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Figure 1: Example-based material appearance estimation of a blue faux leather purse in an outdoor environment. (a) Input HDR photograph
of the exemplar. (b) Corresponding light probe. (c) A sphere rendered under the same illumination with the estimated BRDF. (d) Synthesized
master tile of the material’s mesostructure: top - surface normals, bottom - specular reflection occlusion. (e) Rendering with both the
estimated BRDF plus synthesized mesostructure details.

Abstract
We present a novel example-based material appearance modeling method suitable for rapid digital content creation. Our
method only requires a single HDR photograph of a homogeneous isotropic dielectric exemplar object under known natural
illumination. While conventional methods for appearance modeling require prior knowledge on the object shape, our method
does not, nor does it recover the shape explicitly, greatly simplifying on-site appearance acquisition to a lightweight photogra-
phy process suited for non-expert users. As our central contribution, we propose a shape-agnostic BRDF estimation procedure
based on binary RGB profile matching. We also model the appearance of materials exhibiting a regular or stationary texture-like
appearance, by synthesizing appropriate mesostructure from the same input HDR photograph and a mesostructure exemplar
with (roughly) similar features. We believe our lightweight method for on-site shape-agnostic appearance acquisition presents
a suitable alternative for a variety of applications that require plausible “rapid-appearance-modeling”.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

In realistic digital content creation pipelines, artists often wish
to closely match the appearance of virtual objects to the appear-
ance of real world materials and objects. Such a content creation
process typically requires capturing physical reflectance proper-
ties of the desired materials. However, traditional reflectance ac-
quisition approaches are expensive, time consuming, and require
dedicated setups, hindering adoption by non-experts. Recently, a
number of convenient and accessible appearance modeling meth-
ods [AWL15, AAL16, RPG16, HSL∗17] have been proposed that
use a mobile phone for on-site acquisition of the appearance of

spatially varying materials. However, these methods impose strong
restrictions on the sample’s shape (e.g., planar), restrict the spatial
variation (e.g., texture-like), or require a significant amount of cal-
ibrated data.

In this paper, we propose a novel on-site example-based material
appearance acquisition technique that only requires a single HDR
photograph of an object with a homogeneous material exemplar un-
der known but uncontrolled natural lighting. We do not require the
exemplar to be planar or to have a known shape (other than requir-
ing it to be convex, or exhitibiting sufficient shape variation due to
surface mesostructure), nor does our method explicitly recover the
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unknown shape, greatly simplifying the acquisition process for a
non-expert user. Our method only makes modest assumptions on
the underlying material and lighting: we assume the material is di-
electric and can be described by an isotropic BRDF, with a possible
stationary texture-like mesostructure, and that the incident lighting
is uncontrolled, but dominated by a single bright region with color-
ful surrounding ambient illumination. Given an input HDR photo-
graph of the exemplar object (next to a color chart for calibration)
and a light probe of the incident illumination, we estimate parame-
ters of a microfacet BRDF model [CT82] that best describes the ho-
mogeneous material appearance. Our estimation method is agnos-
tic to the underlying surface mesostructure, enabling us to estimate
the BRDF from both smooth surfaces as well as for objects with
a texture-like mesostructure. While such a BRDF estimate is suffi-
cient for reproducing the appearance of objects with a smooth sur-
face, for objects with a texture-like appearance we additionally also
synthesize a repeating surface mesostructure. We quantitatively an-
alyze the robustness of our method on synthetic scenes with respect
to variations in object shape, mesostructure, lighting, and BRDF
parameters, and qualitatively demonstrate on a variety of real-world
examples that the estimated BRDF in conjunction with synthesized
mesostructure (where appropriate) can faithfully reproduce appear-
ance for a variety of materials (e.g., see Figure 1).

2. Related Work

We focus this overview on related work that shares some of the
goals of our method: in-situ appearance acquisition, appearance
modeling under natural lighting with unknown shape, recovering
meso-structure, and exploiting chromatic cues for scene model-
ing. For a detailed overview of appearance modeling we refer
to [DRS08, WK15].

In-situ Acquisition In-situ acquisition and estimation of appear-
ance has received significant research attention in the past few
years. A majority of methods require multiple photographs of
the material sample either under active lighting [AWL15, RPG16,
HSL∗17,XNY∗16] or aided by prior knowledge on the shape of the
scene [DCP∗14, PCDS12]. In this paper, we pursue a method that
only requires a single photograph of the scene under uncontrolled
natural lighting with unknown shape.

The methods of Romeiro et al. [RVZ08, RZ10], Lombardi and
Nishino [LN16], and Zhou et al. [ZCD∗16] estimates reflectance
properties from an object with known shape under either known
or unknown natural lighting. We observe that in practice, capturing
the incident lighting is easier than capturing and aligning the shape.
We therefore assume prior knowledge of the lighting, but not of the
shape.

A number of methods have been proposed that rely on deep
learning to estimate the reflectance properties and meso-structure
from a single photograph under flash lighting [DAD∗18, LSC18,
AAL16, LXR∗18] or under natural lighting [LDPT17, YLD∗18].
While promising, these methods either control the incident light-
ing, and/or are limited to planar samples only.

Appearance Modeling under Natural Lighting with Unknown
Shape Estimating both shape and reflectance under natural illu-
mination is an ill-conditioned problem. Existing methods either re-

quire multiple observations of the scene [BM15, XDPT16], possi-
bly in conjunction with scene depth [WWZ16], or assume a smooth
surface [ON16, GRR∗17, MMZ∗18]. However, jointly estimating
shape and reflectance suffers from the potential pitfall that inac-
curacies in shape estimation affect the accuracy of the reflectance
estimation. Our method takes a different approach and foregoes es-
timating the shape all together. Instead we estimate the reflectance
properties by exploiting statistical properties of the materials.

Recovering Meso-Structure Photometric stereo [Woo80] is a
popular method for estimating the meso-structure in the form of
a normal map from just a few photographs under different di-
rectional lighting conditions. Subsequent research has proposed
numerous extensions, including normal estimation under natural
lighting [BJK07]. However, classic photometric stereo is limited
to diffuse materials only. Example-based methods [HS03, THS04]
overcome this limitation by also capturing an exemplar of the same
materials and with known geometry, or simply matching specular
highlight peaks on the material due to a point light source against
those seen on a sphere [CGS06]. These method only focus on
meso-structure estimation. In contrast, our solution also recovers
surface reflectance and does not require controlled point source il-
lumination.

Wang et al. [WSM11] use step-edge lighting to estimate the sur-
face reflectance of a homogeneous material as well as the meso-
structure. While they pursue a similar goal as us, their method
is limited to planar surfaces and requires active illumination. In
contrast, we do not require active lighting and can resolve the re-
flectance of material samples with arbitrary shapes.

Aittala et al. [AWL15] employ a combination of observations
under flash illumination and ambient lighting to recover spatially
varying surface reflectance properties of planar samples with a
texture-like appearance. In this work, we borrow similar mesostruc-
ture exemplars from their measured database for synthesizing ap-
propriate mesostructure on a target material with a texture-like ap-
pearance.

Chromatic Cues for Scene Modeling Our method exploits chro-
matic variations in the lighting to infer reflectance properties. Chro-
matic variations have been used, among others, to help recover
shape and separate diffuse and specular reflectance (e.g., [JA11,
ZMKB08]). To the best of our knowledge, chromatic variations
have been not exploited to infer reflectance properties such as spec-
ular roughness.

3. Shape Agnostic BRDF Estimation

3.1. Input & Assumptions

Our shape agnostic BRDF estimation method takes as input an
HDR photograph of the exemplar object and a record of the inci-
dent lighting in the form of an HDR light probe. To white balance
the acquired HDR photographs, we also place a color checker chart
next to the exemplar. Our method relies on matching (binary) color
profiles between the captured and rendered images of the candidate
reflectance parameters, and as such image noise can produce color
artifacts. Therefore, as a preprocessing step, we denoise the input
photographs using bilateral filter with a Gaussian kernel, followed
by a downsample step that halves the resolution of the photographs.
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(a) red bowl (b) light probe (c) initial diffuse

Figure 2: A red ceramic bowl acquired in an indoor office environ-
ment. (a) Material exemplar photograph (HDR). Inset shows the
details in the highlights. (b) Corresponding light probe. (c) Diffuse
convolution of the probe with an initial estimate of diffuse albedo
obtained with the manual selection strategy.

We assume that the exemplar object consists of a homogeneous
isotropic dielectric material that can be accurately characterized by
the Cook-Torrance microfacet BRDF model [CT82]. However, our
method can also be used with any other physically based BRDF
model. Furthermore, we assume that the main color in the observed
reflection on the dielectric exemplar is due to the diffuse compo-
nent.

We also assume a single dominant light source in the environ-
ment and require it to not be incident at or near a grazing angle to
avoid Fresnel gain in the observed reflection of the dominant light.
This assumption does not preclude that other light sources can be
present in the scene, as long as their contribution is less than that of
the dominant light source. In fact, we require surrounding ambient
illumination with color variation in the environment illumination.
This ensures some chromatic variation in the illumination incident
on the exemplar, which we also exploit for robust BRDF estimation
in addition to the brightness cue due to the dominant light source.
Many outdoor and indoor lighting environments satisfy the above
requirements, e.g., lighting coming through a window for an indoor
environment, or sunny sky against a colorful outdoor background.

We desire a method suited for non-expert users, and prefer ro-
bustness and simplicity over fragile automatic steps. We therefore
require a small amount of user direction to bootstrap the algorithm.
We ask the user to mark the area of interest on the exemplar pho-
tograph for reflectance processing, and optionally also require the
user to mark a small window of potentially front-facing pixels on
the exemplar for initializing the diffuse albedo estimate (described
next).

3.2. Diffuse Initialization

As a first step, we estimate an initial estimate of the diffuse albedo.
We will refine this estimate in subsequent steps. We provide two
alternative strategies: estimation from a manually provided win-
dow, and a fully automatic approach. For the manual strategy we
rely on a user selected small window of frontal pixels, and sim-
ply average the RGB values within this window. For the automatic
selection strategy, we sort all exemplar pixels first by intensity (se-
lecting pixels between the lower 15th− 20th percentile), and then
based on color saturation (averaging the top 10 percentile) to elimi-
nate potential specular pollution. We found that the manual strategy

(a) σ = 0.005 (b) σ = 0.02 (c) σ = 0.05

Figure 3: Sample candidate parameters of diffuse and specular
albedo for varying specular roughness values σ that jointly max-
imize the match to the maximum intensity of reflection in the input
photograph. Inset show the details in the corresponding highlights.

is more robust and requires less iterations to converge, and use this
as the default strategy for estimating the diffuse albedo. Figure 2(c)
shows the initial diffuse estimation on a sphere for a ceramic red
bowl exemplar shown in Figure 2(a).

3.3. Diffuse and Specular Optimization

In the absence of known geometry, there is an inherent ambiguity
between the specular albedo and the specular roughness of a mate-
rial exemplar, as one of these parameters can be altered to compen-
sate for the other along certain metrics, e.g., maximum intensity of
observed reflection. We note that the Cook-Torrance BRDF acts as
a Gaussian filter, i.e., it averages out the intensity and color of the
dominant light source with its surrounding values in the light probe.
The higher the specular roughness, the lower the intensity and the
color variation in the observed reflection. We make the observation
that while we can always alter the specular albedo to compensate
for the intensity, this would not affect the color variation seen on the
sample. Based on this observation, we jointly tackle the problem
of specular albedo and roughness estimation using a two-step ap-
proach where we first find the optimal diffuse and specular albedo
given a roughness, followed by a roughness selection step.

Albedo Estimation As a precomputation step, we first precompute
a diffuse convolution Cd of the light probe assuming a Lambertian
BRDF. We also convolve the environment map for specular BRDFs
with different roughness values, ranging from 0.005 (i.e., mirror-
like) to 0.3 (i.e., near diffuse). We denote each specular convolution
as: Cs(σ), with σ the roughness value. The resulting reflectance
radiance (i.e., rendered sphere) is then:

r(ρs,σ,ρd) = ρsCs(σ)+ρdCd , (1)

with ρs and ρd the specular and diffuse albedo respectively. For
each of the candidate roughness values σ, we solve an optimization
problem to find a refined estimate of the diffuse albedo ρd and the
corresponding specular albedo ρs.

However, since we do not know the geometry, we formulate this
optimization in terms of shape agnostic criteria, namely maximum
intensity and color profile matching.

Maximum Intensity Matching If visible, and in absence of noise,
the highest intensity on a sphere rendered under the same illumina-
tion should be at par with the highest intensity seen in the image I
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of the material exemplar:

max(I) = max(r). (2)

In practice, to reduce the impact of residual pixel noise, we av-
erage out several (10-20) highest intensity pixels. Given a diffuse
estimate ρd we can employ this constraint to trivially compute a
matching specular albedo ρs.

Color Profile Matching The maximum intensity matching only
provides a single constraint, and thus cannot solve for both the dif-
fuse and specular albedo. We will therefore only use the maximum
intensity constraint to estimate the specular albedo. For the diffuse
albedo we will use a color profile matching.

We first define the 3D color histogram where each axis corre-
sponds to the R, G, or B channel. Like any other histograms, bin
size is a critical parameter. To ensure a good fillrate, we dynam-
ically find the optimal bin size such that the number of occupied
bins is 500. We compute the optimal bin size on the recorded HDR
photograph (we denote its histogram hI), and use it to compute a
histogram on the rendered spheres: hr(σ).

To robustly handle the specific factors of matching a profile of a
sphere to that of a photograph object of unknown shape (which
can have (a) missing normal directions, and (b) different occur-
rences per normal direction), we cannot rely on standard distribu-
tion matching algorithms. Instead, we formulate our color profile
matching metric as a combination of two terms. One term matches
the volume of the profile:

εvolume(σ) = |∑B(hI)−∑B(hr(σ))|, (3)

where B(·) is the binary occupancy operator that returns 1 if a bin is
occupied, and 0 when it is empty. The binarization gracefully han-
dles differences in normal occurrence. However, it ignores miss-
ing normal directions. The second term measures the importance
of mismatched bins (i.e., occupied bins that are empty in the other
histogram):

εmismatch(σ) = ∑

(
δB(hI)6=B(hr(σ))w(hI ,hr(σ))

)
, (4)

where δx 6=y is the indicator function that is one if one bin is empty
and the other is not, and w is an importance weighting function
defined as:

w(hI ,hr) = max(B(hI)S(hI ,aI),B(hr)S(hr,ar)) , (5)

and S is the Sigmoid function:

S(x,a) =
1

1+ e−(x−a)
. (6)

Here, we set aI to be a constant c. We empirically chose c = 6
since it sets the range of the Sigmoid to be (0.0025,1) while does
not significantly change the value for the majority of bins. We set
ar to a smaller value than aI since we trust the entries due to the
rendered sphere more than the entries due to the data which suf-
fers from some noise. Hence, we empirically chose ar to be half
of c, and this sets the range of S(hr(σ),ar) to be (0.047,1). Intu-
itively, εmismatch marks bins in either histogram as less important
if the representative color occurs infrequently. This reduces the ef-
fects of missing normal directions and noise. However, once a color

(a) Data (b) σ = 0.005

(c) σ = 0.02 (d) σ = 0.05

Figure 4: RGB space 3D plot of pixels of the exemplar vs. candi-
date BRDF estimates on a sphere: (a) The red ceramic bowl shown
in Fig. 2(a). (b) Sphere rendered with σ = 0.005 corresponding to
the best matching color profile (Fig. 3,a). (b) Sphere rendered with
σ = 0.02 (Fig. 3,b). (c) Sphere rendered with σ = 0.05 (Fig. 3,c)

is reliably observed, we quickly equalize its weight to avoid over-
weighting based on normal occurrence or incident illumination dis-
tribution.

We combine these two terms in our final color profile matching
loss:

εpro f ile(σ) = εmismatch(σ)+λεvolume(σ), (7)

where λ is a balancing factor between both terms. We found that
λ = 0.3 works well in practice.

We then solve for ρs and ρd by iterating between solving for each
using the maximum intensity matching Equation (2) and color pro-
file matching Equation (7) respectively. We bootstrap this process
using the initial diffuse estimate. Figure 3 shows visualization of
matched diffuse and specular albedo given a-priori fixed roughness.

Roughness Selection As a final step, we search for the best match-
ing set of overall parameter values (each optimized for a given
roughness) by performing a global color profile matching in RGB
space of the exemplar data with the best candidate profiles of each
specular roughness:

argmax
σ

εpro f ile(σ). (8)

As can be seen in Figure 4, the 3D plot corresponding to specu-
lar roughness σ = 0.005 is the best match for the plot of the data
from the exemplar photograph, and the final BRDF estimate (along
with the final diffuse estimate) can be visually compared against
the exemplar in Figure 5. Note that for renderings, we employ the
Schlick approximation [Sch94] to model Fresnel gain within the
Cook-Torrance BRDF and set the final estimated specular albedo
ρs as the reflection at normal incidence R0 for Fresnel gain.
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(a) red bowl (b) final diffuse (c) BRDF estimate

Figure 5: Visual comparison of the red ceramic bowl exemplar (a),
and the final optimized diffuse component (b), and the complete
BRDF (c).

(a) exemplar photograph (b) light probe

(c) estimated BRDF (d) BRDF + mesostructure

Figure 6: Appearance estimation of a black leather bag in an in-
door environment. (a) Input HDR photograph of the exemplar. (b)
Corresponding light probe. (c) A sphere rendered under the same
illumination with the estimated BRDF. (d) Rendering with both the
estimated BRDF plus synthesized mesostructure details.

4. Synthesizing Mesostructure

The shape agnostic BRDF estimation procedure described in the
previous section is agnostic to the underlying shape, and is there-
fore suitable for estimating the base material BRDF of exemplar
objects with both smooth surfaces as well as textured surfaces ex-
hibiting some mesostructure. However, for the latter case, rendering
with purely the estimated BRDF is insufficient for reproducing the
overall appearance of the material (see Figure 6,c). Hence, for such
materials with a texture-like appearance, we additionally synthesize
plausible repeating mesostructure details in the form of a surface
normal map (to model the shape of the mesostructure) and a specu-
lar reflection occlusion map (that models spatially varying specular
reflection occlusions inside fine wrinkles and grooves) given the
same input HDR photograph of the exemplar object.

For exemplar material samples with a distinctly visible
mesostructure, we exploit the visible specular reflection cues (in
a local neighborhood) due to the dominant lighting in the sur-
rounding environment to replicate the mesostructure. We synthe-

(a) master tile (b) source tile (c) normals (d) spec. occ.

Figure 7: Target and source tiles for mesostructure synthesis. (a)
Target master tile from the black leather bag in Fig. 6. (b) Crop of
sphere rendered with estimated BRDF of the black leather exem-
plar and a borrowed source leather mesostructure from database
of Aittala et al. [AWL15]. (c, d) Synthesized surface normals and
specular reflection occlusion maps for the target master tile based
on best matches found on the source rendered tile.

size not only a “master-tile” of the mesostructure normal-details,
but also a specular reflection occlusion map that approximates
the reflection occlusions due to fine/deep mesostructures. As we
only have a single input photograph, this synthesis process is un-
derconstrained. We bias the synthesis solution by only borrowing
mesostructure details from a suitably similar exemplar material in
the database of stationary materials previously measured by Aittala
et al. [AWL15]. Note that this database provides measurements of
spatially varying specular albedo for their reflectance model. In-
stead, we interpret that data as a spatially varying specular reflec-
tion occlusion function that scales the estimated specular albedo of
the target material exemplar for modeling the textured appearance
along with the shading due to the normal map. While we use the
exemplar from this database as a guide, we do not require the exem-
plar to be an exact match for the type of mesostructure seen on our
target exemplar material. Instead, we let our synthesis step adapt
the source mesostructure details to the structure seen on our target
material. This regularization of the synthesis process can be seen
as restricting the search for mesostructures to the space spanned
by the exemplar’s mesostructures. We posit that similar materials’
mesostructure lie in a similar search space.

Implementation The synthesis step proceeds as follows: we first
manually select a relatively flat and frontal facing patch on the
exemplar object exhibiting strong specular reflection (due to the
dominant light in the lighting environment) as the master tile for
which we would like to synthesize the mesostructure details (see
Figure 7,a). We then render a sphere with the BRDF estimated for
this target exemplar material under the same lighting environment,
while borrowing mesostructure details from an appropriate similar
looking material in the database (e.g., a leather sample). We select
a crop on this rendered sphere around the dominant specular high-
light and set that to be the source tile (see Figure 7,b). Then, for
every pixel on the target master tile, we search for the best match-
ing pixel (defined by a 15× 15 neighborhood) in the source tile
and borrow this location’s corresponding surface normal and the
spatially varying specular albedo (encoding the specular reflection
occlusion) from the known u-v coordinate into the corresponding
synthesized mesostructure tiles. For pixels with a partially synthe-
sized mesostructure within their matching neighborhood, we also
include the existing surface normals within the neighborhood in
the matching function besides the RGB pixel values. This enables
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a joint synthesis of both the tiles for surface normals and specular
reflection occlusion which is required since they are correlated. As
a last step of the synthesis process, we employ the obtained mas-
ter tiles of mesostructure details to jointly synthesize larger tiles
of surface normals and specular reflection occlusion for the final
rendering of the exemplar material (Figure 6,d).

5. Results

We now provide additional results for our proposed example-based
material appearance estimation method and some analysis of its
robustness under various factors. Note that our current implemen-
tation is unoptimized and the current timings for the BRDF estima-
tion step is as follows: 1-2 minutes for the initial BRDF estimation
procedure using a GPU implementation at 716x716 resolution, and
15-20 minutes for the subsequent optimization using MATLAB on
a 6 core (hyper-threaded) desktop computer (Intel Core i7-8700K
CPU, 32GB RAM) with an NVIDIA 1080ti GPU.

Qualitative Evaluation We first demonstrate the robustness of our
method on a wide variety of materials captured under various in-
door and outdoor lighting environments. All examples presented
in the paper have been acquired using a Canon 650 DSLR camera
with a 50mm lens.

Figure 1 shows an example of a faux blue leather purse with
a distinct surface mesostructure, acquired at an outdoor park lo-
cation. Our method is able to obtain a reasonable estimate of the
base material BRDF. We also estimate and synthesize appropri-
ate surface mesostructure for the exemplar given another leather
mesostructure example. The final rendering with the BRDF esti-
mate and mesostructure faithfully replicates the appearance of the
blue faux leather material.

Figure 8 presents BRDF estimation results for various exemplar
objects with a smooth surface in two different indoor lighting en-
vironments. For these examples, the objects’ BRDFs range from
very sharp specular (coffee cups and plastic cups) to rough spec-
ular (desktop mouse) and almost diffuse (blue fabric), and from
very dark to a bright diffuse albedo. For all of these examples, our
method is able to reliably estimate a plausible BRDF fit for the ex-
emplar material that well reproduces the material appearance.

Figure 9 (top-row) presents another example of a black leather
bag acquired in an indoor environment. This exemplar has slightly
larger-scale mesostructure than the leather bag example shown in
Figure 6 which is appropriately estimated along with the mate-
rial BRDF. The second and third rows present two different ex-
amples of red and light-blue leather jackets respectively with finer
scale mesostructure, that are also estimated appropriately using our
synthesis approach. Note that the Aittala et al. database does not
include a leather sample with such fine scale mesostructure. Our
method is able to successfully adapt the mesostructure of the source
exemplar in this case to model the fine-scale mesostructure of these
jackets. For such fine scale mesostructure, we employ a smaller
matching window of a 3×3 neighborhood for the joint synthesis.

Manual vs. Automatic Diffuse Initialization In section 3.2 we
proposed two strategies for obtaining an initial estimate of the dif-
fuse albedo. Figure 10,(b) shows the initially estimated BRDFs us-
ing this above automatic diffuse initialization step for the red bowl

Table 1: BRDF fit for the pink glossy ball with our method (shape
agnostic) vs. with known shape.

ρd ρs σ

our method [0.439,0.098,0.136] 0.037 0.07
known shape [0.542,0.107,0.150] 0.025 0.05

Table 2: BRDF fits for the blue faux leather purse under different
lighting conditions.

ρd ρs σ

light probe 1 [0.136,0.157,0.224] 0.065 0.2
light probe 2 [0.169,0.187,0.275] 0.051 0.2
light probe 3 [0.137,0.161,0.204] 0.077 0.2

exemplar shown in Figure 2, the faux blue leather purse shown in
Figure 1, and the light-blue leather jacket shown in Figure 9. These
initial estimates of the BRDFs are then refined by the subsequent
optimization to produce the final BRDF estimates (c) which are
consistent with the final BRDF estimates for these exemplars ob-
tained using our default manual initialization of the diffuse albedo
(d). Thus, either strategy of automatic or manual initialization can
be used in practice with the caveat that we found the automatic
initialization to require more computation and iterations for con-
vergence than when employing manual initialization.

Unknown vs. Known Shape Figure 11 shows the BRDF estimated
for a pink glossy plastic ball in an outdoor environment. Here, the
BRDF has been estimated for the ball using our procedure with-
out assuming a spherical shape of the object. As can be seen, the
rendered sphere is a close match to the photograph of the ball sup-
porting the quality of the BRDF estimate. For a quantitative com-
parison, we also fit the BRDF of the pink ball assuming its known
spherical shape to obtain a reference. Numerically, the BRDF fit
with our shape agnostic procedure is very close to the known shape
reference as seen in Table 1.

Different Lighting Figure 12 examines the robustness of our
BRDF estimation procedure for the blue faux leather purse ac-
quired under three different lighting environments and slightly dif-
fering exemplar shape and camera viewpoint. Here, the rendered
spheres visualize the obtained BRDF fits compared to the exem-
plars under the respective illumination conditions. The correspond-
ing numerical fits for the blue faux leather purse in these differ-
ent configurations are given in Table 2. While the BRDF fits vary
slightly across the measurements, they are fairly consistent for most
of the parameters across the various incident illumination condi-
tions and shape and viewpoint configurations.

Different Mesostructure Exemplar Figure 13 illustrates the im-
pact and importance of selecting an appropriate mesostructure ex-
emplar for the mesostructure synthesis on the blue faux leather
purse using four different leather exemplars from the Aittala et al.
database. The synthesis results for exemplars 1 through 3 are qual-
itatively similar. This suggests that the synthesis step does not re-
quire an exactly matching exemplar in the database and has the abil-
ity to adapt the given mesostructure to the master tile. However, the
result for exemplar 4 is distinctly degraded compared to the other
exemplars, indicating that matching the mesostructure feature scale
is important for good qualitative results of the synthesis.
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(a) light probe (b) smooth blue cup (c) estimated BRDF (d) smooth green cup (e) estimated BRDF (f) black mouse (g) estimated BRDF

(h) probe (i) cups (j) est. BRDF (k) winter jacket (l) est. BRDF (m) game controller (n) est. BRDF (o) blue fabric (p) est. BRDF

Figure 8: Additional results of example-based material appearance estimation in indoor lighting environments. Top-row: BRDFs estimated
in an office environment for two coffee cups with smooth surfaces and a rough specular black plastic mouse. Second-row: BRDFs estimated
in a living room environment for a blue plastic cup, a winter jacket, a game controller, and blue apparel fabric.

(a) light probe (b) exemplar photograph (c) estimated BRDF (d) meso. (e) BRDF + mesostructure

(f) light probe (g) exemplar photograph (h) estimated BRDF (i) meso. (j) BRDF + mesostructure

(k) light probe (l) exemplar photograph (m) estimated BRDF (n) meso. (o) BRDF + mesostructure

Figure 9: Additional results of material appearance estimation for exemplar objects with surface mesostructure. Top-row: Black leather bag
material estimated in an indoor environment. Second and third rows: a red leather jacket, and a light-blue leather jacket respectively, in an
outdoor (backyard) environment.

6. Ablation Study

To gain further insight in the robustness and limitations of our
shape-agnostic BRDF estimation, we perform an ablation study
using simulated data. We investigate robustness with respect to:

BRDF parameters, exemplar shape, mesostructure, and illumina-
tion. Note that we added shot noise to all the simulated exemplar
images using the Matlab function imnoise.

BRDF Parameters To quantify the robustness with respect to

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



Y. Lin, P. Peers, A. Ghosh / On-Site Example-Based Material Appearance Acquisition

(a) light probe (b) auto init. (c) final BRDF (d) manual init.

Figure 10: BRDF estimation with automatic diffuse initialization
vs. manual initialization for the ceramic red bowl exemplar (top-
row), the faux blue leather purse exemplar (center row), and the
light-blue leather jacket exemplar (bottom row). (b) Initial BRDF
estimate with automatic diffuse initialization. (c) Final BRDF esti-
mate after subsequent optimization. (d) Final BRDF estimate after
optimization of manual diffuse initialization.

(a) light probe (b) pink ball (c) est. BRDF

Figure 11: Visual validation of BRDF estimation for a pink glossy
plastic ball.

varying specular roughness and various ratios of diffuse and spec-
ular albedo, we run our shape-agnostic BRDF estimation method
on simulated scenes under a fixed urban lighting environment and
a fixed shape (Utah Teapot). Table 3 lists the various ground truth
parameters and the corresponding estimated parameters. From this
we can conclude that accuracy decreases slightly for increasing
specular roughness, and for increasing ratio of diffuse to specu-
lar albedo. In both cases, the ambiguity in RGB profile matching
increases, thereby reducing its accuracy. For visual reference, we
also include visualizations for the three least accurate cases from
Table 3 (marked in yellow and red) in Figure 14.

Shape Variation We validate the robustness of our method to vari-
ations in shape with fixed incident lighting and fixed BRDF pa-
rameters (corresponding to ground truth 2 in Table 3). Figure 15
shows a selection of the various shapes with corresponding recov-
ered BRDFs. As can be seen, the estimated BRDF exhibit very
little variations, and are very close to the ground truth, validat-
ing the shape-agnostic aspect of our BRDF estimation procedure.
We measured the statistics of error in the estimates as follows: ρd :
RMSE = 0.0061, std. dev. = 0.0021; ρs: RMSE = 0.0033, std. dev.

(a) light probe 1 (b) exemplar (c) est. BRDF

(d) light probe 2 (e) exemplar (f) est. BRDF

(g) light probe 3 (h) exemplar (i) est. BRDF

Figure 12: BRDF fits for the blue faux leather purse under different
lighting environments.

(a) exemplar 1 (b) exemplar 2

(c) exemplar 3 (d) exemplar 4

Figure 13: Synthesized mesostructure for the blue faux leather
purse given four different input leather exemplars. Top-left: Crop
of a sphere rendered with estimated BRDF and given leather
mesostructure exemplar. Bottom-left: Synthesized surface normals
and specular reflection-occlusion of master tile. Right: Sphere ren-
dered with larger synthesized mesostructure tile.

= 0.0029; σ: RMSE = 0.0061, std. dev. = 0.0052. The individual
estimated parameters for all the shapes are provided in the supple-
mental material.

Mesostructure Variation To validate robustness with respect to
mesostructure (i.e., high frequency shape variations), we estimate
the BRDF with 72 different surface mesostructures from the Ait-
tala et al. database mapped to the surface of the Utah Teapot. We
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Table 3: BRDF estimates for varying parameters of specular
roughness and diffuse/specular ratio.

ρd ρs σ

ground truth 1 [0.3000,0.0500,0.0500] 0.060 0.01
estimated 1 [0.3019,0.0535,0.0522] 0.061 0.01

ground truth 2 [0.3000,0.0500,0.0500] 0.060 0.05
estimated 2 [0.3070,0.0549,0.0539] 0.060 0.05

ground truth 3 [0.3000,0.0500,0.0500] 0.060 0.10
estimated 3 [0.2886,0.0407,0.0386] 0.064 0.10

ground truth 4 [0.5000,0.1000,0.1000] 0.040 0.01
estimated 4 [0.5061,0.1026,0.1032] 0.041 0.01

ground truth 5 [0.5000,0.1000,0.1000] 0.040 0.05
estimated 5 [0.5110,0.1059,0.1062] 0.040 0.05

ground truth 6 [0.5000,0.1000,0.1000] 0.040 0.10
estimated 6 [0.5260,0.1185,0.1180] 0.030 0.07

ground truth 7 [0.7000,0.2000,0.2000] 0.020 0.01
estimated 7 [0.7204,0.2128,0.2117] 0.019 0.01

ground truth 8 [0.7000,0.2000,0.2000] 0.020 0.05
estimated 8 [0.7152,0.2086,0.2081] 0.014 0.015

ground truth 9 [0.7000,0.2000,0.2000] 0.020 0.10
estimated 9 [0.7265,0.2137,0.2148] 0.016 0.07

(a) exemplar 6 (b) estimate 6

(c) exemplar 8 (d) estimate 8

(e) exemplar 9 (f) estimate 9

Figure 14: Visualizations for the three least accurate cases recov-
ered in the BRDF parameter ablation study in Table 3.

use the same BRDF as in the Shape ablation study. We found the
BRDF estimates to be very close to the ground truth values for all
but 8 of the tested mesostructures which are shown in Figure 16.
These mesostructures exhibit strong directional structures and/or
anisotropy which violates our assumptions of isotropic surface ap-
pearance. These 8 examples have been identified based on the nu-
merical difference in the estimated parameters to the ground truth
being above a set threshold (provided in the supplemental mate-
rial). However, we note that only two of these examples (1 and 6)
exibit a perceptually noticeable difference in the BRDF fit. Thus,

(a) shape 1 (b) est. (c) shape 2 (d) est.

(e) shape 3 (f) est. (g) shape 4 (h) est.

(i) shape 5 (j) est. (k) shape 6 (l) est.

(m) shape 7 (n) est. (o) shape 8 (p) est.

(q) ground truth

Figure 15: A selection of shapes explored for the Shape ablation
study. The resulting recovered BRDFs are a close match, indicating
that our method is robust to shape variations.

we infer that surface mesostructure has very little (if any) effect on
the BRDF estimation.

Illumination Variation To validate the robustness to variations in
illumination, we estimate the BRDF (same as in the Shape ablation
study) on the Utah Teapot shape under 8 different lighting environ-
ments (3 indoors and 5 outdoors) shown Figure 17. As can be seen,
the BRDF estimation is consistent across the different lighting en-
vironments, and very close to the ground truth values for all cases
except for the Uffizi gallery example (bottom). The specular rough-
ness is overestimated in the case of Uffizi due to lack of color vari-
ation in the lighting environment (overcast sky, gray walls) which
increases ambibuity for the RGB color profile matching. In all other
cases, there is sufficient natural color variation in the lighting envi-
ronment for the method to work robustly. We measured the statis-
tics of error in the estimates as follows: ρd : RMSE = 0.0072, std.
dev. = 0.0043; ρs: RMSE = 0.0043, std. dev. = 0.0045; σ: RMSE
= 0.0094, std. dev. = 0.0099. The individual estimated BRDF pa-
rameters under each of these lighting environments is provided in
the supplemental material.
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(a) meso. 1 (b) meso. 2

(c) meso. 3 (d) meso. 4

(e) meso. 5 (f) meso. 6

(g) meso. 7 (h) meso. 8

Figure 16: Visualizations of the eight least accurate cases of re-
covered BRDFs in the Mesostructure variation ablation study con-
ducted using 72 measured mesostructures in the Aittala database.

7. Limitations

Our shape-agnostic BRDF estimation procedure relies on binary
RGB color profile matching for BRDF estimation. When the in-
cident lighting exhibits insufficient color variation, e.g., on a very
overcast day with gray sky, or colorless surroundings (white/gray
walls, streets), our method is unable to distinguish the different
BRDFs. Empirically, we found that lighting environments with
moderate dynamic range variation in illumination incident from
different directions works best. For example, such condition occur
naturally in outdoor environments where the sky and the ground
adds sufficient background illumination to the dominant sunlight.
In indoor environments, the method works better in situations
where the room is well lit with bounce light from all sides besides
the dominant light (e.g, from a window), and fails when the only
incident illumination is due to a dominant source and the rest of the
incident directions are relatively dark. Furthermore, the accuracy of
the apparent BRDF is also affected by the frequency of the incident
illumination and the scale of observation of the exemplar; this limi-
tation is inherent and shared by most methods that estimate surface

(a) probe (b) teapot (c) g.t. (d) est.

Figure 17: A selection of illumination environments explored for
the Illumination ablation study. The resulting recovered BRDFs are
a close match to ground truth for all cases except the Uffizi gallery
environment (bottom).

reflectance from natural lighting. Finally, the mesostructure synthe-
sis relies on a suitable mesostructure exemplar and can fail when
the source mesostructure is very dissimilar to the target mesostruc-
ture, or in the absence of sufficient specular cues in the reflection
for guiding the synthesis. The synthesis step currently employs an
unoptimized CPU implementation and could be significantly sped
up with a GPU implementation.

8. Conclusion

We presented a novel example-based “rapid-appearance-modeling”
technique for homogeneous isotropic dielectric objects suitable for
on-site capture by non-expert users. A key distinguishing feature of
our method is that we do not require prior knowledge of the shape
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of the exemplar object; we only require knowledge of the incident
lighting which is simpler to acquire. We introduce two shape agnos-
tic constraints (i.e., maximum intensity and color profile matching)
that guide the optimization process of the reflectance parameters.
In addition, we also model the appearance of materials exhibiting
a regular or stationary mesostructure by jointly synthesizing ap-
propriate surface normals and spatially varying specular reflection
occlusion for modeling the target material’s mesostructure.

Currently, our process involves a few easy manual steps which
are well suited for digital artists. Automating these steps is an inter-
esting avenue for future work, especially in biasing the mesostruc-
ture synthesis by material type. Extending the approach for mod-
eling spatial variation in the appearance of objects with arbitrary
shapes is also interesting future research direction.
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