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Figure 1: Given multi-view images and their reflectance decomposition from active illumination (left), our method reconstructs
high-quality surface geometry (middle), which can be used for highly realistic rendering (right).

Abstract
High-resolution facial geometry is essential for realistic digital
avatars. Traditional reconstruction methods, such as multi-view
stereo, often struggle with materials like skin, which exhibit com-
plex light reflection, absorption, and scattering properties. Neural
reconstruction methods have shown greater robustness to these
view-dependent effects. However, positional-encoding-based imple-
mentations are typically slow, while faster hash-encoded methods
may falter under sparse camera views.We present a geometry recon-
struction method tailored for an active-illumination facial capture
setup featuring sparse cameras with varying characteristics. Our
technique builds upon hash-encoded neural surface reconstruc-
tion, which we enhance with additional active-illumination-based
supervision and loss functions, allowing us to maintain high recon-
struction speed and geometrical fidelity even with reduced camera
coverage. We validate our approach through qualitative evaluations
across diverse subjects, and quantitative evaluation using a syn-
thetic dataset rendered with a virtual reproduction of our capture
setup. Our results demonstrate that our method significantly out-
performs previous neural reconstruction techniques on datasets
with sparse camera configurations.
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1 Introduction
High-quality digital assets of human faces, coupled with the ability
to scan people, are highly valuable across numerous domains such
as visual effects, medicine, cosmetics, gaming, and more. They are
also central to virtual human interactions, such as in the Meta-
Verse. The standard for simulating and rendering digital faces is
exceptionally high, because humans are adept at observing and
analyzing faces. Even slight inaccuracies or implausibilities may be
noticed, often unconsciously, which can elicit negative reactions.
This phenomenon is known as the Uncanny Valley [Mori 2012]: the
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more realistic and human-like the facial simulation, the higher its
fidelity needs to be in order to achieve plausibility and realism.

In this paper, we focus on reconstructing accurate facial geome-
try for a specific scanning setup developed by Lattas et al. [Lattas
et al. 2022]. Various facial scanning setups have been introduced
in the past (e.g. the famous Light Stage [Debevec et al. 2023]); the
configuration used in this paper consists of eight iPads (with con-
trollable screens and selfie cameras) and five DSLR cameras. The
iPad screens, arranged on the surface of a hemisphere, are used
to sequentially display two colored binary patterns, and both the
iPad and DSLR cameras capture one image of the subject under
each lighting condition. This active lighting capture is used to de-
compose the radiance observations into reflectance maps (albedos
and normals) using the analytic method in [Lattas et al. 2022]. Our
method takes the captured images, plus the derived appearance
maps, from these 13 cameras as input; these are used for additional
supervision of the geometry reconstruction, which is one of our
contributions.

The traditional geometry reconstruction pipeline for uncali-
brated cameras consists of Structure from Motion (SfM) [Ullman
1979] and Multi-view Stereo (MVS) [Hernandez Esteban et al. 2008].
In the first pass, each camera’s intrinsics and pose are estimated,
while in MVS, the calibrated cameras are used to infer the object’s
surface. One underlying assumption of this method is that the sur-
faces are Lambertian (diffuse), such that every point on the surface
will produce the same observation in all cameras. While gener-
ally robust, MVS can struggle with shiny surfaces (reconstructing
bumps where highlights are observed) or texture-less surfaces.

More recently, neural methods have become the new standard for
high-quality geometry reconstruction. Pioneered by first applica-
tions of per-scene representational learning such as NeRF [Milden-
hall et al. 2020], small neural networks regressing density in 3D
space have shown exceptional results for multi-view geometry esti-
mation. However their training can be prohibitively long, taking up
to days where MVS takes minutes. This led to the introduction of ac-
celeration structures such as a Hash Grid of neural features [Müller
et al. 2022]. These accelerated neural reconstructions are able to
achieve speeds comparable to MVS, but for challenging datasets
such as ours with sparse views and wide baselines, reconstruction
quality tends to deteriorate.

Our method is based on a hash-encoding accelerated version
of the original NeuS [Wang et al. 2021], but we introduce several
modifications to the training objectives that make the method more
robust and accurate, especially for face captures from a sparse set
of cameras. Specifically, we incorporate:

• a monocular depth loss,
• active-illumination-based supervision,
• a masking loss for face and background disambiguation.

To further enhance the recovered facial geometry, we incorporate
additional processing stages for clean mesh re-topology and the
transfer of fine detail from the measured normals to the geometry
itself. We evaluate these improvements against baseline neural and
traditional reconstruction methods across a variety of real-world
captures, as well as a synthetic dataset that we render in a virtual
replica of the acquisition setup, in order to also obtain quantitative
geometric errors.

2 Related Work
2.1 Face Scanners
Face scanning has been a prolific area of research in Computer
Graphics for a long time, initially motivated by VFX applications.
The Light Stage [Debevec et al. 2023] and its numerous variations
have established themselves as the standard setups for scanning
of human faces, combining polarization imaging and illumina-
tion [Ghosh et al. 2011; Ma et al. 2007]. Other setups have removed
the need for full spherical lighting coverage, the requirement of
active illumination [Riviere et al. 2020], and the need for polarized
cameras [Gotardo et al. 2018], but still employ high-quality hard-
ware on a calibrated, fixed setup. Recently, Lattas et al. [Lattas et al.
2022] proposed a low-cost scanning setup consisting of uncalibrated
cameras and screens for active lighting. The two-shot capture (illus-
trated in Fig.4) produces reflectance maps for each camera, which
can then be reprojected onto the reconstructed geometry.

The traditional geometry reconstruction pipeline involves ob-
taining the camera poses, either through explicit calibration us-
ing known target objects [Zhang 2004], or via Structure-from-
Motion [Ullman 1979]. The Multi-View Stereo [Hernandez Esteban
et al. 2008] pipeline then uses the posed cameras to triangulate
points in the scene, which are subsequently merged into a triangle
mesh. While this approach is not specific to human faces, pho-
togrammetry or variants [Beeler et al. 2010] are still the most com-
monly used approach across face scanning setups, and generally
performed as pre-processing before any further tasks such as reg-
istration [Li et al. 2017] or deep learning [Cao et al. 2022]. The
reconstructed geometry can be further enhanced to the pore level
by embossing normal maps into the surface [Nehab et al. 2005].

2.2 Neural Geometry Reconstruction
Neural Radiance Fields (NeRF [Mildenhall et al. 2020]) introduced a
radically new approach to scene and geometry modelling, as they
encode matter as density in space learnt by a small neural net-
work, as opposed to the traditional mesh of triangles. Although ini-
tially designed for view synthesis, a surface can again be extracted
from the learnt density via classic techniques such as marching
cubes [Lorensen and Cline 1987]. Slightly modifying the model,
NeuS [Wang et al. 2021] also regresses matter in space using a small
Multi-Layer Perceptron, except here the network learns the value
of a signed distance function (SDF ), from which volume density
can be derived. Once training is finished, a surface can naturally be
extracted (and meshed) as the zero-level set of this neural SDF.

Acceleration. Although the results were incredible, initial neu-
ral scene representations suffered from prohibitively long training
times, up to several days [Barron et al. 2021]. Extensive research
has gone into acceleration structures for neural representations,
the most effective being the Hash Grid [Müller et al. 2022]. Initially
developed for NeRFs, Hash Grids can also be employed for neural
surface reconstruction, effectively decreasing the convergence time
from hours to minutes. NeuS2 [Wang et al. 2023] presents an im-
plementation of such which is entirely implemented in CUDA for
rapid training, and extend the process to dynamic scenes. Neuralan-
gelo [Li et al. 2023b] uses numerical gradients to overcome locality
in the computation of analytical gradients of a hash-encoding.
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Regularizers & Priors. Another initial drawback of neural scene
representations was their reliance on well-posed data. Various mod-
ifications to the training supervision and objectives have been pro-
posed to deal with datasets imperfections, most commonly sparse
views [Long et al. 2022; Niemeyer et al. 2022; Yu et al. 2021] or
lighting changes between views [Martin-Brualla et al. 2021]. Other
efforts attempted to better constrain the results by using additional
information in the training, e.g. supervising with depth informa-
tion [Deng et al. 2022], reflectance and normal information [Bru-
ment et al. 2023], or even independent monocular geometric cues
that are extracted from each input view [Yu et al. 2022].

Gaussian Splatting. Most recently, Gaussian Splatting [Kerbl et al.
2023] was proposed as a new volumetric representation for view
synthesis. Although there are many similarities with neural implicit
representations, and techniques have been proposed to extract mesh
geometry from splats [Guédon and Lepetit 2024; Huang et al. 2024;
Turkulainen et al. 2024], we believe neural implicit representations
to be better regularizers in our setting and to lead to more accurate
and robust surface estimation.

Meshing. Despite Marching Cubes being the most prominent
method for meshing isosurfaces, it fails to recover sharp features
and can suffer from artefacts. Neural Marching Cubes [Chen and
Zhang 2021] boosts the performance of the classic method using
machine learning to better preserve finer details. Subsequent work
extends Dual Contouring with machine learning [Chen et al. 2022],
reducing the vertex count required to achieve similar mesh fidelity.
DMTet [Shen et al. 2021] represents geometry as a SDF defined on
a deformable tetrahedral grid, allowing the surface to be recovered
through marching tetrahedra.

2.3 Neural Representations for Faces
Implicit neural representations also find applications in facial mod-
elling, their main advantage being the high quality view synthesis.
Beyond static rendering, encoding information in a neural network
or a neural feature grid opens doors for learning dynamic faces
across time [Gafni et al. 2021; Kirschstein et al. 2023; Lombardi et al.
2021; Park et al. 2021] as well as across lighting conditions [Lom-
bardi et al. 2018; Rainer et al. 2023; Rao et al. 2022], or even across
a database of faces [Chan et al. 2021].

However, in these methods the scene representation remains
neural, extracting a mesh would lose desirable properties of the vol-
umetric representation which can much more smoothly interpolate
than a triangle mesh where artifacts are extremely visible. Burkov
et al. [Burkov et al. 2022] leverage the NeuS representation across
a database of portraits, to estimate head geometry given a single
image, but the results suffer in this case from being overly smooth.
Giebenhain et al. [Giebenhain et al. 2023, 2024] use an ensemble
of small neural networks to learn a parametric head model across
a database of subjects and expressions – although these output a
mesh, they also inherit the smoothness from the low-dimensional
parametric encoding.

We propose to similarly use a neural implicit geometry repre-
sentation to reconstruct our scans from multi-view input. While
these representations achieve impressive results in various synthe-
sis tasks, they are tailored to these applications and can’t easily

be edited by artists or integrated in common rendering engines.
The standard, default representation for computer graphics assets
remain meshes and textures, so our goal is to output a high fidelity
mesh for every scan: the neural representation serves as a robust
model for the optimization, where we introduce novel additional
objectives and losses, but the final output is a high-resolution mesh.

3 Method
In this section, we present our method for generating high-quality
geometry in a setting where common methods struggle due to the
difficult capture conditions: low-light and high exposure imaging;
heterogeneous cameras with varying camera and color parameters;
use of iPad selfie cameras, which are low resolution and prepos-
sessed with proprietary software; a relatively sparse arrangement
of cameras.

By incorporating additional priors and utilizing active illumina-
tion data, our reconstruction becomes robust to these sub-optimal
capture settings. Our approach is based upon SDF-based volume-
rendering, using multi-resolution hash grid encoding. We extend
on this foundation by integrating images captured under active-
illumination, and introducing additional losses to guide the op-
timization. These new losses aim to maintain the quality of the
geometry under challenging capture conditions; in our case, mini-
mal coverage from cameras that range in image quality. The key
components of our method are:

• Active-illumination Supervision: Employing multiple im-
ages captured under different illumination conditions, along
with estimated surface normals, to provide a stronger super-
visory signal.

• Monocular Depth Loss: Using depth images estimated
from each camera view as a prior, aiding the reconstruction
of concave surfaces with reduced visibility.

• Mask Loss: Incorporating a monocular estimate of object
segmentation as a shape-from-silhouette term.

Volume Rendering of an SDF:. Our method builds upon the neural
SDF representation introduced in NeuS [Wang et al. 2021]. Here,
a surface S is represented by the implicit function S = {𝑥 ∈
R3 |𝑓 (𝑥) = 0}, where the zero-level set denotes the underlying
surface. NeuS proposes a formula for converting the value of the
signed-distance function into an opacity value:

𝛼𝑖 = max
(
Φ𝑠 (𝑓 (p(𝑥𝑖 ))) − Φ𝑠 (𝑓 (p(𝑥𝑖+1)))

Φ𝑠 (𝑓 (p(𝑥𝑖 )))
, 0

)
(1)

where Φ𝑠 is the sigmoid function, and 𝛼𝑖 is the resulting opacity at
point 𝑥𝑖 . This conversion allows the SDF to be utilized in the NeRF
volume-rendering function [Mildenhall et al. 2020] for optimization
of the underlying surface.

Positional Encoding and Hash Encoding: The original formula-
tion of NeuS utilizes positional encoding, where the 𝑥𝑦𝑧 posi-
tional coordinates are mapped into a higher-dimensional space
𝑓 : R3 → R3×2𝐿 . This encoding is provided as input to the MLP
that learns the SDF, enabling the network to capture high-frequency
details more effectively than using 𝑥𝑦𝑧 coordinates alone. In con-
trast, hash encoding, introduced in [Müller et al. 2022], employs
multi-resolution grids where each cell maps to an entry in a hash
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table, storing learnable features. Given a position 𝑥𝑦𝑧, the corre-
sponding features across all grid resolutions are concatenated to
form the feature vector input to the MLP. Hash encoding allows for
a smaller network compared to positional encoding, and is signifi-
cantly faster to optimise; learning the SDF in [Li et al. 2023b; Wang
et al. 2023] takes minutes, whereas the original NeuS requires hours.
However, hash encoding lacks the implicit regularization provided
by the MLP, and training all resolutions simultaneously can lead to
overfitting, which may introduce noise or artefacts in the geome-
try. To address this, existing hash-encoded SDF methods [Li et al.
2023b; Wang et al. 2023] use a progressive training approach, where
higher-resolution grids are added gradually, mitigating these issues
for typical neural rendering datasets. Despite this, when camera
coverage is reduced or image quality diminishes, hash encoding
still tends to degrade in quality compared to positional encoding
results, even with the progressive hash-encoding approach. Our
extension to hash-encoded SDF methods is designed to preserve
geometry quality even in datasets with sparse or varying camera
quality.

3.1 Active-Illumination Supervision
For our experiments we use data captured by the specific facial
scanning setup developed by Lattas et al. [Lattas et al. 2022]. How-
ever, this method is equally applicable to any active illumination
capture setup capable of photographing a subject under multiple
lighting conditions. In our setup, we capture subjects in a static pose
using two complementary binary patterns. Following the approach
described in [Lattas et al. 2022], we derive facial reflectance maps
from these captures. By adjusting the output size of the color MLP,
we can train the network not only to learn RGB values under a
single illumination condition, but also to handle multiple active
lighting conditions or analytically derived maps. Through empiri-
cal experimentation, we determine that concatenating the mixed
albedo, the two binary gradients, and the derived specular surface
normals yields the best result on our datasets. This selection of
training images is shown in Fig. 1.

3.2 Monocular Depth Loss
In datasets with sparse camera coverage, the network may struggle
to converge to the true surface in areas lacking sufficient multi-
view observations. This issue is exacerbated for concave objects,
where self-occlusion further diminishes camera visbility. To help the
network converge to the true surface with fewer observations, we
incorporate the prior from a monocular depth estimation network.

We first output the estimated depth values from our SDF us-
ing a modified version of the discrete ray-accumulation formula
originally applied to color in [Wang et al. 2021]:

�̂� =

𝑛∑︁
𝑖=1

𝑇𝑖𝛼𝑖𝑑𝑖 (2)

where 𝑇𝑖 is the accumulated transmittance 𝑇𝑖 =
∏𝑖−1

𝑗=1 (1 − 𝛼 𝑗 ),
and 𝑑𝑖 represents the discrete depth values along the ray. Depth
estimates 𝐷 for each input view are generated using [Birkl et al.
2023]. We then compute a scale-invariant depth loss, as used in
training monocular depth estimation networks in [Eigen et al. 2014].

𝐿𝑑𝑒𝑝𝑡ℎ (𝐷, �̂�) =
1
𝑛

∑︁
𝑝

𝑑2𝑝 − 𝜆

𝑛2

(∑︁
𝑝

𝑑𝑝

)2
(3)

where 𝑑𝑝 = log𝐷𝑝 − log �̂�𝑝 for each pixel 𝑝 . In this formula, setting
𝜆 = 0 is equivalent to 𝐿2, while 𝜆 = 1 yields a fully scale-invariant
function. We set 𝜆 to 1, to avoid assumptions about the absolute
scale of the monocular depth estimates, focusing instead their inter-
pixel relative depths.

3.3 Mask Loss
In our multi-view facial datasets, we care only about reconstruct-
ing the geometry within the capture volume, i.e. within the region
covered by active illumination. To this end, we model the capture
region with a volume-rendered SDF, and model the outside region
with a hash-encoded NeRF++ [Zhang et al. 2020]. However, with
sparse camera supervision, the optimization may have trouble au-
tomatically distinguishing between foreground and background,
potentially leading to artefacts in the geometry. To improve the
delineation of the foreground region, we introduce a mask loss that
utilizes the prior from a pre-trained matting network, in order to
guide the SDF during the early stages of training. For each input im-
age, we generate alpha mattes 𝑆 using the method described in [Ke
et al. 2022]. During training, we estimate current foreground seg-
mentation 𝑆 at the current step using the discrete ray-accumulation
formula, accumulating opacity values:

𝑆 =

𝑛∑︁
𝑖=1

𝑇𝑖𝛼𝑖𝛼𝑖 (4)

We can compute the masking loss using the mean squared error:

𝐿𝑚𝑎𝑠𝑘 (𝑆, 𝑆) =
1
𝑛

𝑁∑︁
𝑝

(𝑆 − 𝑆)2 (5)

We apply the masking loss for the first 25% of training steps, gradu-
ally reducing its influence to zero. This approach allows the network
to refine the foreground segmentation details directly from the im-
ages.

3.4 Re-topology
The usual approach to meshing an SDF is the marching cubes algo-
rithm, which uses a lookup table to determine triangle connectivity
given a voxelised representation of the distance field. However,
marching cubes suffers from several issues that affect the quality
of the final geometry: "staircase" artefacts, topological ambiguities,
and over-smoothing of sharp geometry features. Some of these
artefacts can be observed in the left panel on Fig. 2. We apply post-
processing to our marching cubes output to generate a mesh with
clean topology but equivalent detail. First, we re-topologize our
geometry using the Discrete Voronoi Diagrams method presented
in [Valette et al. 2008], as shown in the centre panel of Fig. 2. We
generate a coarse mesh at this stage and follow up with several
subdivision steps. Finally, we optimize the positions of the new
vertices such that they lie on the zero-level set of our learned SDF
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using the loss function:

𝐿𝑆𝐷𝐹 =
1
𝑉

�̂�∑︁
𝑖=0

𝑓 (𝑣𝑖 )2 (6)

where 𝑣𝑖 are randomly sampled surface points on the mesh for each
iteration. We also use a normal term to maintain surface detail:

𝐿𝑛𝑜𝑟𝑚𝑎𝑙𝑠 = 1 − 1
𝑉

�̂�∑︁
𝑖=0

Δ𝑣𝑖 · Δ𝑓 (𝑣𝑖 )
∥Δ𝑣𝑖 ∥∥Δ𝑓 (𝑣𝑖 )∥

(7)

where Δ𝑣𝑖 is the normal corresponding to mesh point 𝑣𝑖 , and Δ𝑓 (.)
is the gradient of the SDF, which is conveniently already included
in the NeuS formulation as part of the Eikonal term. This optimiza-
tion takes less than a minute, and the results can be seen in the
right panel of Fig. 2. This approach results in a much cleaner mesh
topology, making it more suitable for normal embossing (section
4.6), while maintaining the original level of detail represented in
the SDF.

Figure 2: Left:The result ofmeshing the learned SDFusing tra-
ditionalmarching cubes.Centre: The SDF field re-topologized
with Voronoi-clustering [Valette et al. 2008]. Right: The re-
sult of the re-topologized and subdivided mesh optimized to
fit the zero-level set of the SDF.

4 Results and Evaluation
4.1 Implementation Details
We implement our method in Pytorch using the the NerfAcc library
[Li et al. 2023a]. For our Signed Distance Function (SDF) we utilize
a hash grid with 14 levels, and a smaller grid with 10 levels for the
outer NeRF. The SDF network is an MLP with one hidden layer of
size 64, while the color network is an MLP with two hidden layers
each of size 64. The SDF network is initialized to a sphere of radius
0.3 meters, and we train the network with input images resized
to 800 × 1200 pixels. All experiments are conducted on an Nvidia
GeForce 3090 GPU over 10,000 iterations.

4.2 Data Capture & Input
Our datasets are captured with the setup described in [Lattas et al.
2022], comprising 13 cameras: 5 Canon EOS M50s, and 8 iPad Pro
selfie cameras (5th generation). The Canon cameras are arranged in
a semi-circular configuration in front of the subject, while the iPads
are arranged in two rows above and below. Subjects are captured
under two color multiplexed binary gradient patterns which are
displayed on the iPad screens. Each pattern is captured with a

330ms exposure time. An optical flow step is used to correct for
any motion between the two binary images.

Following the method of [Lattas et al. 2022], the binary gradient
patterns are decomposed into a set of reflectance maps: diffuse and
specular albedos, and normals. We use structure-from-motion to
find the camera parameters, using Agisoft Metashape [Agisoft LLC
2024]. We use a combination of reflectance maps in training our SDF
representation (section 3.1), the specular normals for embossing
the geometry (section 4.6), and the full set of BRDF maps are used
for rendering (Fig. 1).

4.3 Quantitative Evaluation on Synthetic Data
Data Generation. Obtaining ground truth geometry for a quanti-

tative comparison of our reconstruction to previous methods is a
time-consuming process that would require another measurement
technique as reference, such as Structured Light or Laser scanning,
or using a reference object with known geometry. We instead opt
to use a synthetic model to generate input data to our method; the
reconstruction can then be compared to the model that was used
to generate the data. We choose the Digital Emily [Alexander et al.
2009; TheWikihuman Project 2015] model (artist-cleaned mesh and
appearance maps) and build a virtual replica of the scanning setup
of Lattas et al. [Lattas et al. 2022] in Blender [Blender Foundation
2018], as shown in Fig. 4. The two lighting conditions are depicted
on the left, simulating the iPad lighting with area light sources,
and rendering those produces the binary-illumination, multi-view
images shown on the right. From these, we compute the additional
reflectance maps to input to our method: If our reconstruction is
perfect, we should obtain the same mesh as the original Digital
Emily model (reconstructions shown in Fig. 3).

We compare our method to the Multi-view Stereo (MVS) result
of Agisoft Metashape [Agisoft LLC 2024], the original NeuS method
[Wang et al. 2021], and the accelerated NeuS2 [Wang et al. 2023].
Each of these methods was trained or ran using the the mixed
albedo images, while ours uses a larger selection of BRDF maps as
described. We use two primary metrics to evaluate the performance
of the reconstruction methods: the average perpendicular distance
between the ground truth geometry and recovered geometry; and
the angular difference in surface normals between the ground truth
and reconstructed meshes. These results of our comparison are
summarized for all methods in Table 1.

Our method demonstrates superior performance in both the
mesh distance and angular difference metrics across all tested meth-
ods. Achieving both a smaller average perpendicular distance and a
smaller difference in normals indicates that our method generates
the most complete and most accurate surface, while also replicating
the finer surface details. Notably, we are able to achieve a similar
runtime to NeuS2 without sacrificing the quality of the results. In
addition to the quantitative metrics, the reconstructed meshes from
each method are displayed in Fig. 3. These results demonstrate
that our method produces the most complete reconstruction while
maintaining high-frequency details.

4.4 Qualitative Comparisons
A qualitative comparison of geometry reconstruction for all meth-
ods can be seen on a selection of captured datasets in Fig. 5. As can
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GT MVS NeuS NeuS2

Ours Ours w/o BRDF Ours w/o depth Ours w/o mask

Figure 3: Qualitative visualization of the reconstructions of various methods and ablation study reported in Tab. 1, on the
Digital Emily dataset [The Wikihuman Project 2015].

Figure 4: Left: Digital replica of the capture setup of Lattas et
al. [Lattas et al. 2022], using Digital Emily [The Wikihuman
Project 2015]. Right: Renderings given to our reconstruction
method to compute quantitative metrics against the ground
truth geometry.

be seen, MVS demonstrates its ability to capture high-frequency
detail, however suffers from increased noise which can obscure the
finer details; it also often fails to recover the full shape, resulting in
incomplete reconstructions. NeuS generally provides a more com-
plete reconstruction, however it often fails to distinguish between
the foreground from background with the reduced number of cam-
eras. NeuS2 achieves a complete reconstruction, but struggles to
resolve the true surface in some circumstances, resulting in over-
smoothed face details. In comparison, our method provides the
highest quality results overall. It manages to resolve a high level of
detail without introducing noise or any of the noticeable artefacts
that present themselves in the results of previous methods.

4.5 Ablation Study
We ablate the key contributions of our method to evaluate their ne-
cessity and impact on the overall performance. We perform a quan-
titative and qualitative evaluation of the ablated methods on the
Digital Emily dataset, and these results are presented in Tab. 1 and
Fig. 3 respectively. Here we demonstrate the results of removing the
active-illumination supervision (w/o BRDF), the monocular depth
loss (w/o depth), and the mask loss (w/o mask). The quantitative
results demonstrate that the active-illumination supervision and
mask loss make a clear improvement to the accuracy of the recov-
ered surface, and the normal detail. The influence of the monocular
depth loss is less significant on the Digital Emily dataset. However
we observe that while all of our additional losses are necessary
for achieving consistently accurate results across various datasets,
not every loss significantly affects the results for every individual
dataset. We also present additional qualitative ablation examples in
Fig 6. These examples have been chosen to highlight datasets where
each loss demonstrably impacts quality of the result. As shown,
the mask loss aids in foreground-background disambiguation, the
depth loss helps resolve the surface in concave regions, and the
active-illumination loss enhances surface detail.

4.6 Further Geometry Processing
The reconstructed face geometry can further be augmented to
pore-level detail by embossing the given normal maps, as initially
proposed by Nehab et al. [Nehab et al. 2005]. We show the re-
sult of such a post-processing step in Fig. 7. The normals of the
reconstructed meshes are visualized before and after embossing,
compared to the given camera space normals on the left. As shown
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Table 1: Reconstruction error (↓) with regards to ground truth on the Digital Emily 2 [The Wikihuman Project 2015] model.

Method MVS NeuS NeuS2 Ours Ours w/o BRDF Ours w/o depth Ours w/o mask
Mean Dist. (mm) 20.42 ± 47.56 3.63 ± 13.12 8.42 ± 19.52 2.03 ± 8.51 4.16 ± 14.19 2.18 ± 8.29 2.91 ± 11.01
Mean Angle (°) 13.38 ± 17.23 14.42 ± 18.19 18.06 ± 19.73 12.09 ± 16.79 16.87 ± 18.69 12.16 ± 17.08 12.87 ± 17.18
Median Dist. (mm) 0.41 0.36 0.91 0.30 0.59 0.31 0.36
Median Angle (°) 6.07 6.22 8.93 4.64 8.77 4.54 5.02
Runtime 3m 10h 5m 10m - - -

Photograph MVS NeuS NeuS2 Ours

Figure 5: Visualization of geometries reconstructed by different methods, for subjects of different genders, skin types, and
hairstyles. Across the board, our method outperforms competitors in terms of both details and robustness.
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Ours full Ours w/o BRDF Ours full Ours w/o mask Ours full Ours w/o depth

Figure 6: Visualization of geometries reconstructed with our full method and ablated versions of our method.

GT Ours Ours Embossed

Figure 7: Left: Given camera-space normal map.Middle: Re-
projection of our output geometry orientation into the same
view. Right: Final mesh normals after embossing of the given
camera-space normals. Synthetic data (top), real (bottom).

in the insets, the initial reconstruction, although already high in
fidelity, appears smooth compared to the pixel-detail level of the
camera-space normal maps. After embossing, the insets reveal that
much of the detail is accurately transferred to the surface geometry.

4.7 Object Scanning.
While our implementation for the mask loss (see Sec. 3.3) currently
uses a face matting network [Ke et al. 2022], this can easily be re-
placed by an object detection network or a foreground/background
segmentation network, in order to apply the proposed pipeline
to arbitrary objects (as demonstrated in Fig. 8). All other compo-
nents of the proposed method apply to any object or scene that
can be expressed as a surface with given, pre-estimated reflectance
components.

Figure 8: The proposed reconstruction method is not re-
stricted to faces, it can also handle objects with intricate
geometries such as the shoelaces here. Left to right: Photo-
graph, reconstructed mesh and normals.

4.8 Limitations and Failure Cases
Our additional losses are able to assist the network in converging to
the correct surface in the case of reduced supervision from a sparser
set of cameras. However, the reliance on additional supervisory
signals, such as monocular depth or matting estimates, can lead
to failure when these are erroneous. The monocular depth and
alpha matting networks [Birkl et al. 2023; Ke et al. 2022] struggle
particularly in low-light images, so our active illumination capture
must be sufficiently bright.

5 Conclusions and Future Work
In this paper, we introduced a novel method for reconstructing high-
quality 3D face geometry in a challenging capture setting. By lever-
aging the additional supervision provided by active-illumination
capture, and the priors of pre-trained monocular depth estima-
tion and alpha matting networks, we are able to improve on the
quality of state-of-the-art neural surface reconstruction methods
while greatly reducing the number of observations. Furthermore,
we maintain a competitive runtime versus recent accelerated neural
reconstruction methods. We show that our method is able to con-
sistently produce complete reconstructions with accurate normal
detail on a wide range of human subjects, and the method natu-
rally extends to objects. The method seamlessly inserts itself into
a wider face geometry and appearance capture pipeline, allowing
the generation of hyper-realistic renderings.
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Future work could explore using the given normals to directly
supervise the gradient of the level-set of the neural SDF during
training, rather than simply using it as a rendering supervision sig-
nal; however, achieving this requires managing the low-frequency
bias that presents itself in the measured normals from the active-
illumination pipeline.
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