisit this algorithm now from the perspective of matrix
operations as a way of forming our LU factorisation.
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Let’s take the following matrix as our example:

A =


5 7 5 9
5 14 7 10
20 77 41 48
25 91 55 67

 (7.29)

Remember that the first step of Gaussian elimination is to set the sub-diagonal rows
in the first column to zero by subtracting multiples of the first row from each of the
subsequent rows. We can write this as a matrix multiplication:

L0 �A (7.30)


1 0 0 0
�1 1 0 0
�4 0 1 0
�5 0 0 1

 �


5 7 5 9
5 14 7 10

20 77 41 48
25 91 55 67

 =


5 7 5 9
0 7 2 1
0 49 21 12
0 56 30 22


To see how this works, let’s remember the algorithm for matrix multiplication:

L0A =
ņ

i=1

L0[:, i]A[i, :]. (7.31)

If we restrict this to just the second row of the right hand side (row number 1), this
becomes:

ņ

i=1

L0[1, i]A[i, :] = �1�A[0, :] + 1�A[1, :] (7.32)

In other words, the second line of L0 has the effect summing -1 times the first row of
A and 1 times the second row. The resulting vector is the second row of the product
L0 �A.

Similarly, the operation of the third row of L0 is to form the third row of L0 �A by
adding -4 times the first row of A to 1 times the third row of A.

So what’s the rule for generating L0? We start with the identity matrix, because we
always have one times the current row. We then need to subtract the correct multiple
of the first row so that the first entry of the second and subsequent row of L0 �A is
zero. An algorithm for this is:

L0 Ð I
for i Ð 1 to len(A)� 1 do

L0[i, 0]Ð �A[i, 0]/A[0, 0]

Now let’s procede to the second row of A. This time we use Gaussian elimination to
produce zeros below the diagonal in the second column:

L1 � (L0 �A) (7.33)
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
1 0 0 0
0 1 0 0
0 �7 1 0
0 �8 0 1

 �


5 7 5 9
0 7 2 1
0 49 21 12
0 56 30 22

 =


5 7 5 9
0 7 2 1
0 0 7 5
0 0 14 14


This time, Gaussian elimination was applied not to A but to the answer from the first
step: L0 �A. So to write an algorithm for Gaussian elimination, we need to keep track
of the previous steps applied to A. For reasons which will become obvious, let’s write
U = L0 �A. We could calculate U directly using a dot product, but that would involve
a lot of useless multiplications by zero since L0 is mostly made up of zeros. Instead,
we can modify our algorithm for finding L0 to also calculate U:

L0 Ð I
U Ð A
for i Ð 1 to len(A)� 1 do

L0[i, 0]Ð �U[i, 0]/U[0, 0]
U[i, :]Ð U[i, :] + L0[i, 0]�U[0, :]

Now we can use that U and the corresponding algorithm to calculate L1:
L1 = I
for i Ð 2 to len(A)� 1 do

L1[i, 1]Ð �U[i, 1]/U[1, 1]
U[i, :]Ð U[i, :] + L0[i, 1]�U[1, :]

Notice that the loop over i now starts from 2 because we’re setting the subdiagonal
entries of the second row.

Of course we don’t really want to write out a special case of the algorithm for each
row of the matrix, and we can easily generalise this to the full algorithm for all the Lj:

U Ð A
for j Ð 0 to len(A)� 2 do

Lj Ð I
for i Ð j + 1 to len(A)� 1 do

Lj[i, j]Ð �U[i, j]/U[j, j]
U[i, :]Ð U[i, :] + Lj[i, j]�U[j, :]

We can apply this algorithm to get the final step:

L2 � (L1 � (L0 �A)) (7.34)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 �2 1

 �


5 7 5 9
0 7 2 1
0 0 7 5
0 0 14 14

 =


5 7 5 9
0 7 2 1
0 0 7 5
0 0 0 4


We can now see why we called the product matrix U. So we’ve now managed to
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write:
L2 � (L1 � (L0 �A)) = U (7.35)

This is sort of like our goal of A = L �U but not quite. To get from one to the other
we first need to move the Li from the left to the right of the equation. We can move
L2 by multiplying both sides by its inverse:

L�1
2 � L2 � (L1 � (L0 �A)) = L�1

2 �U (7.36)

I � (L1 � (L0 �A)) = L�1
2 �U (7.37)

(L1 � (L0 �A)) = L�1
2 �U (7.38)

By successively multiplying by the inverses if Li in reverse order, we come to:

A = L�1
0 � L�1

1 � L�1
2 �U (7.39)

This looks a bit closer, but it depends on us knowing L�1
i . This is the first piece of

magic in this algorithm. Let’s take the example of L0. It so turns out that:
1 0 0 0
�1 1 0 0
�4 0 1 0
�5 0 0 1


�1

=


1 0 0 0
1 1 0 0
4 0 1 0
5 0 0 1

 . (7.40)

To see why this is true, consider the 2, 0 entry in L0 � L�1
0 :

L0[2, 0] =
[�4 0 1 0

] 
1
1
4
5

 (7.41)

= �4� 1 + 0� 1 + 1� 4 + 0� 5 (7.42)
= 0 (7.43)

This pattern of cancellations repeats throughout. We therefore have a nice easy way
of forming L�1

i .

The final stage of our quest is to combine L�1
0 � L�1

1 � L�1
2 into a single matrix L, which

we hope will be lower diagonal. At this point, a second piece of magic comes to our
aid. It turns out that:

1 0 0 0
1 1 0 0
4 0 1 0
5 0 0 1

 �


1 0 0 0
0 1 0 0
0 7 1 0
0 8 0 1

 �


1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1

 =


1 0 0 0
1 1 0 0
4 7 1 0
5 8 2 1

 (7.44)

That is, the sub-diagonal entries are merged. Note that this is not a general matrix
property, it only applies to matrices of the form Li and only when multiplied in this
order.

We can use these inverse and multiplication properties to modify our algorithm. No-
tice that the sign changes on the entries of L and this causes a sign change on the con-
struction of U to ensure we get the same U as before:
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U Ð A
L Ð I
for j Ð 0 to len(A)� 2 do

for i Ð i + 1 to len(A)� 1 do
L[i, j]Ð U[i, j]/U[j, j]
U[i, :]Ð U[i, :]� L[i, j]�U[j, :]

Exercise 7.6. Add a function factorise_lu(A) to your linear_algebra module. This
function should take a matrix A and return its LU factors L and U. Your function
should raise ValueError if A is not square.

Extend the test code in linear_algebra.py to test factorise_lu for matrices of vari-
ous sizes. In particular, random_matrices.random_lu is guaranteed to return a matrix
for which LU factorisation will work.

Exercise 7.7. Add a function solve_lu(A,b) to your linear_algebra module. This
function should take a matrix A and a vector b and return x, the solution to Ax = b.
Calculate the solution by first calling factorise_lu and then solving the two resulting
diagonal systems.

Extend the test code in linear_algebra.py to test solve_lu for matrices of various
sizes.

7.8 Breakdown of the LU factorisation

Let’s take the example2 of the matrix:

A =

[
0 1
1 1

]
(7.45)

If we apply LU factorisation to this matrix then U[0, 0] = 0 and as soon as we start
calculating the second row, we have to divide by U[0, 0] so the algorithm fails.

There is an even nastier version of this problem. Consider:

B =

[
10�20 1

1 1

]
(7.46)

If we apply LU factorisation to this matrix using exact arithmetic, we have:

L =

[
1 0

1020 1

]
, U =

[
10�20 1

0 1� 1020

]
(7.47)

The factorisation has numbers with huge and tiny magnitudes in it. This might not
be a problem in exact arithmetic, but in floating point arithmetic the last entry in U

2This example is from Trefethen and Bau (1997)
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is likely to be rounded to �1020. Is this OK? After all 1 in 1020 error is pretty tiny.
However: [

1 0
1020 1

]
�
[

10�20 1
0 �1020

]
=

[
10�20 1

1 0

]
(7.48)

Look at the last entry in the product. That’s a huge error.

The lesson we draw from this is that LU factorisation is unstable. It is succeptable to
dividing by zero or by tiny numbers when these occur in the algorithm and the effects
of very small rounding errors result in huge errors in the factorisation.

7.9 Pivoting*

If we were to factor matrix A from equation (7.45) using Gaussian elimination, we
would immediately know what to do: switch the first two rows and the division by
zero vanishes. How do we introduce row interchange operations in an automatic
way?

7.9.1 Permutation matrices*

It turns out that we can swap the rows or columns of a matrix by multiplying by a
special matrix. The mathematical term for switching the order of a list is permutation.
A permutation matrix is one in which every row and every column contains exactly
one entry with the value 1 and all the other entries zero. If we left multiply by a
permutation matrix (i.e. evaluate PA then the matrix will rearrange the rows of A. In
particular, if Pi,j = 1 then the i-th row of PA will be equal to the j-th row of A. Some
examples might help. The first is a 3� 3 matrix which swaps the first two rows:0 1 0

1 0 0
0 0 1

 (7.49)

This next one is known as a cyclic permutation, it moves each row to the next one
down and the last row to the first: 

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 (7.50)

Note that the permutation matrix is just the identity matrix with its rows permuted.
The identity matrix is itself a permutation: the identity permutation which maps each
row to itself.

Another way of writing down a permutation is as a vector. The i-th entry of the vector
is the number to which i is mapped under the permutation. For this last example, the
permutation vectors corresponding to the permutation matrices above are:[

1, 0, 2
]

(7.51)
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and [
3, 0, 1, 2

]
(7.52)

Python makes it trivial to generate permutation matrices from permutation vectors.
First, create an identity matrix using the numpy.eye function and then select the rows
in the order of the permutation by providing the permutation vector as a subscript.
For example, we can produce the first permutation matrix above by writing:

from numpy import array ,eye

p_vector=array ([1,0 ,2])

p_array=eye(3)

p_array=p_array[p_vector]

Actually, since the result of eye is an array, we can write:

from numpy import array ,eye

p_vector=array ([1,0 ,2])

p_array=eye (3)[ p_vector]

7.9.2 Partial pivoting*

We can now apply permutation matrices to swap the rows of A so we never end up
dividing by a value which is close to zero. The way we do this is by replacing our
equation:

Ax = b (7.53)

with
PAx = Pb (7.54)

where P is a permutation matrix which interchanges the rows of A to avoid unfortu-
nate divisions. So far, so good. We know how to construct P if we know which row
to choose. Let’s look back at our LU algorithm:

U Ð A
L Ð I
for j Ð 0 to len(A)� 2 do

for i Ð j + 1 to len(A)� 1 do
L[i, j]Ð U[i, j]/U[j, j]
U[i, :]Ð U[i, :]� L[i, j]�U[j, :]

The only division, and therefore the problem term, is the division by U[j, j]. If we
swap rows, this means we can instead choose to divide by any value in the column
under U[j, j]. In other words, U[k, j] for any k ¥ j.

There is a catch, however. U changes at each step of the algorithm so it’s only at the
start of the step that we can decide which row to use next. To minimise the rounding
errors from the division, we always choose the row for which |U[k, j]| is largest.

But wait, we’ve already started! We can’t just go messing with the row order in U
because we’ve already started building L. The answer is that it’s all fine if we also
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switch the rows in the part of L we’ve already built. This modifies L as if we had
always assembled it in permuted order. The new algorithm looks like this:

U Ð A
L Ð I
P Ð I
for j Ð 0 to len(A)� 2 do

choose k ¥ j such that |U[k, j]| is maximised.
U[j, j :]Ø U[k, j :]
L[j, : j]Ø L[k, : j]
P[j, :]Ø P[k, :]
for i Ð j + 1 to len(A)� 1 do

L[i, j]Ð U[i, j]/U[j, j]
U[i, :]Ð U[i, :]� L[i, j]�U[j, :]

This algorithm is known as partial pivotting in contrast with full pivotting in which
both rows and columns are interchanged. It should also be noted that this algorithm
is mathematically correct but there are more efficient versions in which less copying
about takes place.

Exercise 7.8. * Modify your factorise_lu(A) function to include partial pivoting and
return the permutation matrix P as well as L and U. Modify solve_lu(A,b) to employ
your new function.

7.10 The official version

It’s important to understand how matrix equations work, but efficient implementa-
tion of solution strategies is a black art all of its own. Numpy comes with efficient
and stable implementations of many important linear algebra algorithms. In particu-
lar, matrix solution is implemented by numpy.linalg.solve. The eigenvalue routine
numpy.linalg.eig is also particularly useful for practical work.

There is an even more complete set of linear algebra routines in the module scipy.linalg
including scipy.linalg.lu_factor and scipy.linalg.lu_solve which form an im-
plementation of the algorithm studied here.

7.11 Further reading

An excellent reference on a wide range of numerical linear algebra is Trefethen and
Bau “Numerical Linear Algebra”, SIAM, 1997. Lecture 20 covers Gaussian elimination
and the LU factorisation.



Chapter 8

Curve fitting and least squares

8.1 Orthogonality

In order to understand the main subject of this lecture, we first need to revisit the
concept of orthogonality. Orthogonality can be thought of as the property of being
at right angles. Perpendicular and normal are other words which are used to describe
orthogonality. From Maths Methods 1, you already know the relationship between
the orthogonality of vectors and the dot product:

Definition 8.1. Two vectors a and b are orthogonal if and only if:

a � b = 0 (8.1)

Using what we know about the relationship between the dot product and matrix
multiplication, we can draw some immediate conclusions from this definition:

Theorem 8.2. A vector b is orthogonal to all of the rows of a matrix A if and only if:

Ab = 0 (8.2)

Theorem 8.3. A vector b is orthogonal to all of the columns of a matrix A if and only
if:

bA = 0 (8.3)

8.2 Least squares solutions in two dimensions

In chapter 7 we learned that the span of one vector is the line passing through that
vector. We also learned that if A has just one column there is no solution to the
problem:

Ax = b (8.4)

unless b is a multiple of the one column of A. Note that if A has only one column, x
only has one entry. However we will continue to write it as a vector because we will
later generalise this concept to more dimensions.

71
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b

A:,0

Figure 8.1: Ax = b has no solution if A has just one column and b is not a scalar
multiple of that column.

The situation described by equation (8.4) is shown in figure 8.1 Clearly there is no
multiple of A (= A:,0) which will give b. However it’s also clear that some multiples
of A are closer to b than others. To explore this concept we need to introduce the
concept of a residual.

Definition 8.4. For a matrix equation:

Ax = b (8.5)

then for any choice of vector x, the residual r is given by:

r = b�Ax (8.6)

Note that if x is a solution to the equation, then the residual will be the zero vector,
0. The case where x is not the solution is illustrated in figure 8.2. The exciting thing
about this is that it gives us a sense in which we can solve the problem Ax = b. There
is no exact solution, but we can find the solution for which the residual is the smallest
possible.

What does it mean for the residual to be as small as possible? This is just saying
that the length of r should be as small as possible. Remember that the length of r
is given by

?
r � r. So we want to minimise

?
r � r. This is actually the same problem

as minimising r � r or in other words r2, which is what gives this form of solution its
name: least squares.

So, which vector Ax will minimise the residual? It’s possible to mathematically derive
the answer, but actually it’s obvious from thinking about the problem geometrically:
r � r is minimised when r is orthogonal to Ax. Figure 8.3 illustrates this. So, when is
r orthogonal to Ax? As we already know, Ax always points in the same direction as
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r

b

A:,0

Ax

Figure 8.2: The residual r = b�Ax

r

A:,0

b

Ax

Figure 8.3: The residual is minimised when it is orthogonal to Ax
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A:,0. So r is orthogonal to Ax when it is orthogonal to A:,0. From the definition of
orthogonality, we know this occurs when:

A:,0 � r = 0 (8.7)

If we now substitute in the definition of r, we get:

A:,0 � (b�Ax) = 0 (8.8)

Now we can rearrange this equation:

A:,0 � b�A:,0 �Ax = 0 (8.9)
A:,0 �Ax = A:,0 � b (8.10)

Remember that A only has one column, so we can rewrite this as:

A:,0 �A:,0x = A:,0 � b (8.11)

|A:,0|2x = A:,0 � b (8.12)

x =
A:,0 � b
|A:,0|2 (8.13)

So that’s it: we’ve solved this equation for x.

8.2.1 2D least squares example

That was a bit complex so let’s try a practical example. Suppose:

A =

[
1
1

]
(8.14)

b =

[
1
2

]
(8.15)

and we want to solve:
Ax = b (8.16)

in a least squares sense.

Remember that since A has shape (2, 1) and b has shape (2, ), x only has one entry
and so has shape (1, ).

Using equation (8.13), we have:

x =

[
1
1

]
�
[

1
2

]
[

1
1

]
�
[

1
1

] (8.17)

=
3
2

(8.18)
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−10
−5

0
5 −10
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5

−10

−5

0

5

Figure 8.4: A three dimensional linear least squares problem in which A has two
columns. The columns of A are shown in magenta, b is black, Ax is blue and the
residual, r, is red.

To see if this is correct, let’s calculate Ax and r:

Ax =

[3
2
3
2

]
(8.19)

r = b�Ax (8.20)

=

[
1
2

]
�
[3

2
3
2

]
(8.21)

=

[�1
2

1
2

]
(8.22)

Note that r is orthogonal to A:,0: [
1
1

]
�
[�1

2
1
2

]
= 0 (8.23)

8.3 Least squares in more dimensions

In more dimensions, A might have more columns but still not enough to span the
space. For example in three dimensions, A might have two columns which are linearly
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independent and the span of its columns would be a plane. In this case, A has shape
(3, 2), x has shape (2, ) and b has shape (3, ).

Geometrically, Ax = b only has a solution if b lies in the plane spanned by the
columns of A. There is always a least squares solution, however, and it is given by
finding x such that the line from b to Ax is orthogonal to the plane spanned by A.
That line is, of course, the residual which is still given by:

r = b�Ax (8.24)

This time, the least squares solution is achieved when r is orthogonal to all the
columns of A. Figure 8.4 illustrates this situation.

When A had a single column, we could look for a residual orthogonal to A by taking
the dot product between the single column of A and r and setting this to 0. With more
columns in A, we need to take the dot product between each of them and r and set
all the results to zero. In other words, we need to multiply the matrix whose rows are
the columns of A by r. This is achieved by taking the transpose of A. The condition for
the least squares solution is therefore:

ATr = 0 (8.25)

Substituting the definition of r gives:

AT(b�Ax) = 0 (8.26)

ATb�ATAx = 0 (8.27)

ATAx = ATb (8.28)

As a side note, the Python syntax for the transpose of an array A is A.T.

To attempt to understand what we’ve just done, let’s consider the size of A, x and b.
We assumed that A has more rows than columns so shape(A) is (m, n) with m ¡ n.
shape(x) is therefore (n) and shape(b) is (m). Figure 8.5 illustrates the shapes of the
arrays in the problem. Now, AT has shape (n, m), so ATA has shape (n, n), as shown
in figure 8.6.

Similarly, ATb is a vector of length n. Our least squares problem is therefore a square
n� n matrix problem:

(ATA)x = ATb (8.29)

So long as the columns of ATA are linearly independent, we know how to solve this
problem.

We will state without proof (to avoid additional complication), the condition which
ensures that we can solve this least squares problem:

Theorem 8.5. The matrix ATA has linearly independent columns if and only if the
matrix A has linearly independent columns.
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Figure 8.5: Matrix shapes in the overdetermined problem Ax = b
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Figure 8.6: ATA is a square n� n matrix.
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8.3.1 3D Least squares example

To make this technique more concrete, let’s try an example. Suppose

A =

 1 0
0 2

0.5 1

 (8.30)

b =

2
2
8

 (8.31)

Then:

ATA =

[
1.25 0.5
0.5 5

]
(8.32)

ATb =

[
6

12

]
(8.33)

Solving ATAx = ATb gives: [
4
2

]
(8.34)

To check if this is correct, we can calculate the residual, r:

r = b�Ax (8.35)

=

2
2
8

�
 1 0

0 2
0.5 1

 [4
2

]
(8.36)

=

2
2
8

�
4

4
4

 (8.37)

=

�2
�2
4

 (8.38)

Is this right? Well we can check by computing ATr:

ATr =
[

1 0 0.5
0 2 1

] �2
�2
4

 (8.39)

=

[
0
0

]
(8.40)

We can complete all of these calculations easily in Python:

from numpy import *

A=array ([[1. ,0.] ,[0. ,2.] ,[0.5 ,1.]])

b=array ([2. ,2. ,8.])
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x=numpy.linalg.solve(dot(A.T,A),dot(A.T,b))

r=b-dot(A,x)

# Least squares solution

print x

# Residual

print r

# Should be zero!

print dot(A.T,r)

Exercise 8.1. Given:

A =

[
2
5

]
b =

[�2
9.5

]
(8.41)

Solve Ax = b by hand using equation (8.13). Draw by hand a plot similar to figure
8.3 showing A:,0, Ax, b and the residual r.

Exercise 8.2. Write a Python script test_least_squares.py. The script should use
random_matrices.random_nonsquare from /numerical-methods-1, generate random
3� 2 and 3� 4 matrices. Use random_matrices.random_vec to generate random right
hand sides. Solve the resulting least squares systems and verify that your answer is
correct by checking that the residual is orthogonal to the columns of A.

8.4 Curve fitting

8.4.1 Fitting a line through two points

Let’s now consider one of the most common tasks in science. We have some exper-
imental or observational data which we expect to fit some theoretical curve, but we
don’t know the right parameters. For example, suppose we have two input values
(experimental machine settings, for example):

x =

[
1
2

]
(8.42)

As a result of our experiment, we find two outcomes:

y =

[
2
6

]
(8.43)

We want to fit a straight line of the form y = c0x + c1 to these points. Using our two
points, we can write two such equations:

c0x0 + c1 = y0 (8.44)
c0x1 + c1 = y1 (8.45)
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Figure 8.7: The line passing through the points (1, 2) and (2, 6)

Of course we can also write this system of equations as a single matrix equation:[
x0 1
x1 1

]
c =

[
y0
y1

]
(8.46)

By substituting our two points in, we achieve:[
1 1
2 1

]
c =

[
2
6

]
(8.47)

By solving this, we find:

c =

[
4
�2

]
(8.48)

We can write a very easy Python code for this. The output of this program is figure
8.7.
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from numpy import *

from pylab import *

def fit_linear(x,y):

'''Construct and solve a linear system for the line

passing through two points in the plane. x is the

two x values , y is the two y values.

The result is a vector c where c[0]x+c[1]=y is the line.

'''

if(x.shape !=(2 ,)):

raise ValueError("x must be a 2-vector")

if(y.shape !=(2 ,)):

raise ValueError("y must be a 2-vector")

A=zeros ((2 ,2))

A[:,0]=x

A[: ,1]=1.

c=linalg.solve(A,y)

return c

# x values to fit to.

x=array ([1 ,2])

# y values to fit to.

y=array ([2 ,6])

# solve for gradient and y intercept.

c=fit_linear(x,y)

# plot the original data.

plot(x,y,'o')

# plot the line we have fit.

X=linspace (-1,3)

Y=c[0]*X+c[1]

# plot x and y axes:

plot(X,0*X,'k')

plot (0*Y,Y,'k')

plot(X,Y)

axis([min(X),max(X),min(Y),max(Y)])

show()
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8.4.2 Fitting higer degree polynomials

Suppose now we have three points through which we wish to fit a quadratic curve (a
parabola). The process is essentially identical except now the general quadratic curve
is written as c0x2 + c1x + c2 = 0. Suppose I have a vector of x values and a vector of
corresponding y values:

x =

1
3
4

 y =

 6
18
27

 (8.49)

This time, our matrix system is:x2 x 1.

 c = y (8.50)

Substituting x and y, we have:  1. 1. 1.
9. 3. 1.

16. 4. 1.

 c =

 6
18
27

 (8.51)

For which the solution is:

c =

1.
2.
3.

 (8.52)

The quadratic which fits this data is therefore y = x2 + 2x + 3.

It is easy to see that we could extend this to fit a degree n polynomial through n + 1
points. A Python function which does this is:

def fit_polynomial(x,y, n):

'''Construct and solve a linear system for the degree n

polynomial passing through n+1 points in the plane.

x is the n+1 x values , y is the n+1 y values.

The result is a vector c where

c[0]x^n+c[1]x^(n -1)+...+c[n]=y

is the line.

'''

if(x.shape !=(n+1 ,)):

raise ValueError("x must be a n+1-vector")

if(y.shape !=(n+1 ,)):

raise ValueError("y must be a n+1-vector")

A=zeros ((n+1,n+1))

for i in range(n+1):

A[:,i]=x**(n-i)

return linalg.solve(A,y)
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Figure 8.8: The linear fit to a set of data.

8.4.3 Overdetermined curve fitting

The scenario in which we have exactly n+ 1 points to which we wish to fit to a degree
n polynomial is not typical in science. Instead, we usually have a large data set for
which we have good theoretical reasons to believe that the data should lie on some
low degree polynomial curve such as a straight line or a parabola.

Of course experimental data is usually noisy so the points won’t line up exactly on
the line. What we want is the line which best fits the set of points, in some sense.
Figure 8.8 shows this situation.

So, how do we fit this line? Well we can first construct our linear system as before.
Suppose we have a set of independent variable values x and a set of data y. Then if
they all lie on the same line, the equation is:x 1.

 c = y (8.53)

Of course this equation has many more equations than unknowns so unless we are
absolutely, stupidly fortunate, there will be no solution. However we have just learned
that a system like this can be solved in the least squares sense by multiplying on the
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Figure 8.9: A data set with fitted parabola. The red vertical lines show the magnitude
of the residual component associated with each data point.

left by the transpose of the matrix. The least squares system is:

ATAc = ATy (8.54)

A =

x 1.

 (8.55)

This system is 2� 2 and gives the best line through the points in some least squares
sense.

Exactly the same argument for fitting a polynomial of higher degree to a dataset
applies, only this time the matrix A will have columns corresponding to the higher
powers of x.

8.4.4 Interpretation of the least squares solution

So what does the least squares solution mean for curve fitting? Remember that it is
the solution which minimises the residual r given by:

r = y�Ax (8.56)
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In the curve fitting case, the points Ax lie on the curve so the residual is the distance
from the curve to the data points y in the vertical direction. Figure 8.9 shows this
distance for each point in a data set with its least squares quadratic fit.

It would be convenient to have a single number which indicates how well the curve
fits the data. The obvious candidate is the magnitude of the residual:

|r| = ?
r � r (8.57)

=

d¸
i

r2
i (8.58)

The issue with this quantity is that it always increases as more data is added, which
is not a welcome feature of an error indicator. To take into account the size of the data
set, we can use the root mean square error. This is given by:

RMS(r) =

d°
i r2

i
n

(8.59)

where n is the size of the data set and therefore the length of r.

If you think back to secondary school statistics, this formula looks very familiar. In
fact it’s almost the same as the standard deviation formula. If we consider the curve
as some sort of average for the data, then the RMS error is the standard deviation of
the difference between the data value and the curve value for a given x.

Exercise 8.3. Produce a modified version of fit_polynomial from page 82 which per-
forms a least squares fit for any number of data points greater than the polynomial
degree. The original fit_polynomial is available from
/numerical-methods-1/fit_polynomial.py. Use fit_polynomial.random_data to test
your routine and produce plots similar to figure 8.8 for at least linear and quadratic in-
put data. Hint: the checks for incorrect input to fit_polynomial will need to change.
What checks apply to the least squares version?

8.5 Official versions

As with matrix solution, numpy comes with least squares solvers and a special pur-
pose routine for curve fitting which are likely to be faster and more robust than
anything you write for yourself. The numpy function for least squares systems is
numpy.linalg.lstsq while the one for polynomial curve fitting is numpy.polyfit.
Another useful function in this regard is numpy.poly1d which takes a sequence of co-
efficients and returns the corresponding polynomial function. This function can then
be called on x values to evaluate the polynomial.
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Appendix A

Taylor series

A.1 Power series

A power series is a function represented by an infinite sum:

f (x) = a0 + a1(x� x0) + a2(x� x0)
2 + . . . + an(x� x0)

n + . . .

=
8̧

k=0

ak(x� x0)
k (A.1)

The point x0, often referred to as the centre of the power series, is fixed: it does not
depend on x. Similarly, the coefficients ak are independent of x.

For the purposes of numerical mathematics, it is most convenient to write power
series in another form. By making the substitution x = x0 + h, we can write:

f (x0 + h) =
8̧

k=0

a0hk (A.2)

A.2 Radius of convergence

A power series representation of f is only valid for values of h for which the series
converges. It is possible to test for the convergence of a series using the ratio test, oth-
erwise known as d’Alembert’s test after the 18th century French mathematician Jean
de Rond d’Alembert who originally published it. The test establishes the following
sufficient test for convergence:

lim
nÑ8

����an+1hn+1

anhn

����   1 (A.3)

or equivalently:

|h| lim
nÑ8

����an+1

an

����   1 (A.4)

A-1
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Hence the convergence of the power series depends not only on the coefficients an, it
is also linear in the magnitude of h. This enables us to define a new parameter R, the
radius of convergence. The convergence criteria now becomes:

|h|   R ðñ x0 � R   x   x0 + R (A.5)

where:

R � lim
nÑ8

���� an

an+1

���� (A.6)

A power series centred at x0 is therefore valid for values h less than the radius R.

The radius of convergence of a power series is preserved under addition, subtraction,
multiplication and differentiation. That is to say, if two power series with the same
radius of convergence are added, subtracted or multiplied then the resulting power
series has the same radius of convergence. Similarly, the derivative of a power series
is a power series with the same radius of convergence.

A.3 Taylor and MacLaurin Series

Suppose we have some function f (x) whose derivatives we know at some point x0.
We can write:

f (x0 + h) = a0 + a1h + a2h2 + . . . + anhn + . . . (A.7)

If we set h = 0 then we note that:

f (x0) = a0 (A.8)

Differentiating the series we have:

f 1(x) = a1 + 2a2h + 3a3h2 . . . + nanhn�1 + . . . (A.9)

so that:
f 1(x0) = a1 (A.10)

If we differentiate again, we have:

f 2(x) = 2a2 + 2� 3a3h . . . + (n� 1)� nanhn�2 + . . . (A.11)

yielding:
f 2(x0) = 2a2 (A.12)

similarly:

f3(x0) = 3� 2a3

= 3! a3
(A.13)

In general:
f (n)(x0) = n! an (A.14)

In other words:

an =
f (n)(x0)

n!
(A.15)
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This gives us a new way of representing a function:

f (x0 + h) = f (x0) + f 1(x0)h +
f 2(x0)

2!
h2 + . . . +

f (n)(x0)

n!
hn + . . .

=
8̧

k=0

f (k)(x0)

k!
hk

(A.16)

provided, of course, that the series converges. In this final formula we employ the
conventions that the zeroth derivative of a function is the function itself ( f (0)(x) =
f (x)) and that 0! = 1.

This means we have an algorithm for expressing f (x) as a power series subject to
the radius of convergence and assuming that the derivatives f (n)(x) are continuous
within that radius of convergence.

This form of power series is known as a Taylor series. A special case of the Taylor
series is achieved by setting x0 = 0:

f (x) =
8̧

k=0

f (k)(0)
k!

xk (A.17)

This form of Taylor series is referred to as a MacLaurin series.

A.3.1 Example: ex

Expand f (x) = ex around x = 0.

ex is unique in that:
f (x) = f 1(x) = f 2(x) = f (n)(x) = ex (A.18)

so at x = 0 all the derivatives are e0 = 1. This produces the series:

ex =
8̧

k=0

xk

k!

= 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . .

(A.19)

The radius of convergence for this series is:

R = lim
nÑ8

���� an

an + 1

����
= lim

nÑ8

����(n + 1)!
n!

����
= lim

nÑ8
n + 1

= 8

(A.20)

That is to say, the expansion converges for any x.
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A.3.2 Example: cos x

Expand f (x) = cos x around x = 0.

In this case we have:

f 1(x) = � sin x f 2(x) = � cos x
f3(x) = sin x f4(x) = cos x

f (5)(x) = � sin x f (6)(x) = � cos x

f (7)(x) = sin x f (8)(x) = cos x

So at x = 0 all the odd derivatives are 0 while the even derivatives alternate between
�1 and 1. This produces:

cos x = 1� x2

2!
+

x4

4!
� x6

6!
+ . . . (A.21)

once again, the radius of convergence is 8. By a similar process:

sin x = x� x3

3!
+

x5

5!
� x7

7!
+ . . . (A.22)

A.3.3 Example: ln x

Since ln x is not defined at x = 0, there is no MacLaurin series for this function.
Instead, we produce a Taylor series for ln x around x0 = 1.

In this case we have the following derivatives:

f 1(x) =
1
x

f 2(x) = � 1
x2

f3(x) =
2
x3

f4(x) =
3� 2

x4

f (n)(x) = �1n�1 (n� 1)!
xn

So that at x = 1 we have:

f (1) = 0
f 1(1) = 1

f 2(1) = �1
f3(1) = 2

f4(1) = �6
...
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This leads us to:

ln(1 + h) =
8̧

k=1

�1k�1 (k� 1)!
k!

hk

=
8̧

k=1

�1k�1 hk

k

= h� h2

2
+

h3

3
+ . . .

(A.23)

This has radius of convergence:

R = lim
nÑ8

���� an

an+1

����
= lim

nÑ8

����n + 1
n

����
= 1

(A.24)

So the series converges for �1   h   1 or 0   x   2.
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