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Abstract

Supplementary document for our LPNMR 2015 submission containing
proofs and full example that were not included in the submission due to
space limitation.

1 Learning Example in Legal Reasoning

This section contains the all the steps in the computation of the judgement
theory from our legal example.

Firstly, all the given past cases are expressed, using our meta-level represen-
tation, by the following set of facts are in meta(CB):

cb id(c0). factor(ria). in rule(c3,neg dwe,ooo).

cb id(c1). factor(neg dot). in rule(c3,neg dwe,rpl).

cb id(c2). default head(neg dwe). in rule(c3,neg dwe,far).

cb id(c3). default id(c0). in rule(c3,neg dwe,ria).

cb id(c4). is rule(c0,neg dwe). is rule(c4,dwe).

cb id(c5). is rule(c1,neg dwe). in rule(c4,dwe,neg dot).

factor(dot). in rule(c1,neg dwe,dot). in rule(c4,dwe,fad).

factor(fad). is rule(c2,dwe). is rule(c5,neg dwe).

factor(dia). in rule(c2,dwe,dot). in rule(c5,neg dwe,neg dot).

factor(ooo). in rule(c2,dwe,ooo). in rule(c5,neg dwe,fad).

factor(rpl). is rule(c3,neg dwe). in rule(c5,neg dwe,dia).

factor(far). in rule(c3,neg dwe,dot).

The optimal answer set Aopt of ΠCB contains the following raw attacks, and
relevant attacks:
raw attack(c2,c0). raw attack(c3,c2). attack(c4,c0).

raw attack(c4,c0). raw attack(c5,c4). attack(c3,c2).

raw attack(c2,c1). attack(c2,c0). attack(c5,c4).

Note that c2 →r c1 is not a relevant attack as it violates the second condition
of Definition 3 as c2 →r c0. Using meta(CB) and the relevant attacks, the
following arguments are deduced:

argument(c2,c0,ooo). argument(c4,c0,fad). argument(c3,c2,rpl).

argument(c2,c0,dot). argument(c3,c2,ria). argument(c5,c4,dia).

argument(c4,c0,neg dot). argument(c3,c2,far).

These are used with Πgen to generate the answer set containing the following
meta-level representation of the judgement theory:
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is rule(r0,neg dwe). in rule(r4,ab0,not ab2). in rule(r2,ab2,rpl).

in rule(r0,neg dwe,not ab0). is rule(r5,ab1). in rule(r2,ab2,far).

in rule(r0,neg dwe,not ab1). in rule(r5,ab1,neg dot). in rule(r2,ab2,ria).

is rule(r4,ab0). in rule(r5,ab1,fad). is rule(r3,ab3).

in rule(r4,ab0,dot). in rule(r5,ab1,not ab3). in rule(r3,ab3,dia).

in rule(r4,ab0,ooo). is rule(r2,ab2).

This corresponds to the program:

neg dwe :- not ab0, not ab1. ab2 :- far, ria, rpl.

ab0 :- dot, ooo, not ab2. ab3 :- dia.

ab1 :- fad, neg dot, not ab3.

2 Correctness of the Generated Program

This section contains proofs for the lemmas used to prove the proposition in the
submission. For completeness, definitions and programs from the submission
are also included.

2.1 Definitions

Definition 1 (Casebase). Let F be a set of elements called factors. A case
is a subset of F . A case with judgement is a pair cj = 〈c, j〉, where c is a
case and j ∈{+,−}. The set c is also referred to as the set of factors included
in a case with judgement. Given a case with judgement cj, case(cj) denotes
the set of factors included in cj and judgement(cj) = j denotes the judgement
decision taken in the case. A casebase, denoted with CB, is a set of cases with
judgements, namely a subset of P(F )× {+,−}, where P(F ) is the powerset of
F .

Definition 2 (Raw Attack). Let CB be a casebase. The raw attack relation
is a set RA ⊆ CB × CB defined as the set of all pairs 〈cj1, cj2〉 such that
〈cj1, cj2〉 ∈ RA if and only if case(cj1) ⊃ case(cj2) and judgement(cj1) 6=
judgement(cj2). For every pair 〈cj1, cj2〉 ∈ RA, we say cj1 raw attacks cj2 and
we write cj1 →r cj2.

Definition 3 (Relevant Attack). Let CB be a casebase. The relevant attack
relation AT ⊆ RA is the set of pairs 〈cj1, cj2〉 ∈ RA such that:

• 〈cj1, cj2〉 ∈ AT if case(cj2) = ∅ and there is no cj3 →r cj2 in RA such
that case(cj1) ⊃ case(cj3)

• 〈cj1, cj2〉 ∈ AT if there exists 〈cj2, cj4〉 ∈ AT and there is no cj5 →r cj2
in RA such that case(cj1) ⊃ case(cj5)

• nothing else is in AT .

Each element 〈cj1, cj2〉 ∈ AT is denoted as cj1 → cj2.

Definition 4 (Argument). Let CB be a casebase and let AT be the set of
relevant attacks with respect to CB. For each pair 〈cj1, cj2〉 ∈ AT , the set
of factors representing the attack from cj1 to cj2 is given by α(cj1, cj2) =
case(cj1)− case(cj2).
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Definition 5 (Active Case with Judgement). Let CB be a casebase, AT be its
corresponding set of relevant attacks, and c be a case. A case with judgement
cj ∈ CB is active with respect to c if and only if case(cj) ⊆ c, and for all
〈cjn, cj〉 ∈ AT , either case(cjn) * c or cjn is not active with respect to c.

Definition 6 (Predicted judgement). Let CB be a casebase, AT be the set of
relevant attacks with respect to CB, and c be an unseen case (for all cj ∈ CB,
case(cj) 6= c). The unique predicted judgement of c, denoted with pj(c), is equal
to the default judgement j0 if and only if 〈∅, j0〉 is active with respect to c.

Definition 7 (Rule representation of a case with judgement). Let CB be a
casebase. Each cj ∈ CB can be expressed as a definite clause r(cj) called a
rule: judgement(cj) : − f1, . . . , fn. where fi ∈ case(cj), for 1 ≤ i ≤ n.

Definition 8 (Casebase meta-level representation). Let CB be a casebase. Its
meta-level representation, meta(CB), is defined as:

meta(CB) =
⋃

cj∈CB

µ(r(cj)) ∪ τ(CB) ∪ δ(CB)

τ(CB) = {factor(fi)|fi ∈ F}, δ(CB) is the meta-information about the default
case, δ(CB)={default id(id(r(cj0))), default head(judgement(cj0))}, and
the function µ is defined as follows:

µ(r(cj)) =


cb id(id(r(cj))).
is rule(id(r(cj)), judgement(cj)).
in rule(id(r(cj)), judgement(cj), fi). for each fi ∈ case(cj)

Definition 9. Given a casebase CB and its relevant attacks AT , the judgement
theory T is the set of rules such that given a new case c, T derives the default
judgement j0 if and only if pj(c) = j0. Let ab(cji → cjj) be the reified atom of
cji → cjj in AT . The following rules are in the judgement theory1

• For empty case with judgement cj0, and cj1 → cj0, . . . , cjn → cj0 ∈ AT
judgement(cj0) : −not ab(cj1 → cj0), . . . , not ab(cjn → cj0).

• For f1, . . . , fm ∈ α(cjx, cjy), and cjx+1 → cjx, . . . , cjx+k → cjx ∈ AT
ab(cjx → cjy) : −f1, . . . , fm, not ab(cjx+1 → cjx), . . . , not ab(cjx+k → cjx).

2.2 Programs

Πraw =



raw attack(ID1, ID2) : −factor subset(ID2, ID1), is rule(ID1, H1),
is rule(ID2, H2), H1 6= H2.

factor subset(ID1, ID2) : −cb id(ID1), cb id(ID2),
not not factor subset(ID1, ID2).

not factor subset(ID1, ID2) : −cb id(ID1), cb id(ID2), factor(B),
in rule(ID1, H1, B), is rule(ID2, H2), not in rule(ID2, H2, B).

Πrev1 =


0 {attack(ID1, ID2)} 1 : −raw attack(ID1, ID2).
: −attack(ID1, ID2), not attackee(ID2).
: −attack(ID1, ID2), raw attack(ID3, ID2), factor subset(ID3, ID1).
attackee(ID) : −default id(ID).
attackee(ID2) : −attack(ID2, ID4).

1where α/2 represents arguments as described in Definition 4
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Πrev2 = {#maximise{attack(ID1, ID2)}.}

Πarg =

{
argument(ID1, ID2, Arg) : −attack(ID1, ID2), in rule(ID1, H1, Arg),

is rule(ID2, H2), not in rule(ID2, H2, Arg).

Πgen1 =


1 {id attack link(AID, a(ID1, ID2)) : abnormal(AID, Ab)} 1

: −attack(ID1, ID2).
: −id attack link(AID1, At), id attack link(AID2, At), AID1 6= AID2.
: −id attack link(AID, At1), id attack link(AID, At2), At1 6= At2.

Πgen2 =


gen id(r0).
gen id(ri). abnormal(ri, abi). negated abnormal(ri, not abi).
For 1 ≤ i ≤ n,where n is the number of relevant attacks

Πgen3 =


is rule(r0, Def) : −default head(Def).
in rule(r0, Def, NAb) : −default head(Def), default id(ID2),

id attack link(AID, a(ID1, ID2)), negated abnormal(AID, NAb).

Πgen4 =


is rule(AID, Ab) : −id attack link(AID, At), abnormal(AID, Ab).
in rule(AID, H, Arg) : −is rule(AID, H), argument(ID1, ID2, Arg).

id attack link(AID, a(ID1, ID2)),
in rule(AID1, H, NAb) : −is rule(AID1, H), negated abnormal(AID2, NAb),

id attack link(AID1, a(ID2, ID1)), id attack link(AID2, a(ID3, ID2)).

Πrev = Πrev1 ∪Πrev2

ΠCB = meta(CB) ∪Πraw ∪Πrev.

Πgen = Πgen1
∪Πgen2

∪Πgen3
∪Πgen4

ΠJT = Πgen ∪ AR ∪ {default head(judgement(cj0)), default id(id(r(cj0)))}
where AR is the answer set of arguments of the relevant attacks computed
using Πarg.

2.3 Proofs

Definition 10. Let {S} = AS(meta(CB) ∪ Πraw), CB be a casebase, AT its
relevant attacks, and Q = {attack(id(r(cji)), id(r(cjj))), attackee(id(r(cjj))) |
〈cji, cjj〉 ∈ AT}. ans(CB,AT ) is the interpretation S∪Q∪{attackee(id(r(cj0)))}.

Lemma 1. Let S be the unique answer set of meta(CB) ∪Πraw and let πp(A)
denote the projection of A over p. A set A ∈ AS(ΠCB) iff:

(i) πattack(A) ⊆ πraw attack(A)

(ii) For all cj1 and cj2, if attack(id(r(cj1)), id(r(cj2))) ∈ A then
attackee(id(r(cj2))) ∈ A

(iii) For all cj1 and cj2, if attack(id(r(cj1)), id(r(cj2))) ∈ A then there does not
exists cj3 such that raw attack(id(r(cj3)), id(r(cj2))) ∈ A and
factor subset(id(r(cj3)), id(r(cj1))) ∈ A)

(iv) For all cj, attackee(id(r(cj)) ∈ A if and only if default id(id(r(cj3)) is
true or attack(id(r(cj)), id(r(cjx)))∈A

(v) Let L be the language of meta(CB) ∪ Πraw, then for all s, s ∈ πL(A) if
and only if s ∈ S
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Proof. The program ΠCB can be split into two programs meta(CB) ∪ Πraw

and Πrev such that the answer set S of meta(CB) ∪ Πraw forms the inputs to
Πrev. This simplifies ΠCB into facts representing the casebase meta(CB), raw
attacks RA, and sub factors and non sub factors between cases of the casebase
SF together with the program Πrev. We now show that X ∈ AS(ΠCB) iff X
satisfies (i)-(v). Firstly, assume X satisfies (i)-(v). The reduct of ΠCB , using
simplified reduct [1], wrt X is:

1. attack(id1, id2) : −raw attack(id1, id2). For all attack(id1, id2) ∈ X
and raw attack(id1, id2) ∈ S)

2. ⊥ : −attack(id1, id2). For all attackee(id2) /∈ X

3. : −attack(id1, id2), raw attack(id3, id2), factor subset(id3, id1).
For all raw attack(id3, id2) ∈ X and factor subset(id3, id1) ∈ X

4. attackee(id) : −default id(id). For all default id(id) ∈ X)

5. attackee(id2) : −attack(id2, id4). For all raw attack(id2, id4) ∈ X

6. s. For each s ∈ S

Consider the reduct without the constraints (line 2-3), since it is stratified,
it has a unique minimal model M . Constructing M (using the iterated fixpoint
operator) yields X. Thus X is the minimal model of the reduct without con-
straints. Now, if we consider the constraints, the first (line 2) cannot be satisfied
due to property (ii), and the second (line 3) cannot be satisfied due to property
(iii). Thus X is the minimal model of the reduct, and hence, an answer set.

Next assume that X ∈ AS(ΠCB). We show that X satisfies (i)-(v).

i Assume X violates (i). Then there exists attack(id1, id2) ∈ X st
raw attack(id1, id2) 6∈ X. This contradicts the sole definition of attack/2
in the reduct.

ii Assume X violates (ii). Then there exists attack(id1, id2) ∈ X but
attackee(id2) /∈ X. This violates a constraint of Πrev. Contradiction, as
X ∈ AS(ΠCB).

iii Similarly if X violates (iii) then X also violates a constraint of Πrev.

iv The default id is reserved for the empty case, thus lines 4 and 5 of the
reduct, attackee(id) ∈ X iff id is the id of the empty case, or attack(id, id′) ∈
X.

v If X violates (v), then either there exists s ∈ ΠL(X) st s 6∈ S, or vice
versa; however, this cannot occur, since all elements of S are facts in the
reduct.

Lemma 2. Given two answer sets A1, A2 ∈ AS(ΠCB), then A1∪A2 ∈ AS(ΠCB).

Proof. By lemma 1 A1 and A2 both satisfy (i)-(v). Informally, (i) and (ii) are
satisfied by A1 ∪ A2 as they were by both A1 and A2. (iii)-(v) are satisfied as
the raw attack’s, factor subset’s and default id’s are the same in A1, A2 and
therefore A1 ∪A2 (so if A1 and A2 satisfy (iii)-(v), then so does A1 ∪A2).
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Lemma 3. Given a casebase CB, its raw attacks RA, and its relevant attack
AT , ans(CB,AT ) ∈ AS(ΠCB).

Proof. We show that ans(CB,AT ) satisfies (i)-(v). Property (i) is given by
Definition 3, property (v) is given from the definition of ans(CB,AT ), and we
can show inductively that property (ii)-(iv) holds:

• Base case (AT = {〈cj1, cj2〉 | case(cj2) = ∅ and there is no (cj3 →r

cj2) ∈ RA st case(cj1) ⊃ case(cj3)}):

(ii) attackee(id(r(cj2))) ∈ ans(CB,AT ) by Definition 10 as cj2 = ∅.
Hence (ii) is satisfied.

(iii) For each attack(id(r(cj1)), id(r(cj2))) ∈ ans(CB,AT ), 〈cj1, cj2〉 ∈
AT . Hence there is no (cj3 →r cj2) ∈ RA st case(cj1) ⊃ case(cj3).
So by definition 11, there is no cj3 st raw attack(r(id(cj3)), r(id(cj2)))
∈ ans(CB,AT ) and factor subset(r(id(cj3)), r(id(cj1))) ∈
ans(CB,AT ).

(iv) This follows immediately from definition 11.

• Inductive hypothesis: ans(CB,AT ′) satisfies (ii)-(iv).

• Inductive step (〈cj1, cj2〉 ∈ RA st AT = AT ′ ∪ {〈cj1, cj2〉} and the
is some 〈cj2, cj4〉 ∈ AT ′ st there is no (cj5 →r cj2) ∈ RA for which
case(cj1) ⊃ case(cj5)):

Note that by Definition 10, ans(CB,AT ′) ⊆ ans(CB,AT ).

(ii) By the inductive hypothesis, attackee(id(r(cjj))) ∈ ans(CB,AT ′)
for each attack(r(id(cji)), r(id(cjj))) ∈ ans(CB,AT ′). As there is
some 〈cj2, cj4〉 ∈ AT ′, attackee(id(r(cj2))) ∈ ans(CB,AT ) by Defi-
nition 10.

(iii) By the inductive hypothesis, ans(CB,AT ′) satisfies (iii), so it re-
mains to show that there is no raw attack(r(id(cj3)), r(id(cj2))) ∈
ans(CB,AT ) such that factor subset(r(id(cj3)), r(id(cj1))) ∈
ans(CB,AT ). But this holds as there is no (cj5 →r cj2) ∈ RA
for which case(cj1) ⊃ case(cj5).

(iv) By the inductive hypothesis, ans(CB,AT ′) satisfies (iv), so as 〈cj1, cj2〉
adds attackee(cj2) (by Definition 10), ans(CB,AT ) satisfies (iv).

Hence, by lemma 1, ans(CB,AT ) is an answer set of ΠCB .

Proposition 1. Given a casebase CB with relevant attacks AT , ans(CB,AT )
is the unique optimal answer set of ΠCB.

Proof. By Lemma 3, ans(CB,AT ) ∈ AS(ΠCB). Assume for contradiction there
exists A′

opt ∈ AS(ΠCB) such that A′
opt 6= ans(CB,AT ) and A′

opt is not less opti-
mal than ans(CB,AT ). Both A′

opt and ans(CB,AT ) satisfy (v) and attackee/1
is defined using attack/2, so there must be an attack instance in A′

opt which is
not in ans(CB,AT ). Let D = A′

opt \ ans(CB,AT ). By Lemma 2 A′
opt ∪

ans(CB,AT ) must also be an answer set of ΠCB , and A′
opt ∪ ans(CB,AT ) =

D∪ans(CB,AT ). Let d be an attack/2 instance such that attack(id1, id2) ∈ D
and for all id3 such that attack(id2, id3) /∈ D. Let A′ = {d} ∪ {attackee(id1)} ∪
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ans(CB,AT ). A′ satisfies (i), (iii), and (v) as they are also satisfied by D ∪
ans(CB,AT ). As d ∈ A′

opt either default(id2) ∈ A′
opt or attack(id2, id3) ∈

A′
opt. In the first case default(id2) ∈ ans(CB,AT ∪ {d}) and in the sec-

ond since attack(id2, id3) ∈ A′
opt but attack(id2, id3) /∈ D it must be that

attack(id2, id3) ∈ A′
opt ∩ ans(CB,AT ) and hence attack(id2, id3) ∈ A′. So in

both cases A′ satisfies (ii). Since
ans(CB,AT ) satisfies (iv), so would A′. This shows that A′ is also an an-
swer set of ΠCB . However, let 〈cj1, cj2〉 be the relevant attack corresponding
to d, then by (ii), (iii) and (iv) and Definition 3 then 〈cj1, cj2〉 ∈ AT must be
true and so d ∈ ans(CB,AT ). Contradiction as d ∈ A′

opt \ ans(CB,AT ). Thus
ans(CB,AT ) is the unique optimal answer set of ΠCB .

Lemma 4. Given a casebase CB and associated judgement theory T . Then for
A ∈ AS(ΠJT ), πin rule,is rule(A) = µ(T ).

Πgen generates rules from the default judgement where the body literals
are either factors of the casebase, or negated abnormalities, which is the same
structure as the judgement theory. Apart from the Skolemisation Πgen is a
definite program, thus while there are multiple answer sets to Πgen due to the
Skolemisation, they are all equivalent with respect to the renaming of abnor-
malities. The meta-level information generated by Πgen directly corresponds
to the structure of the judgement theory in Definition 9, linking the default
judgement with abnormalities linked with attacks against the empty case with
judgement, and linking subsequent abnormalities with other normalities repre-
senting attacks against it. Thus, provided that AT (and consequently AR) is
correct with respect to CB, then the generated meta-level representation is the
encoding of T .

Lemma 5. Given a casebase CB with associated judgement theory T , let c be
a new case, given as a set of factors. From Definition 9 for all abnormality
rules ab in T there exists a sequence of rules not head(ab) ∈ body(abx1), . . . ,
not head(abxn) ∈ body(def) in T , where n ≥ 0. The union of all its factors
corresponds to a cj ∈ CB, and cj → cjy for some cjy ∈ CB. Abnormalities
with a sequence such that case(cj) ⊆ c is denoted by seq(ab).

Lemma 6. Given a casebase CB with associated judgement theory T , and a
new case c. Let Tc = {def} ∪ {ab|ab ∈ T, seq(ab)}, and Tex = T \ Tc. Then T
derives j0 iff Tc derives j0

Proof. The program Tex∪ c does not effect the derivation of j0. For a rule ab to
be in Tex, seq(ab) does not hold indicating that either there exists f ∈ fs(ab)
but f /∈ c in which case not ab holds, or there exists another abnormality closer
to def containing factors not in c, making ab irrelevant to the inference of j0.

Proposition 2. Given a casebase CB with associated judgement theory T , and
a new case c. Let {AT } = AS(T ∪ c). Then j0 ∈ AT if and only if pj(c) = j0.

Proof. Let Ac be the answer set of Tc. By Lemma 6 we can reduce the problem
to j0 ∈ Ac if and only if pj(c) = j0. Let dep(r) be the number of abnormalities n
a rule r ∈ Tc depends on (the number of abnormalities in Tc that are in its body
and bodies of linked sub-rules). We can show that for all r ∈ Tc, head(r) ∈ Ac

iff all abnormalities in body(r) are not in Ac. We use strong induction on dep(r).
Assume as inductive hypothesis that for all r′ ∈ Tc such that dep(r′) < dep(r),

7



head(r′) ∈ Ac iff all abnormalities in body(r′) are not in Ac. There are two
cases:

• Case 1: dep(r) = 0. As r ∈ Tc then all f ∈ fs(ab) must be in c. If there
is any not ab ∈ body(r) then they must be in Tex, thus head(r) ∈ Ac.

• Case 2: dep(r) > 0. All f ∈ fs(r) are in c. For all abnormalities ab in
body(r), dep(ab) < dep(r). By the inductive hypothesis each head(ab) ∈
Ac iff all abnormalities in its body are not in Ac. Thus, head(r) ∈ Ac iff
all head(ab) not in Ac.

Thus j0 ∈ Ac iff all of its abnormalities are not in Ac. In such situation all cases
with judgement attacking the the empty case with judgement are not active
with respect to c and by Definition 5 pj(c) = j0.
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