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Figure 1: From casual smartphone frames (left, top) in arbitrary unknown lighting, our inverse optimization uses tiny shading networks to
efficiently factorize light transport (left, middle) and disentangle shading from explicit reflectance maps (left, bottom). The resulting asset
(mesh & textures) can be used in common pathtracers to render novel viewpoints and lighting (right).

Abstract
Given a set of unstructured photographs of a subject under unknown lighting, 3D geometry reconstruction is relatively easy, but
reflectance estimation remains a challenge. This is because it requires disentangling lighting from reflectance in the ambiguous
observations. Solutions exist leveraging statistical, data-driven priors to output plausible reflectance maps even in the under-
constrained single-view, unknown lighting setting. We propose a very low-cost inverse optimization method that does not rely on
data-driven priors, to obtain high-quality diffuse and specular, albedo and normal maps in the setting of multi-view unknown
lighting. We introduce compact neural networks that learn the shading of a given scene by efficiently finding correlations in
the appearance across the face. We jointly optimize the implicit global illumination of the scene in the networks with explicit
diffuse and specular reflectance maps that can subsequently be used for physically-based rendering. We analyze the veracity
of results on ground truth data, and demonstrate that our reflectance maps maintain more detail and greater personal identity
than state-of-the-art deep learning and differentiable rendering methods.

CCS Concepts
• Computing methodologies → Reflectance modeling; Neural networks;

1. Introduction

Rendering faces realistically is a challenging Computer Graphics
problem. The interactions between light and skin are very complex

due to the translucency of skin layers [DJ05]: Light rays penetrate
through the outer layers and bounce around multiple times under
the surface before exiting towards the viewer’s eye. While the ge-
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ometry of the face can be accurately modeled by a surface repre-
sentation such as a triangle mesh, the appearance is in essence volu-
metric. Without such subsurface scattering, skin would look too flat
and opaque which would break the realism. Humans are very ac-
customed to looking at faces, meaning the threshold for realism is
much higher than for less common objects and materials. Humans
are experts at discerning artifacts on skin and faces and accurate
reflectance models are essential for rendering.

In this paper, we tackle the problem of reflectance estimation for
human faces. In particular, we operate in a multi-view, in-the-wild
acquisition setting: Our method takes as input multiple images of a
face in unknown, arbitrary and static lighting. Geometry is obtained
by Multi-view Stereo (MVS), and our technique outputs appearance
maps in texture space.

Given a specific appearance model and sufficient appearance
data, the standard approach would be inverse rendering. The pa-
rameters of the model are tuned until the data can be reconstructed
accurately enough. With the development of computing power and
GPUs, differentiable rendering [NDVZJ19, JSRV22] has become
practicable. Complex pathtracing of a scene can be differentiated
and chosen parameters are optimized until the renderings match
the input data. However, inverting complex reflectance models to
realistically render materials like skin requires a tremendous com-
putational budget and state-of-the-art hardware.

Instead of explicitly simulating the full light transport ray
by ray, we take inspiration from Precomputed Radiance Trans-
fer (PRT) [SKS02] and rather model the aggregate results. Since
lighting is fully unknown, and to avoid making assumptions, we
adopt an implicit, learnt representation. Popularized in Computer
Graphics by Neural Radiance Fields (NeRF) [MST∗20], Multi-
Layer Perceptrons (MLPs) have proven an efficient tool to approx-
imate and learn spatial and directional functions in rendering. We
use such MLPs to learn implicit lighting codes and shading ker-
nels in a given scene. We parametrize them carefully and keep the
dimensionality low so that the networks cannot overfit and extract
other unwanted, coincidental correlations from the data than the
real, scene-specific lighting conditions.

Our contributions are as follows:

• A lightweight, implicit light transport model using compact spa-
tial and directional MLPs, used to isolate shading from high-
quality facial reflectance maps.

• A low-cost optimization formulation for inverse rendering from
multiple views in unknown lighting using explicit texture maps
and neural networks rasterized on a static mesh.

2. Related Work

Inverse rendering, light transport modeling and neural rendering
have been extensively researched in Computer Graphics. In the
following, we focus on face scanning methods that produce re-
flectance maps of skin, aiming to be used in a physically-based
renderer. We refer to Tewari et al. [TTM∗22] for a survey on neural
rendering including neural face rendering and relighting.

2.1. Multiview Face Scanning

Active Illumination Researchers have traditionally employed
controlled illumination from a Light Stage setup for estimating fa-
cial reflectance from dense lighting measurements coupled with
multiview capture [DHT∗00,WMP∗06]. Polarized spherical gradi-
ent illumination has been employed for efficient multiview capture
of facial reflectance and photometric normals using a LED sphere
with multiple banks of polarization [GFT∗11]. Recently, binary il-
lumination has been employed for multiview facial capture with
reflectance separation using a practical desktop setup [LLK∗22].
However, reflectance separation in these approaches does not rely
on multiview observations but on controlled, known illumination.

Passive Illumination Gotardo et al. [GRB∗18] employ a multi-
view passive facial appearance capture setup to estimate dynamic
facial reflectance including time varying changes in diffuse albedo
and changes in specular reflectance and mesostructure due to skin
deformation during facial performance. Riviere et al. [RGB∗20a]
have proposed a single-shot passive facial appearance capture
method that employs polarized illumination panels and a combina-
tion of cross-polarized and unpolarized cameras for obtaining high-
quality diffuse-specular separation for reflectance estimation with
view-multiplexing under passive illumination. These approaches
don’t vary the lighting but assume a known illumination condition
which is exploited in the inverse rendering process.

Phone-based Scanning Recently, Azinovic et al. [AMH∗22] in-
troduced a method for facial reflectance scanning using a smart-
phone with flash illumination in the dark. The flash is used as ac-
tive illumination and the camera-collocated lighting is exploited in
the optimization, in conjunction with polarization filters that pro-
vide physical diffuse-specular separation of the appearance. Bao
et al. [BLC∗21] also use smartphone videos to perform multiview
scanning of a subject, but operate in unknown lighting. However,
they also use the depth sensor to get additional geometry measure-
ments. Their reflectance decomposition is based on a parametric fit
of textures from a PCA-based model, and a Convolutional Neural
Network is used to synthesize details on the fitted low-resolution
maps. [CSK∗22] also exploit the ease of capture of smartphone
videos to reconstruct accurate head models through the use of a
universal avatar prior that has been trained on high-quality multi-
view video captures of facial performances of hundreds of human
subjects. However, they use a volumetric representation which re-
quires a dedicated renderer and cannot easily be relit.

2.2. Monocular In-the-wild Face Acquisition

With the ease of access to smartphones and the abundance of im-
age datasets, more recent work has focused on removing the two
main constraints of controlled acquisition setups – multiple view-
points and known lighting. Several methods [SWH∗17, YSN∗18,
CCZ∗19,BRTO∗21] have demonstrated the capability to infer both
geometry and relightable reflectance maps from a single image in-
the-wild, with potentially partial face coverage. Due to the limited
and incomplete information, methods such as Avatarme [LMG∗20]
and Avatarme++ [LMP∗21] rely on priors learnt from data: The
geometry estimate is based on a morphable model (3dMM), and
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a Generative Adversarial Network (GAN) is used to produce the
reflectance maps needed for realistic skin renderings: diffuse and
specular albedos and normals.

In addition to Deep Learning, many techniques are also based
on inverse or differentiable rendering: the unknown parameters are
estimated by differentiating the rendering process and iteratively
optimizing. Renderers that support both differentiable rasterization
and path-tracing are now available [NDVZJ19, JSRV22,MHS∗21].
However, a full physically-based differentiable rendering of skin
is not yet tractable due to the complex light-material interactions
in human skin such as subsurface scattering. Approximations such
as direct lighting and opaque BRDFs have to be used to solve the
problem in practice.

Dib et al. [DBA∗21] propose a method for inverse raytracing
from one-or-more images, employing a morphable model with as-
sociated PCA diffuse and specular maps. Following a parameteric
model fit, they apply a two-stage inverse rendering approach, first
estimating the scene shading and a parameterised reflectance esti-
mation, followed by a free-form refinement of the albedos and a
roughness map. However, the method does not estimate normals,
and struggles to capture a likeness of the subject. Differentiable
ray-tracing has enabled the self-supervised training of a neural-
network for reflectance, shape and lighting estimation from a single
image [DTA∗21,DAT∗22]. A network regresses the parameters for
a morphable model, lighting, and statistical reflectance model from
a single image, and a secondary pair of networks predict a detailed
offset to the reflectance, capturing personal details.

Caselles et al. [CRG∗23] also operate on monocular data by dif-
ferentiably rendering, but their textures are represented by latents
of a model rather than explicitly, to constrain the optimization. Ad-
ditionally, their renderer uses explicit lights and a standard BRDF
model which is not complex enough to accurately represent skin
appearance, producing maps that are somewhat lacking in quality.

2.3. MLPs for Scene Decomposition

With the advent of Neural Radiance Fields [MST∗20], the use
of Multi-Layer Perceptrons (MLPs) in scene-specific optimiza-
tions has become commonplace to learn / overfit to certain
components of the rendering process. NeRFactor [ZSD∗21] and
NeRD [BBJ∗21] extend the original model to include reflectance
components and explicit lighting, to output SVBRDFs to relight
a given scene. Neural Precomputed Radiance Transfer [RBRD22]
and Neural Radiance Transfer Fields [LTL∗22] also use MLPs to
model the way objects interact with lighting (radiance transfer).

We propose to use MLPs to both learn implicit lighting as well as
material shading kernels to convolve this incoming light and create
shading layers, circumventing the differentiation of full complex
skin appearance models. The output of our method is the other part
of our rendering model, represented by explicit texture maps. Al-
though this paper focuses on face scanning, which drives some of
the specific decisions, the essence of the approach can be trans-
ferred to any scenes and materials.

3. Approach

Matching the standard of realism required in facial skin rendering
to look plausible to the human eye requires complex BRDF mod-
els which are hard and expensive to invert. Similarly, simple light-
ing models like Spherical Harmonics (SH) will not excite accurate
highlights due to the low-frequency nature of the basis. Instead of
using an explicit BRDF kernel and explicit lighting model, we pro-
pose to use an implicit learnt representation for both.

Figure 2: Three separate MLPs respectively learn spatially-
varying lighting, a diffuse and a specular reflectance kernel, pa-
rameterized on world-space position p, normal n and reflected di-
rection r. View-dependent and -independent shading components
are obtained via dot-product of kernels and lighting.

Tiny MLPs have proven to be a powerful tool to find correla-
tions in light transport data [RBRD22, MRNK21]. In this spirit,
we propose to use three MLPs to approximate lighting and shad-
ing in the scene. We carefully split the networks and their inputs
(see Figure 2) so that they cannot extract other unwanted, coin-
cidental correlations from the data: The two directional MLPs are
parametrized on normal direction n (for the view-independent com-
ponent) and on reflected direction r, i.e. reflection of the view di-
rection around the surface normal (for the view-dependent com-
ponent), a parametrization introduced in Ref-NeRF [VHM∗22],
shown to simplify the signal that needs to be regressed.

These networks essentially learn low-dimensional shading ker-
nels, akin to basis projections in PRT. The MLP parameterized on
world-space position p learns a spatial lighting vector, similar to the
transferred incoming radiance vector in PRT. The diffuse and spec-
ular shading is then obtained by dot-product of this light vector with
the shading kernel vectors, again like in PRT. This dot-product op-
erates in a basis learnt by the networks in a scene-specific manner,
thereby encoding information the most efficiently.

While in the following we often refer to these shading com-
ponents as diffuse and specular, the kernels are more expressive
than a choice of explicit BRDF model. The learnt diffuse shad-
ing includes some subsurface scattering effects, and the specular
kernel can learn a narrower or wider lobe, or even multiple lobes,
whichever best explains the data.
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Figure 3: Evolution of neural networks outputs and explicit albedo textures through different stages of the optimization.

4. Method

Our method is based on inverse rendering: We jointly optimize
shading networks and reflectance maps to best reproduce the ob-
served data using our rendering model. This is performed from
scratch for each captured scene and the outputs of the method are
reflectance maps, namely diffuse albedo, specular albedo, diffuse
normal and specular normal. The shading networks are discarded
after optimization as their purpose is solely to disentangle shading
from reflectance by leveraging correlations across space and direc-
tions.

For any subsequent physically-based rendering using the maps,
the implicit roughness is set to a standard skin roughness value,
which is common in skin appearance capture [GFT∗11, GRB∗18]:
solutions usually estimate either roughness or detail normal and fix
the other, to constrain the optimization.

4.1. Input Data

Our method operates on multiple views of a subject in unknown,
arbitrary lighting. We assume geometry has been reconstructed us-
ing a prior method, and that all camera poses have been estimated.
Our contribution lies in the reflectance decomposition, hence the
method takes multiple posed images and a mesh as input.

4.2. Rendering Model

Although the inputs to the networks are three-dimensional in space
and direction, the optimization operates in pixel-space and uses a

pixel-shading model. The networks inherently regress the result of
light transport in the scene so no pathtracing is required. We ras-
terize the mesh and G-Buffer properties in every input camera and
supervise the rendering using the input image.

Figure 4: Rendering model: During training, the predicted dif-
fuse and specular shading components are respectively multiplied
by the albedos, then summed to produce the predicted rendering,
which is supervised by the input images. The specular shading is
additionally multiplied by a Fresnel term.

The rendering is obtained through the simple shading model de-
picted in Figure 4. The predicted diffuse and specular shading are
multiplied by the respective albedos and summed to form the fi-
nal rendering. The specular shading is multiplied by an additional
view-dependent Fresnel term, computed via Schlick’s approxima-
tion [Sch94]:

F(n,v) = F0 +(1−F0)(1−n ·v)5 (1)

where F0 = 0.04 as used by Azinovic et al. [AMH∗22]. We found
that explicitly extracting the Fresnel term led to better results as the
specular kernel MLP learns a simpler function.
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4.3. Optimization Strategy

Shading-albedo decomposition from multiple views is an under-
constrained problem. In order to encourage the optimization to con-
verge to the preferred solution, we perform it in several stages (as
described in Fig. 3) with alternating frozen components, a common
strategy to optimize facial reflectance maps ( [RGB∗20b]).

4.3.1. Warm-up Phase

In the warm-up phase, we jointly train albedos and MLPs. We add
a prior on the diffuse albedo to encourage piece-wise constancy. In
practice, we formulate this as an additional loss which is calculated
across the texels A as the average of

Lalb = (
√

1+ |∇uA|−1)+(
√

1+ |∇vA|−1) (2)

where ∇u and ∇v are the first order derivatives in texture space.
Without this prior, the optimization could simply put all view-
independent appearance into the diffuse albedo (see ablation in sup-
plemental material). This loss forces the MLPs to find as many cor-
relations as possible in the shading across space and directions, and
remove it from the textures.

4.3.2. Fine-tuning

In the fine-tuning phase, we freeze the shading MLPs and only opti-
mize textures. We introduce a new texture which defines a deviation
vector from the mesh normal. The specular normal is obtained by
normalizing this new vector and used to compute the reflection di-
rection used by the specular kernel MLP. The diffuse normal (used
by the diffuse kernel MLP) is obtained by first blurring the per-
turbation, then adding it to the mesh normal and normalizing the
resulting vector.

The textures are optimized in two alternating phases: First we
optimize specular albedo and normal perturbation, while freezing
diffuse albedo. Then normal and specular albedo are frozen and we
only optimize diffuse albedo. The full procedure is repeated twice
to produce the final reflectance maps.

5. Implementation Details

5.1. Data Capture

The acquisition process involves capturing a 10-20 second video
of the subject, with a range of viewpoints extending to roughly
45°from the centre. We assume that the subject is standing still,
and that the scene lighting is static. The datasets showcased in this
paper are captured with the back camera of the iPhone 14 Pro. The
capture comprises pairs of low and high exposure frames, which are
aligned and combined into HDR images in a pre-processing step.
The mesh reconstruction pipeline takes all these HDR video frames
as input, although the geometry is out of scope for this work, and
can be substituted with any equivalent method. We simply ensure
that there is sufficient data to obtain accurate geometry such that it
has no impact on our method.

Our contribution lies in the reflectance estimation for which we
use 10 randomly chosen viewpoints. We refer to the supplemental

for an ablation on the number of views; we found that more views
increase blurring through fine-scale reprojection errors, while fewer
views result in limited coverage of the face. All results shown
are obtained from 10 views except the comparison to Lattas et
al. [LLK∗22] where 5 views are used, and the Digital Emily data
where 9 views are provided. We demonstrate in an ablation study
in the supplementary material that the method is quite robust to the
exact number of views, which could be reduced. In practice, we
simply choose 10 random views to ensure there is sufficient cover-
age of the face.

5.2. Geometry Reconstruction

We recover the geometry of the subject using Agisoft Metashape
[Agi21], which applies a standard structure-from-motion and
multi-view stereo pipeline to the images. However, the geometry
reconstruction may be substituted with any viable method, includ-
ing morphable model fitting, or neural reconstruction. The mesh is
automatically trimmed and unwrapped into a continuous UV lay-
out. The aim of these steps is to reconstruct accurate, smooth ge-
ometry, with a continuous UV mapping since our albedo prior loss
computes gradients in the UV texture space.

5.3. Training Details

The diffuse albedo texture is initialized semantically (see Figure 3).
We use the face parser of Zheng et al. [ZYZ∗21] to segment the in-
put views into various face components (eyes, mouth, skin, hair
etc.) and reproject those labels to the uv-domain. This allows us
to segment the diffuse albedo texture into different regions, which
are all initialized using the average of reprojected pixel colors. The
specular albedo is then initialised as a grayscale version of the dif-
fuse albedo, re-scaled such that it fits in the 0− 0.05 range. The
specular normal deviation is initialized as zero, and activated with
a tanh, then multiplied by 0.5 to restrict the range of deviation.
In the warm-up phase, the texture resolution is 128× 128 pixels,
which is then upsampled to 2048× 2048 in the fine-tuning phase.
The final amount of detail visible in the textures strongly depends
on the input photo resolution.

Tiny MLPs. The neural networks all have 2 hidden layers of 16
neurons with ReLU activations, and their output (latent vectors
used in the shading dot-product) is 8-dimensional. We provide a
study of the influence of the dimensionality of the MLPs in the
supplemental: it is empirically balanced such that the networks
have sufficient expressive power to learn detailed shading in the
scene, without overfitting to texture details. The final activation of
the spatial network is an exponential, which ensures non-zero light-
ing everywhere, and allows easier encoding of high dynamic range
lighting. The final activation of the directional MLPs is Softplus,
which we empirically found more stable than ReLU, which would
not converge once in a while, and softer (no boundary artifacts).

The networks and textures are trained under the L1-loss be-
tween renderings and input photographs, weighted by a form-factor
term inspired by Unstructured Lumigraph Rendering [BBM∗01]
weights: the product of the cosine between view and normal with
the inverse of the blurred depth derivative. This allows use to give
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Figure 5: Left to right: Input image, diffuse albedo, specular albedo, specular normal textures, Blender rendering in novel lighting. Top:
Avatarme++ [LMP∗21]. Bottom: Ours. Although more complete, the AvatarMe++ textures contain some inpainting artifacts (merged eye-
brows) and missing details (cheek moles). Our method also preserves the skin tone and eye color more accurately.

less relative importance to observation that either have a small foot-
print due to grazing view angles, as well as less importance to pixels
close to depth discontinuities (which are more prone to reprojection
errors).

We train with a single (virtual) batch containing all images, for
2000 epochs of warm-up, and 250 epochs of fine-tuning for each of
the 4 stages, making a total of 3000 iterations. The warm-up phase
is performed at half resolution, the finetuning at full resolution.
The rasterization uses Pytorch3d [RRN∗20] and the texture sam-
pling and neural network training use PyTorch [PGM∗19] and their
Adam optimizer with learning rate 0.001. We train on an NVidia
RTX3080 GPU and the entire process takes under 30 minutes.

5.4. Normalization of Albedo Maps

During the optimization, both MLPs and textures are uncon-
strained, meaning there is a scale ambiguity between the albedos
and the predicted shading. The albedos hence need to be re-scaled
at the end of the optimization to absorb the scale learnt by the re-
spective MLP. For the diffuse component, we assume that the in-
put images are well-exposed, such that the diffuse appearance of
the input image should be obtained by multiplying the albedo with
the integral of the cosine term (π). We hence normalize the diffuse
shading prediction such that its maximum is π, which equates to
re-scaling the diffuse albedo by max(Sd)

π
, where Sd is the predicted

diffuse shading. Independently, we normalize the specular albedo
to the range of human skin reflectance, that is between 0−0.05 as
per Ghosh et al. [GHP∗08].

6. Results and Evaluation

The shading MLPs allow us to learn the shading in the given train-
ing views. Since they are continuous functions of direction and
space, we can trivially render novel viewpoints. Please refer to
the supplemental video for a side-by-side comparison of withheld
ground truth photos and a continuous path through the scene ren-
dered using the MLPs. However, the MLPs encode the integration

of shading kernels against lighting, meaning only the viewpoint can
be controlled freely, while the illumination is baked in.

6.1. Relighting

For free viewpoint relighting, we discard the MLPs and simply
use the mesh along with our predicted maps to relight the faces in
Blender Cycles [Ble18], using a custom BRDF model with sub-
surface scattering and a microfacet BRDF with two-lobe GGX
for specular reflectance as suggested by Graham et al. [GTB∗13].
Maps and renderings for various subjects are displayed in Fig. 6.
Due to the map normalization step, the intensities of specular and
diffuse albedo textures do not need manual scaling and can directly
be used with the generic skin BRDF we defined. All Blender re-
renderings/ re-lightings showcased in the paper are rendered using
this custom model.

6.2. Comparisons

We compare to an array of competing methods that output re-
flectance maps for physically-based renderers, from simple monoc-
ular scans, to our setting, freeform in-the-wild video captures, to
fully controlled active illumination with camera arrays, to the most
expensive Light Stage.

6.2.1. Deep Learning-based Methods

We compare to the deep-learning based, forward technique
Avatarme++ [LMP∗21]. It only takes a single image as input and
estimates both geometry and reflectance. Due to the limited infor-
mation in the single view, a big part of the appearance is inpainted
and hallucinated, leading to plausible textures but loss of identity.
Figure 5 shows the results of Avatarme++ on two different sub-
jects, but the appearance maps and the texture in the re-renderings
are quite similar across the two. Since our method is not based on
statistical models and completion but purely infers from the multi-
view information, it is not influenced by biases of the network or
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Figure 6: Left to right: Example input view, relighting under two different environment maps (Uffizi and Pisa) and under point light illumi-
nation in Blender. The top 3 subjects were captured with static cameras (data kindly provided by Lattas et al. [LLK∗22], the bottom 3 were
captured via casual phone-based videos. Our MLPs plausibly remove baked shading from the albedos across a range of challenging lighting
conditions, from controlled uniform (top) to unknown, arbitrary lighting (bottom). Zooming is recommended for full details. Respective ap-
pearance maps for these subjects and additional datasets can be found in the supplemental.
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Figure 7: Comparison of our mesh textures to the camera-space maps [LLK∗22] obtained from active illumination. The last frame shows a
rendering of our result in Blender, approximately simulating one of the active illumination conditions which are unseen by our method.

Figure 8: Top: NextFace [DBA∗21]. Bottom: Ours. Left to right:
input view, re-rendering (overlaid), estimated diffuse shading,
Blender relighting. Dib et al.’s use of statistical models for both ge-
ometry and texture biases the estimation towards a more average
face, while our results preserve better gender, ethnicity and identity
details.

dataset and better preserves gender, ethnicity and appearance de-
tails. For instance, Avatarme++ produces the same eye color for
both subjects, which reflects a bias in their dataset and model.

6.2.2. Differentiable Rendering-based Methods

We also compare to the differentiable rendering method proposed
by Dib et al. [DBA∗21]. We apply both methods to 10 views of a
casually-captured subject under indoor illumination. We compare
reconstruction, estimated shading and a re-lit novel view in Fig-
ure 8. While the shading estimation is quite accurate for the method
of Dib et al., the computation and memory cost of explicit differ-
entiable pathtracing is tremendous, so the optimization is slow (>1
hour) and can only be run on downsized images or it will run out
of GPU memory. The resolution (1024× 1024) and detail of the
albedo maps is hence low and a simplified shape/texture model
such as a 3D Morphable Model is used to reduce complexity, re-
sulting in a decrease in likeness and skin tone accuracy. Finally,
their method does not estimate specular normals, and the difference
in detail in the renderings highlights their importance for realism.
Our method comfortably runs with native camera resolution images
and 2048×2048 textures and does not use any statistical prior such
as the morphable model: both geometry and textures are purely in-
ferred from the captured data, leading to better identity and detail
preservation overall.

6.2.3. Analytic Methods

We also compare our estimated reflectance components to the out-
puts of the desktop-based capture setup of Lattas et al. [LLK∗22]
who use binary illumination from 8 IPad screens. We apply our
method on the same 5 views they captured, under full frontal illu-
mination (sum of the binary patterns), which effectively represents
unknown area lighting for our method. The data was kindly pro-
vided by the authors.

We show diffuse, specular albedos and specular normals in Fig-
ure 7. Lattas et al. reconstruct the SVBRDF components per pixel,
in camera space, from the active illumination information, then re-
project these camera-space maps onto the mesh to texture it. For
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Figure 9: Quantitative comparison on Digital Emily [The15]. Each row showcases renderings created using results from the respective input
capture (left) and the errors are computed against the respective ground truth observation, across the face area.

the sake of comparison, we rasterize our estimated UV-space tex-
tures into the same camera. While slightly lower resolution than the
native camera maps, our maps are free of baked shading, which is
still present in the outputs of Lattas et al. who do not compensate
for the ambient occlusion and limited spatial extent of the lighting.

6.2.4. Light Stage

At the highest complexity and control of scanning stand Light Stage
captures, which have traditionally been considered to produce the
closest thing to ground truth reflectance maps for faces. The LEDs
approximate uniform illumination as closely as possible, and am-
bient occlusion can be corrected for. This assumed uniformity of
the illumination means that shading is considered inherently re-
moved in the lighting itself. The subsequent separation of diffuse
and specular albedo is obtained via polarization. Both the illumi-
nation as well as the camera lenses are polarized – in parallel po-
sition, the cameras capture the entire appearance, while in cross-
polarized position, the lenses only permit the diffuse component to
pass through.

We run our method on the Digital Emily 2 [The15, ARL∗09]
dataset, which contains both a flash capture as well as a uniform
lighting capture, which allows us to probe the result of our de-
composition in the two extremes of illumination conditions (see
Figure 10). Under flash illumination, the high dynamic range and
narrow field of illumination create very dark shadows in occluded
areas like the underside of the chin, which are difficult to remove
from the albedos. Nevertheless, the shadows on the cheeks, where
there are no occlusions, are adequately removed. Under uniform
illumination, the shading networks almost only regress ambient oc-
clusion, and in turn the specular signal is very low. Despite the two
extreme cases of illumination, the method still outputs meaningful
reflectance maps, which we show in full resolution, compared to
the manually curated original Digital Emily 2 maps, in the supple-
mental, along with a visualization of the learnt diffuse and spec-

Figure 10: Reflectance decomposition achieved by our method.
Top: Flash lighting. Bottom: Uniform Light Stage lighting.

ular shading modulated by the albedos, compared to the original
polarization-based separation.

Finally, the Digital Emily data also allows to perform a quanti-
tative comparison against competing methods, shown in Figure 9.
We compute appearance maps on one capture (e.g. flash) and show
view synthesis compared to a withheld view in the same (flash)
illumination conditions, and show relighting in the other captures
lighting (e.g. uniform), and vice-versa. The image metrics suggest
that, as expected, the view synthesis which directly uses the MLPs
in the original scan lighting achieves the lowest error, followed only
closely by a Blender relighting of our maps in the simulated orig-
inal lighting. This very small loss in quality when switching from
implicit, baked neural shading, to pathtracing in Blender with an
explicit SVBRDF model indicates there is a negligible gap between
what the MLPs learn and a physically-based skin rendering. Lastly,
Blender relighting of our result in drastically opposite lighting con-
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ditions (uniform to flash, or vice-versa) still produces plausible re-
sults and better fidelity than competing methods.

6.3. Limitations and Discussion

Our contribution lies in the reflectance estimation, so standard SfM
and MVS are used for camera registration and geometry reconstruc-
tion. Some of the artifacts in the reflectance decomposition are in-
herited from this pre-processing. In particular, hair, eye brows, eye
lashes etc., will be explained poorly by the reconstructed mesh. Re-
projection errors will lead to blurriness in the textures, and recon-
struction artifacts (bumps in the geometry) will lead to incorrect
albedo estimation as the inputs to the networks will be erroneous in
those regions.

Additionally, the images from phone-based scanning are gen-
erally lower-resolution and contain slight motion blur or subject
movement, which can lead to blur in the estimated textures com-
pared to the amount of detail achievable by the method (see Fig-
ure. 6: the top subjects, scanned with the static camera array of
Lattas et al. [LLK∗22] exhibits higher detail in the maps and ren-
derings than the phone-based captures). Additional examples of re-
sults can be found in the supplemental.

The reflectance decomposition is most reliable in areas that are
well-observed and well-reconstructed. At the edges of the face /
the start of the hair, geometry is not well reconstructed and the
reflectance estimation cannot hide the artifacts. Also, since the
method uses no statistical priors on the textures, regions that are
not sufficiently observed (either in terms of views, or of illumina-
tion) will also lack detail. This can be seen in parts of the specular
map that will be empty if the subject’s face is only illuminated on
one side: the specular albedo will not be estimated accurately when
there is no specular signal. Casual phone-based captures can also
suffer from exposure problems, typically clipping of the specular
highlights (see Fig. 8, bottom left, input image), which can induce
errors in the estimated maps.

Similarly, the diffuse albedo sometimes tends to become too
saturated in areas of extreme shadow. The single diffuse shading
model solved for results in spectral color-bleed at shadow bound-
aries in skin being moved to the diffuse albedo, creating a reddish
orange tone. Finally, the method is not designed for hard shadows
and colored light: Implicitly, shading is assumed to be smooth and
grayscale, otherwise disentangling shading from albedo would be
too unconstrained. This disambiguation would require additional
information that could be extracted from the background, as shown
in TRUST [FBT∗22].

Although the method does not use any statistical priors, there
are some conscious simplifications specific to skin reflectance, for
example the semantic initialization of the diffuse albedo, or the final
normalization step of the specular albedo. The roughness variation
in the scene is assumed to be small, and the roughness is implicitly
encoded in the MLPs. The kernel networks learn outgoing radiance
distributions, which are weighted by the spatial MLP that outputs
multipliers akin to visibility/fall-off for each of these virtual light
sources. There is no trivial way to recover a roughness value after
training since the networks learn a pre-convolved light model, so
we cannot disentangle lobe width in the BRDF from blur in the

illumination. Retrieving a roughness value would require known
controlled lighting or optimizing an explicit lighting representation.
Thankfully, the roughness of skin is empirically known and can be
set manually in a physically-based renderer to produce plausible
results.

7. Conclusion

We present a method for facial reflectance estimation under un-
known lighting conditions, from multiview data. Contrary to most
in-the-wild facial reflectance estimation methods, our method does
not rely on any data-driven priors on geometry or texture. The re-
construction is only driven by the information contained in the cap-
tured scene, thereby avoiding any bias in the results.

The decomposition relies on tiny neural networks to regress
shading in a scene, driving the reconstruction of albedo and nor-
mal maps. Given scene geometry and posed views, the MLPs ef-
ficiently find correlations in the global shading data, which locally
allows to disentangle reflectance from illumination. This is espe-
cially useful for complex materials such as human skin, for which
explicit pathtracing is computationally very expensive to fully dif-
ferentiate. Neural shading fields are light-weight and much more
efficient at regressing and approximating the light transport of a
given scene. We demonstrate the quality of results across a variety
of subjects and data sources, both from high-quality facial capture
systems and from casual phone-based free-form in-the-wild scans.

Future Work. To avoid inheriting some artifacts from the geom-
etry reconstruction, a robust template fitting step would be needed
to complete the unobserved parts of the head. Similarly, a post-
processing step of inpainting could complete the albedos in unob-
served regions (for diffuse) or in unlit regions (for specular).

A middle ground could be found between fully basing the re-
sults on the input data and leveraging statistical priors. For example,
the reflectance maps could be comprised of patches drawn from a
known, measured distribution (e.g. data-driven skin patches) to en-
sure plausibility while maintaining fidelity to the observations.

The compactness of the MLPs and the low hardware require-
ments of our optimization setup also opens possibilities for speed-
ups and potentially achieving interactive viewpoint change or
albedo editing from a phone or webcam video.
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