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Figure 1: The estimated Bidirectional Reflectance Distribution Function (BRDF) and depth maps(c — g) of a wooden elephant are obtained
from two input images (a, b) captured using a smartphone with a multi-lens imaging system. A probe is provided in the corners of input
images to indicate the lighting conditions during the capture(not being used as an input). This enables realistic relighting rendering (h)

under the Grace Cathedral lighting environment.

Abstract

We present a deep neural network-based method that acquires high-quality shape and spatially varying reflectance of 3D
objects using smartphone multi-lens imaging. Our method acquires two images simultaneously using a zoom lens and a wide
angle lens of a smartphone under either natural illumination or phone flash conditions, effectively functioning like a single-shot
method. Unlike traditional multi-view stereo methods which require sufficient differences in viewpoint and only estimate depth
at a certain coarse scale, our method estimates fine-scale depth by utilising an optical-flow field extracted from subtle baseline
and perspective due to different optics in the two images captured simultaneously. We further guide the SVBRDF estimation
using the estimated depth, resulting in superior results compared to existing single-shot methods.

CCS Concepts

* Computing methodologies — Computational photography; Shape inference; Reflectance modeling;

1. Introduction

Image-based shape and spatially varying reflectance estimation for
3D objects and materials have received significant research atten-
tion in the past few years. The approach has shifted from the tra-
ditional dense measurement methods towards making acquisition
more practical, employing a minimal number of photographs while
improving the acquisition quality. Recently, deep learning-based
methods that require minimal acquisition from a single viewpoint
have become popular due to their ease of use [LXR*18; BJIK*20;
DLG21].

In this work, we propose a deep neural network-based method
that estimates high-quality shape and spatially varying reflectance
of 3D objects using smartphone multi-lens imaging. Our method
requires only two input images with subtle viewpoint and per-
spective shifts as captured by cameras on a smartphone. Mod-
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ern multi-lens smartphones can acquire images with their two (or
more) cameras simultaneously, making our method as effortless
for acquisition as a single-shot method. Unlike previous work that
utilises shading cues from flash illumination [LXR*18; BJK*20]
or uses a combination of flash and polarization cues [DLG21], our
method relies on the stereo information extracted from the two
input images. This lifts the constraint on lighting, and hence the
method works under either natural illumination or phone flash con-
ditions. However, multi-lens on the back of a smartphone are usu-
ally only 2-3 centimetres apart, resulting in near sub-pixel dispar-
ity from corresponding features in two images. Acquiring an ac-
curate depth map with such subtle view and perspective shifts and
different optics is extremely challenging, and even state-of-the-art
deep-learning-based methods for stereo matching [XZ20; LTD21;
LWX*22] fail to delivery a reasonable result. Instead, we utilise
RAFT [TD20] to estimate a fine-scale optical-flow field and use
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this optical-flow field as the shape cue for a network trained with a
depth-based rendering loss for estimating the depth map for 3D ob-
jects. The depth-based rendering loss enables surface awareness for
the network in training, producing more accurate, continuous and
visually better results in inference. We further use the estimated
depth to guide SVBRDF estimation, and we train a network as pro-
posed in [DLG21]. We also demonstrate superior results in both
shape and reflectance compared to other existing single-shot meth-
ods.

2. Related Work

We focus this overview on the most related work that aligns with
the goals of this paper: shape and reflectance estimation under nat-
ural/flash lighting environments, using commodity hardware, and
utilising deep learning. We also review the most recent deep stereo
matching and optical-flow methods that are most relevant to this
work.

2.1. Stereo Matching and Optical-flow

Dense stereo matching with deep neural networks has been an
emerging research topic in computer vision, and various methods
[PSR*17; KFR*18; YMHR19; GYY*19; THZ*20; XZ20; LTD21;
LWX*22] have been proposed and each successive work shows im-
provements over it’s predecessor on various stereo data-sets (e.g.
KITTI [MHG15], ETH3D [SSG*17] and Middlebury [SHK*14]).
One line of methods [PSR*17; THZ*20; XZ20] are 2D convolu-
tion based. Pang et al. [PSR*17] used multi-scale residual learn-
ing, AANet [THZ*20] proposed a novel aggregation method using
sparse points and multi-scale interaction, [ XZC*22], and [THZ*20]
proposed a differentiable 2D geometric propagation and warping
mechanisms to infer disparity. Another line of methods [KFR*18;
YMHRI19; GYY*19] calculates a cost volume between two input
images, and filter the cost volume through 3D convolutions, which
requires high computation and memory cost. Finally, a very recent
method RAFT-Stereo [LTD21] adapted the iterative refinement in
the optical flow network RAFT [TD20] to design a network for
stereo matching. Similarly, Li et al. [LWX*22] proposed using Re-
current Update Modules with Adaptive Group Correlation that pro-
duces a much smaller cost volume than RAFT-Stereo[LTD21]. Last
but not least, [ XZC*22] uses a transformer network and formulates
optical flow, rectified stereo matching and unrectified stereo depth
estimation as a unified dense correspondence matching problem.
However, all these methods aim at solving disparity for a scene with
a significant camera baseline and the same optics, while we target
estimating the object shape with a small baseline and differing op-
tics as available on smartphone multi-lenses. Under similar small
baseline conditions, Zhang et al [ZYR*22]. proposed MobiDepth,
areal-time depth estimation system that effectively utilizes the dual
cameras found on common mobile devices. This approach still uti-
lizes the traditional SGBM (Semi-Global Block Matching) stereo-
matching algorithm for depth detection, which still limits obtain-
ing excellent results for distances greater than half a meter. Zhang
et al’s design is more aimed at detecting depth at a larger scale,
such as in rooms or outdoors, rather than focusing on obtaining
highly accurate depth maps within a small depth range. As the re-

spective depth estimation problems differ fundamentally, we show
these methods are not applicable to our data in section 3.2.

On the other hand, optical flow estimation methods [FDI*15;
IMS*16; TD20] also establish dense pixel correlations between two
input images, and estimate the per pixel movements in the image
space. We demonstrate that the optical flow fields can act as cues
for depth.

2.2. Practical Shape and Reflectance Acquisition
2.2.1. Commodity hardware

Recently there has been a focus on compact and portable cap-
ture methods employing commodity devices. Wu & Zhou [WZ15]
have proposed an integrated system for hand-held acquisition of
shape and reflectance of objects with a Kinect sensor. Aittala et
al. [AWLI15] have proposed a two-shot method for acquisition of
stationary materials using a mobile phone. They employ a pair
of flash-no flash observations of the sample coupled with statis-
tical analysis to extract reflectance maps. The method has been ex-
tended to a single flash image for stationary materials using neu-
ral synthesis [AAL16]. Riviere et al. [RPG16] proposed two mo-
bile acquisition setups for the acquisition of more general spatially
varying planar surfaces. Free-form acquisition with flash illumi-
nation has also been employed for acquiring SVBRDFs of planar
surfaces [HSL*17], and non-planar 3D objects [NLGK18]. Re-
cent methods have demonstrated state-of-the-art results employ-
ing specialised LED panel/area-source [MKZ*21] or polarized
sensor-flash pair [HIM*22] for such free-form acquisition.Xu et
al. [XLZ*23] propose a method using structured light consisting of
an LED array and an LCD mask coupled with a single-lens reflex
camera to obtain shape and reflectivity from a single view. Wu et
al. [WWZ16], Park et al. [PNS18] and Ha et al. [HBNK?20] showed
a series of progress in collecting geometry and SVBRDF, surface
light field and shape in motion using RGB-D sensors.

However, the above family of approaches either rely on a large
number of measurements and/or strong prior such as self-repetitive
materials or planar geometry or use additional direct devices or sen-
sors to get depth and SVBRDF.

2.2.2. Exploiting Deep Learning

Several methods have been proposed recently for surface re-
flectance and shape estimation from sparse measurements, includ-
ing only a single observation by exploiting deep learning tech-
niques. Many works have focused on SVBRDF estimation of pla-
nar samples under unknown environmental illumination [LDPT17;
YLD*18], or uncalibrated flash illumination [DAD*18; LSC18]
or both [DDB20], with further improvements using multiple
flash measurements [DAD*19; GLD*19]. Deep learning has also
been employed to estimate homogeneous reflectance properties of
smooth convex objects of unknown shape under unknown illumi-
nation [GRR*17; MMZ*18]. Closer to our work, deep learning has
been recently employed for joint shape and spatially varying re-
flectance estimation of non-planar objects from observations under
flash illumination [LXR*18] or a combination of flash and ambient
illumination [BJK*20]. Compared to these works, we demonstrate
our approach to achieving higher-quality results by combining deep
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Figure 2: Pipeline of our method for estimating shape and SVBRDF for real-world 3D objects. Our pipeline takes two images (a, b)
respectively taken by the zoom and wide-angle lenses of a smartphone. We use a retrained RAFT [TD20] to estimate the optical flow (c).
We then feed (a, c) to a depth estimation network to obtain the normalised depth (d), and forward (d) together with (a) to the final SVBRDF
estimation network to get the remaining SVBRDF maps (e-h). With the proposed depth-based rendering loss, we can qualitatively tell the
mesh (j) converted from the estimated depth is smoother and more accurate than the one in (i) obtained from the depth estimated using a

network trained without the depth-based rendering loss.

learning with multi-lens stereo cues, which allows our method also
to work well under natural illumination. Also related to our ap-
proach are recent works that combine deep learning with polariza-
tion imaging for either shape estimation of 3D objects exhibiting
homogeneous reflectance [BGW*20], or joint shape and spatially
varying reflectance estimation under flash illumination [DLG21].
These methods either require a specialised polarization sensor or
manual rotation of a polarization filter in front of a camera lens.
Hence, while achieving high-quality results, these methods are
more restricted compared to our proposed approach which employs
single-shot like imaging using commodity mobile device and which
can operate under both flash and natural illumination conditions.

3. Method
3.1. Overview

Our method aims at estimating both 3D shapes in terms of depth
and normal, and spatially varying reflectance for real-world objects
from two input images taken under either natural or flash lighting
conditions, using smartphone multi-lenses. To tackle this highly ill-
posed problem, we propose a two-stage method that first estimates
the depth from a subtle camera baseline and perspective difference
due to different focal lengths in two images acquired by the zoom
lens and wide-angle lens respectively of a smartphone and use this
estimated depth to guide the SVBRDF estimation in the second
stage. Figure 2 demonstrates our two-stage pipeline.

Inspired by the recent stereo matching method [LTD21], we also
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leverage the RAFT network proposed by Teed et al. [TD20] and
use it to establish dense pixel correlations and estimate the flow
field which acts as the cue for our depth estimating network. We re-
trained the RAFT network using our data for the best quality result.
Our depth estimation network uses the same architecture as pro-
posed by Deschaintre et al. [DLG21], with a novel depth-based ren-
dering loss. Unlike the depth rendering loss recently proposed by
Chang et al. [CBZ*22] which uses a NERF style volumetric depth
rendering, we solely utilize the predicted depth as the input for ren-
dering and subsequently transform this predicted depth into surface
normals. We designate specific parameters of the BRDF, such as
roughness, to constant values in accordance with the conventional
Cook-Torrance model and calculate the rendering results loss be-
tween the ground truth rendering. The incorporation of a depth-
based rendering loss introduces a shading computation grounded
in the depth gradient. This newly introduced loss term encourages
greater surface continuity in the inferred object. As a result, the net-
work’s capacity to estimate smoother and more lifelike shapes for
real-world 3D objects is improved.

Moving to the second stage, we feed the estimated depth to con-
dition the SVBRDF estimation in the second network trained with
our synthetic data. Again, we deploy a similar network as designed
by Deschaintre et al. [DLG21]. We have experimented with differ-
ent inputs to the network and found the network to work the best
when there is perfect pixel correspondence between input images.
Hence, we employ the zoom lens image as the main input image for
both networks. We provide it together with the optical flow field as
input for the depth prediction network in the first stage and we pro-
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vide the zoom lens image together with the predicted depth map as
input to the second network to predict the diffuse albedo, specular
albedo, specular roughness and normal maps as output. To provide
higher quality maps for subsequent rendering tasks, we performed
enhancement on the obtained normal map in the end.

We employ an iPhone 13 Pro to acquire the two images for all
our experiments. It is worth mentioning that the wide-angle lens
image is cropped, and the zoom lens image is down-sampled to
match the resolution of the cropped wide-angle lens image. We
choose the zoom lens image as the main input image due to its
higher resolution in raw as many details.

3.2. Depth Estimation
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Figure 3: A simple camera model: displacement of 3D points be-
comes ambiguous for the depth in disparity calculated from two
cameras with different focal lengths.

Given a camera C; with focal length fc, and another camera
C, at L¢ apart, with focal length fc,, and a point P at Lp away
from the middle line of the camera Cy, with depth D to the imaging
plane of both cameras (see Figure 3). The disparity of P between
two imaging planes can be calculated as Adis = |d| — d3|, where

L
d =—2 1
1 D+fc1fc‘ (D
L,— L.
dy =2 = 2
) D+fC2fC2 (@)

With fc, = fc,, it can be easily shown that Adis does not depend on
Lp, making the depth estimation trivial. However, in our case the
two lenses have different focal lengths, resulting in an ambiguity
between Lp and depth D. On the other hand, since L¢ can be as
short as 10mm, and Lp is quite narrow as we are solving for fine-
scale depth of 3D objects, Adis becomes sub-pixel which is beyond
the precision of feature correspondence in existing stereo matching
methods. Hence the depth is not resolved with even state-of-the-art
deep learning based depth estimation methods [XZ20; LWX*22].

In the problem stated above, we are facing two challenges:

e Establish feature correspondence at sub-pixel or near sub-pixel
level and calculate the disparity Adis.

e Disambiguate the displacement Lp and depth D in the disparity
Adis.

We tackle the first feature correspondence challenge by utilising
an optical-flow network, namely, RAFT [TD20]. With its dense
4D correlation volumes and recurrent optical flow updates, we find
it generates the best off-the-shelf results compare to other optical
flow networks [FDI*15; IMS*16]. Simultaneously, benefiting from
fewer restrictions on lighting conditions by optical flow (only re-
quires adjacent input images to be captured under the same lighting
conditions) we win the flexibility on lighting conditions. To further
improve the results we retrained the RAFT net with our data, details
of which are described in section 3.5.

The trained optical flow net is an estimator of the ground truth
optical flow f,. We estimate the optical flow field that maps image
I; to b, so the estimated optical flow f, has per pixel correspon-
dence to image /;.

Next, to solve for the normalised depth, we train an estimator IfD
that minimises £ = ||Fp(f»,11) — D||;. However, without surface
awareness, the estimator Fp tends to jump locally while preserving
the global shape. Instead, we redefine our loss:

L =||Fr(VFp(fo.I1)) — Fr(VD)|x 3)

where Fj is the rendering function, and V f = (3—{;, g—f;) We find this
loss enables local surface awareness for the network, and the net-
work generates both numerically more accurate, and visually better
quality results.

3.3. SVBRDF Estimation

Similar to the network architecture proposed in [DLG21], our
SVBRDF estimation network jointly encodes the two inputs: the
estimated depth D and the cropped image I, taken by the smart-
phone zoom lens, and separately decodes through three decoders: a
diffuse branch that outputs the diffuse albedo p,, a specular branch
that outputs the albedo ps and roughness o, and finally a normal
branch that decodes to the normal map normal. Our loss function
as defined as:

L=Ly+Ls+ Lo+ Lsi+ARLR (€]

where L4, L5, Lo and L5 are L loss for diffuse albedo, specular
albedo, roughness and normal respectiviely, flnd L is the render-
ing loss ||Fr(Pa, Ps,Po, ;1) — FR(Pa, Ps, P, ,7)||1- we have chosen
not to incorporate the depth-based rendering loss here as testing
revealed that loss does not yield improvements.

3.4. Training

We modified RAFT[TD20] to output 32-bit vector files instead of
the native 8-bit png images. We train separate networks for natural
lighting and flash lighting with data specifically generated for each
lighting condition respectively. Both networks were trained under
300,000 iterations to achieve convergence results. The training pro-
cess took approximately 40 hours on a single A5000 card. The ini-
tial parameter settings, learning rate, and all other configurations
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follow conventional settings. The zoom lens image and wide-angle
image were centred and cropped, and their resolution was reduced
to 512*512 to serve as inputs for the network to manage the train-
ing memory efficiently. Details about training data generation are
described in section 3.5.

3.5. Data Generation

For training our networks, we require a large dataset of objects
captured with smartphone multi-lenses under different lighting en-
vironments (including flash), along with ground truth labels for
diffuse albedo, specular albedo, specular roughness, normal map,
depth and optical flow field. Acquiring such a dataset would be ex-
tremely challenging and costly, hence we leverage synthetic data
to create two datasets of over 150,000 and 5,000 sets of images
respectively for natural lighting conditions and flash lighting. Our
synthetic training dataset under natural lighting conditions is ren-
dered using a combination of 50 complex meshes that well rep-
resent real-world 3D objects, 10 lighting environments that cover
typical indoor and outdoor scenes, and 400 different materials
(SVBRDFs). We further augment our lighting by rotating each en-
vironment map by ©/4 and —nt/4 along the x-axis, resulting in 30
environment maps. Our test dataset uses 10 meshes, 5 lighting en-
vironments and 30 materials not included in the training data. We
replaced the lighting variance (30 EMs) with a frontal point light
source for our flash lighting dataset. We fully simulate the perspec-
tive difference due to different focal lengths and small baseline as
commonly seen on modern smartphone cameras. To better preserve
fine details in both the optical flow field and depth map, we save the
optical flow field as a 32-bit vector file and the depth map in a 16-bit
PNG.

3.6. Surface Detail Enhancement

Due to the depth estimation being based on optical flow and the
correspondence between the two views, our method may result in
slightly blurred surface normals and attribute high-frequency sur-
face detail to the diffuse albedo rather than the surface normal.

To address the limited surface detail in the normal maps,
we employ a detail enhancement step similar to that proposed
by [RPG16]. We apply x and y gradient filters to the estimated dif-
fuse albedo. We then add these gradients with appropriate scaling
to the x and y components of the estimated normal in the tangent
space and renormalize the normal. Finally, we convert the modified
normal back to world space. This process allows us to recover some
high-frequency information in the normal map (see Fig. 4).

Although the enhanced details are not exact, they provide rea-
sonable surface detail in the normal maps and improve the visual
quality of the reconstructed surfaces for rendering purposes. We
employ both the original predicted normal and the enhanced nor-
mal as diffuse and specular normal respectively for rendering us-
ing a hybrid normal rendering procedure similar to that proposed
by [MHP*07].
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(a) Input img. (¢) Enhanced

(b) Network output

Figure 4: An example of surface detail enhancement of normal map
of a sponge ball. (b): the normal map directly get from network. (c):
enhanced normal map.

4. Result
4.1. Optical Flow

Figure 5 shows a qualitative comparison of the estimated optical
flow between the native RAFT net and the retrained net using our
data. After retraining, the estimated optical flow is of high quality,
and it acts as the ambiguous shape cue for the depth estimation net

to infer the detailed depth.

(¢) Re-trained (d) GT

(a) Input

(b) RAFT

Figure 5: Comparison of optical flow quality: 5b estimated opti-
cal flow from native RAFT [TD20]. 5¢ estimated optical flow from
retrained RAFT using our data. The content in the white square is
enlarged in the lower right corner to highlight the difference

4.2. Depth and SVBRDF

We retrained three state-of-the-art stereo depth estimation networks
[XZC*22; LTD21; LWX*22] using the same data as we used for
training our network. Figure 6 shows comparison results. While
these networks work great on datasets with large baselines and
other extra constraints, e.g. X-axis consistency, they all fail to de-
liver good results for depth estimation in our specific setting.

In Figure 12, we demonstrate a few real-world 3D objects, where
the first three rows are captured under a natural lighting condition,
while the rest of the examples are captured with the phone flash
(including one same test objects for comparison under natural vs
flash illumination). Figure 1 is an additional example that has been
acquired under natural illumination. In total, we present four sets
captured under natural lighting conditions (2 indoors and 2 out-
doors) and five sets captured with flash illumination. These exam-
ples demonstrate that our shape-from-optical-flow method ensures
robust depth inference under different incident lighting conditions.
The estimated depth information further regulates the estimation of
the SVBRDF, leading to consistent quality results across the show-
cased examples.
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(a) Input image (b) Ours (¢) GT

(d) Unimatch
[XZ20]

(e¢) CRNnet
[LWX*22]

(f) RAFT-Stereo
[LTD21]

Figure 6: Comparison of depth quality: depth estimated by existing
methods 6d, 6e, 6f are nowhere close to GT in 6¢, while ours 6b is
accurate and detailed.

Figure 7 shows some rendering comparisons of acquired objects
to photographs under flash illumination from two different (novel)
directions to further demonstrate the effectiveness of our method.
Here, we selected the sponge ball shown in Figure 12(d) acquired
under flash illumination, and the toy rubber elephant shown in Fig-
ure 2 acquired under natural indoor illumination for the validation
against photographs under novel flash illumination conditions. It
can be seen that our method correctly produces shading caused by
the direction of light on the surface of the object, such as near the
trunk of the toy elephant. We provide relighting videos of the ac-
quired objects in the supplemental material as well.

We also illustrate our SVBRDF estimation results on synthetic
data to directly compare to the ground truth. We do not apply the
enhancement method to normal in this comparison. Figure 13 indi-
cates our results preserve high-frequency details very well in both
shape and reflectance, and renderings using our estimated maps are
close to ground truth renderings.

4.3. Qualitative comparison

We compared our approach with previous successful methods in
the next few sections. We chose the flash-based method of Li et
al. [LXR*18] and the method of Boss et al. [BJK*20] relies on
two photos - one with flash + ambient lighting and one with in-
door ambient lighting only. To be clear, these two methods and our
multi-lens methods are all single-view methods. Taking advantage
of the multi-lens capabilities of smartphones, our method has an
acquisition cost comparable to the single-input method of Li et al.,
and lower requirements than Boss et al.’s flash + no flash pair.

As can be seen from the comparison figure 8 on some synthetic
results, our predicted reflectance and shape maps are qualitatively
superior resulting in rendering that is much closer to the ground
truth than these previous methods that mostly rely on flash illumi-
nation cues.

Centered and Masked Rendering

Original photo

ball (a;)

ball(ay)

elephant(b;)

elephant(b;)

Figure 7: Relighting comparisons of acquired objects under novel
flash illumination conditions not employed for measurements. The
sponge ball (a1, ap) has been acquired under frontal flash illumi-
nation. The toy elephant (by, by) has been acquired under natu-
ral illumination.The relighting comparison is under flash from 45
degrees top-left(ay), 45 degrees bottom-right(ay), right(b) and di-
rectly above (b ).

In Figure 9, we compare our results to the method of Li et
al. [LXR*18] on two real objects captured with a phone flash-
light. The results are consistent with our comparison and analy-
sis of synthetic data which shows our method provides more accu-
rate overall shape and BRDF estimation, while the method of Li
et al. [LXR*18] suffers from significant low-frequency bias in the
estimated depth and normals.

We also present a qualitative comparison to the method of Boss
et al. [BJK*20] for an object acquired in outdoor conditions (Fig.
10). Boss et al.’s method strongly relies on flash illumination be-
sides ambient illumination. However, due to the brighter outdoor
lighting conditions, the flash illumination gets dominated by the
ambient illumination. This results in very little difference between
the two input images for their method and no strong flash cues
which are required by their method. In comparison to results for
the Rubik’s Cube shown in Fig. 12(c) acquired in outdoor light-
ing with our method, the method of Boss et al. failed to provide
reliable results in terms of normal and depth in Fig. 10. It is evi-
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Inputs Normal Diffuse

Lietal.18 GT ours

Boss et al.20

Roughness Depth

Rendering

Figure 8: We compare to the flash-based method of Li et al. [LXR*18] and the two-shots method of Boss et al. [BJK*20] on a synthetic
example. Our estimated maps are closer to g.t. maps than results of [LXR*18; BJK*20], and our renderings are also a better match to the

gt

dent that such methods that strongly rely on flash illumination cues
are not designed to handle scenarios involving strong ambient il-
lumination, which limits their effectiveness in natural illumination
conditions. In contrast, our method is able to handle both flash and
natural illumination conditions due to depth estimated using multi-
lens imaging.

(a) Flash + ST

amb. (b) Amb. only (¢) Normal

(d) Depth

Figure 10: A failure case for Boss et al.’s method [BJK*20] under
strong natural illumination. Under strong natural lighting, it be-
comes difficult to distinguish between input images captured with
(a), and without (b) flash. The absence of flash cues in the input
results in large errors in estimated surface normal and depth.
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Lietal. Boss et Ours Ours

al. (Flash) (EM)
Depth 0.2964 0.2763 0.0473 0.0350
Normal 0.1667 0.1637 0.0952 0.0888
Renderings  0.1252 0.2092 0.0610 0.0690

Table 1: Quantitative comparison results. Numerically we perform
significantly better compared to Li et al. [LXR*18] and Boss et
al. [BJK*20] on both flash data and natural illumination data.

4.4. Quantitative Comparison

In table 1 we compare quantitatively to Li et al. [LXR*18] and Boss
et al. [BJK*20] on synthetic data using L1 difference. We evalu-
ate the error on the normal maps, depth and renderings instead of
SVBRDF maps, as different BRDF models have been chosen by
the different methods. This quantitative evaluation is performed on
250 sets of synthetic input images, consisting of renderings pro-
duced using 5 meshes, with each randomly rotated 5 times, and 10
SVBRDFE. The rendering error is computed over 20 renderings for
each result with varying light properties.
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Inputs Normal Diffuse

ours (b) Lietal.18 (a) ours (a)

Lietal.18 (b)

Roughness Depth

Rendering

Figure 9: We compare some real objects to the flash-based method of Li et al. [LXR*18]. Overall, our approach has a much more correct
global shape and does not suffer from low-frequency bias and our rendering results are qualitatively better as our shape estimation is

superior.

Numerical figures suggest both our flash-light and natural light
results are significantly superior to Li et al. [LXR*18] and Boss et
al. [BJK*20]. Our method shows slightly better rendering results
on flash data as there is a shading cue from the flash that helps with
the SVBRDF estimation, while the method works slightly better
on shape estimation with natural lighting. This is because objects
are usually better lit under natural lighting conditions, leading to
better performance of optical flow. Note that for all quantitative
and qualitative comparisons on synthetic data in the paper, we only
employ the normals predicted directly by the network and do not
perform the detail enhancement step on the normals.

5. Limitation

Our method is limited to a certain-sized object in which the zoom
lens sees the whole object and the distance to the object is typically
within 50cm. We trained the network on specific data of materials
which contains mostly dielectric material samples with few metal
examples. Hence the network may not work well on other types of
scenes/subjects, e.g. faces or dominantly metallic objects that the
network has not seen in the training data (see Figure 11). Metallic
objects can also be challenging for optical flow due to bright sat-
urated highlights and texture-less regions. Currently, HDR imag-

ing is required for best results as saturation in images can interfere
with optical flow computation, compromising the results. Our net-
work tends to predict slightly blurry surface normals, with high-
frequency details in an object’s appearance more likely to be at-
tributed as texture in the diffuse albedo. This is due to the normal
being constrained by depth estimated from optical flow based cor-
respondence between two views which can be imperfect in texture-
less regions.

6. Conclusion

In this work, we propose a novel deep learning based method
that utilises smartphone multi-lens imaging to estimate shape and
SVBRDF for real-world objects. we initially utilize optical flow to
estimate the optical flow map between two images. These images
are captured with subtle perspective and view shifts, which arise
from the multi-lens imaging setup. We then use a trained UNet with
a surface rendering loss to estimate the depth from the optical flow
map. Finally, the estimated depth is fed together with the target im-
age to the third network to estimate the SVBRDF and surface nor-
mal. Our method is relatively robust to incident lighting, making it
suitable under both natural and flash illumination. We have demon-
strated our object depth estimation method is superior to existing
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(h) zomm lens

(i) wide angle (j) diffuse

(d) specular

(k) specular

(e) roughness () normal (g) depth

(m) normal

(1) roughness (n) depth

Figure 11: Some partial failure cases. Since our network has been trained on dominantly dielectric materials, it doesn’t work that well on
other types of scenes/subjects such as a face (top row), or a dominantly metallic object (bottom row).

stereo depth methods, and our SVBRDF and surface normal results
are overall superior to other state-of-the-art single-image methods
that rely on flash illumination. Our method is currently restricted to
dominantly dielectric objects as the shape and reflectance estima-
tion is limited by the nature of the synthetic training data.
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Figure 12: We tested our method on various real-world 3D objects under both natural lighting conditions (a, b, c1) and flashlights (¢, d,
e, f, g). Our estimated shape and reflectance maps generate high-quality rendering results under both environmental illumination (Grace
cathedral), and flash illumination.
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Figure 13: We compare our estimated results (a, c, e, g) to g.t. (b, d, f, h) on various synthetic 3D objects not seen during training, under
both natural lighting conditions (a, c) and flashlights (e, g). Our estimated maps are accurate in comparison to g.t. maps, and renderings are
close to g.t. renderings.
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