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Fig. 1. Acquired holographic surfaces rendered in real-time under environmental illumination. (a) Holographic paper with a repeating star pattern acquired
using flash illumination. (b) Holographic paper with a stochastic texture acquired using flash illumination. (c) A holographic SIGGRAPH logo from a
SIGGRAPH 2015 registration badge acquired using polarization imaging. Insets show HSV color visualization of the estimated grating orientation maps.

We present two novel and complimentary approaches to measure diffraction
effects in commonly found planar spatially varying holographic surfaces.
Such surfaces are increasingly found in various decorative materials such as
gift bags, holographic papers, clothing and security holograms, and produce
impressive visual effects that have not been previously acquired for realistic
rendering. Such holographic surfaces are usually manufactured with one
dimensional diffraction gratings that are varying in periodicity and orienta-
tion over an entire sample in order to produce a wide range of diffraction
effects such as gradients and kinematic (rotational) effects. Our proposed
methods estimate these two parameters and allow an accurate reproduction
of these effects in real-time. The first method simply uses a point light source
to recover both the grating periodicity and orientation in the case of regular
and stochastic textures. Under the assumption that the sample is made of the
same repeated diffractive tile, good results can be obtained using just one to
five photographs on a wide range of samples. The second method is based
on polarization imaging and enables an independent high resolution mea-
surement of the grating orientation and relative periodicity at each surface
point. The method requires a minimum of four photographs for accurate
results, does not assume repetition of an exemplar tile, and can even reveal
minor fabrication defects. We present point light source renderings with
both approaches that qualitatively match photographs, as well as real-time
renderings under complex environmental illumination.
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1 INTRODUCTION
Measurement based reflectance modeling has been an active area of
research for many years in computer graphics. Much of previous
work has focused on reflectance that can be modeled with geo-
metric optics including measurement of isotropic [Matusik et al.
2003] and anisotropic [Ngan et al. 2005; Ward 1992] surfaces, and
fitting such measurements to appropriate parametric models [Cook
and Torrance 1982; Ward 1992]. However, impressive visual effects
related to the wave behaviour of light remain challenging from
a measurement and rendering point of view. This is the case of
diffraction of light, which produces rainbow patterns on surfaces
due to the dispersion of white light. Such effects are hard to deal
with both in rendering and measurement due to the requirement
of complex Fourier optics simulations and the fact that they are
caused by surface variations at the micrometer scale. Indeed, diffrac-
tion of light only appears when the microgeometry of a surface
reaches a size below the coherence length of white light (65µm for
sunlight [Mashaal et al. 2012]), making measurements hard to carry
out without specialized equipment.

Stam [1999] was the first to introduce a Bidirectional Reflectance
Distribution Function (BRDF) for diffraction based on Kirchoff the-
ory. His BRDF is computed from a height field that describes the
variations of a surface at the microscopic scale. Although it can
theoretically be used to render any type of non volumetric diffrac-
tion, the BRDF is very expensive to compute and obtaining a height
field to produce a specific type of diffraction is not straightforward.
Dhillon et al. [2014] solved this problem and presented photorealistic
renderings of diffraction in biological structures using height fields
that were measured with an Atomic Force Microscope. Although
very accurate, their method requires specialized equipment that is
not widely available. Besides, it still requires Fourier computations
and is not suitable for real-time rendering under arbitrary envi-
ronmental illumination. Recently, Toisoul and Ghosh [2017a] have
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(a) (b) (c) (d)

Fig. 2. Holographic surfaces with different diffraction effects. (a) Book cover
with kinematic rotation effect. (b)Gift bag with circular diffractive areas. (c)
Holographic paper with firework effect. (d) Stochastic texture that produces
iridescent glitter. a, c and d are A4 in size.

presented an image-based technique that is practical for computer
graphics applications based on direct measurement of diffraction
patterns created on homogeneous samples using spectrally filtered
flash illumination. Besides assuming a homogeneous sample, the
technique additionally requires the diffractive sample to be large
enough to observe the entire pattern from a single viewpoint. These
two assumptions do not hold for many diffractive objects, and in
particular for holographic surfaces. Such surfaces are often made
of textures with tiny features, each of which having a different
diffraction pattern that needs to be measured without being able to
observe the pattern entirely (see Fig. 2 for few such surfaces).

In this work, we focus on specific type of planar spatially varying
holographic surfaces that are cheaply manufactured using one di-
mensional diffraction gratings that diffract light in specific directions
depending on their orientation and at specific angles depending on
their periodicity (see Section 1 in supplemental material). Although
this may seem to be a strong simplification, such holographic sur-
faces are very common (e.g., gift bags, holographic papers, security
holograms) and are able to produce a wide range of impressive well
known optical effects such as kinematic, gradient and firework like
effects (see Fig. 2).
Originally, orientation and periodicity maps for these surfaces

are custom designed and the gratings are printed accordingly. How-
ever, such data is not readily available for computer graphics and
reverse engineering the orientation and periodicity from simple
observations is rather difficult, especially under natural lighting.
We propose two novel approaches to measure orientation and peri-
odicity maps of such surfaces and demonstrate how the data can
be used to qualitatively reproduce these effects in rendering. We
also provide datasets of measured spatially varying orientation and
periodicity maps and demonstrate how these maps can be modified
to create new visual effects.
In summary, our contributions are as follows :

• We present a practical method to measure spatially vary-
ing grating orientations and periodicities using a few pho-
tographs taken with flash illumination. The technique works
best with planar holographic surfaces that are made of re-
peating tiles and have a set of discretized orientations and
periodicities, as well as holographic surfaces with stochastic
gratings.

• We present a complimentary method based on polarization
imaging that recovers independent grating orientations and

relative periodicities per surface point which is suitable for
holographic surfaces with non repeating grating variations
(both discrete and continuous). To our knowledge, this is
the first wave optical setup that measures anisotropy due to
surface structures at wave optics scale.

• We provide high resolution datasets of measured spatially
varying orientation and periodicity maps for common holo-
graphic surfaces. These can be employed to combine and
create new effects as well as help understand how to design
maps in order to achieve a specific target effect.

2 RELATED WORK
In the following, we discuss the most relevant previous work on
diffraction effects in surface reflectance, as well as other wave effects
including polarization.

2.1 Diffraction effects
Stam [1999] first introduced a general model for diffraction based
on Kirchoff theory. His model is an extension of the He-Torrance
model [He et al. 1991] to include anisotropy and requires as an
input a height field h that describes the microscopic variations of
height of the diffraction grating. The diffraction contribution in the
BRDF comes from a p function that is dependent on both the height-
field h and the viewing and incoming light directions and has to be
calculated at every frame of an animation. As a result, the general
form of the BRDF cannot be computed at real-time framerates since
it requires the computation of a two-dimensional Fourier transform
of the correlation of the p function.
Sun et al. [2000] rendered iridescence in optical discs by mod-

elling the grooves on a CD as consecutive spheres. Although their
method produces realistic results of iridescence on optical disks, the
approach is specific to CDs. Agu and Hill [2002] derived an ana-
lytic diffraction model based on the Huygens-Fresnel principle for
multislit diffraction along one dimension, i.e., diffraction produced
by a periodic microstructure made of rectangles. Instead, in this
work we model each dot on a holographic surface as a 1-D sinu-
soidal grating and derive its formulation from Stam’s BRDF. Lindsay
and Agu [2006] have proposed adaptively sampling the diffractive
BRDF into spherical harmonics (SH) basis for real-time rendering.
However, the reconstructed diffraction pattern does not preserve
high frequencies due to usage of low order SH basis for lighting and
BRDF. Cuypers et al. [2012] have instead proposed a very general
diffraction wave BSDF using Wigner distributions that supports
both direct and multiple bounce simulations of diffraction using a
ray-tracing framework. Similar to Stam, this approach requires the
underlying microstructure of the grating as input.

Dhillon et al. [2014] recently proposed a reformulation of Stam’s
BRDF using a Taylor expansion to break the dependency between
the height field and the viewing and incoming light direction. This
allows a precomputation of diffraction look up tables (terms of the
Taylor expansion) using windowed Fourier transforms that can be
employed for real-time rendering. They also proposed a measure-
ment approach to record diffraction microstructures of biological
specimens (snake skin) using a specialized Atomic Force Microscope
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(AFM). Subsequently, Dhillon and Ghosh [2016] have proposed em-
ploying Chebyshev polynomials to compress the large number of
terms of Taylor expansion required by [Dhillon et al. 2014] (usually
30 – 80), and demonstrated good qualitative results using a second
order polynomial.

Kang et al. [2015] have instead proposed an RGB diffractionmodel
that avoids full spectrum computations and evaluates a microfacet
BRDF model at different rotations of the half-vector for each color
channel, producing a separation of colours. Although very simple to
implement, their model does not guarantee physically correct ren-
dering. For measurements of microstructure, Dong et al. [2015] have
proposed employing a profilometer to measure the microstructure
of metallic surfaces and drive both a microfacet BRDF as well as a
Kirchhoff scattering based BRDF model for rendering the aggregate
surface appearance. Although the microgeometry measurements
with a profilometer are down to the scale of the wavelength of
visible light, diffraction effects were not modeled in this work.

Holzschuch and Pacanowski [2017] have recently proposed a
two scale modeling of surface reflectance, driving microstructure
larger than the wavelength of visible light with standard microfacet
model while modeling diffraction within smaller microstructure ap-
proaching wave optics scale. They demonstrate that this dual scale
BRDF modeling better fits measured data. Werner et al. [2017] have
instead proposed a technique for modeling and rendering irides-
cent diffraction in spatially resolved scratches using non-paraxial
scalar diffraction theory. Surface scratches as modeled as collec-
tion of line segments and individual diffraction patterns of con-
tributing segments within a footprint are analytically computed and
superimposed. The approach has recently also been extended for
real-time rendering including closed-form solutions for modeling
spherical and polygonal area light sources [Velinov et al. 2018]. Yan
et al. [2018] have recently further generalized the approach for ren-
dering subtle colored glints due to arbitrary surface microstructure.
However, these recent works do not model strong iridescent effects
due to diffraction in manufactured materials.
Closest to our work, Toisoul and Ghosh [2017a] have proposed

direct image-based measurement of strong diffraction patterns ob-
served on homogeneous samples and drive a data-driven diffraction
BRDF model for real-time rendering. They also demonstrate view-
dependent rendering under complex environmental lighting using
pre-filtering. In subsequent work, Toisoul and Ghosh [2017b] em-
ploy low rank factorization of acquired 2-D diffraction patterns for
efficient real-time rendering. We employ their rendering method in
this work for rendering spatially varying 1-D sinusoidal gratings
under complex environmental illumination.

2.2 Other wave effects
Researchers have investigated other iridescent effects in surface
reflectance. Sun et al. [2000; 1999a; 1999b] have extensively studied
full spectral rendering for modeling iridescence due to thin film in-
terference. In subsequent work, Sun [2006] proposed an RGB-based
renderer for efficient simulation of biological iridescence. Granier
and Heidrich [2003] have also proposed a simplified RGB-based
BRDF model for modeling iridescence in layered materials. Imura et
al. [2009] have proposed rendering structural colors in reflectance

due to thin film or multi-layer interference as well as diffraction in
a unified framework of optical path differences in microstructure.
Belcour and Barla [2017] have recently proposed an extension for
microfacet BRDFs based on analytic spectral integration to accu-
rately model thin film interference due to varying thin film thickness
over a rough surface. Also related is the work of Hullin et al. [2010]
who employed spectral BRDFmeasurements for modeling bispectral
materials exhibiting fluorescence.
Wave effects have also been considered by Levin et al. [2013]

for fabricating BRDFs with high spatial resolution, and by Ye et
al. [2014] for creating custom BxDF displays based on multilayer
diffraction. These works aim at fabricating structures that match
given reflectance characteristic, whereas in this work we measure
spatially varying grating parameters to reproduce diffraction effects
in common holographic surfaces.

2.3 Polarization modeling and imaging
Polarization effects in surface reflectance have recently received
some attention in computer graphics, both for rendering as well
as inference. Weidlich and Wilkie [2008] studied polarized light
transport in uniaxial brifringent crystals and proposed appropriate
ray tracing with Mueller calculus for modeling the characteristic
double transmission through such crystals due to ordinary and
extraordinary rays. Berger et al. [2012] have employed ellispometry
to validate polarized surface reflectance in various metals against
predictions of microfacet models.

Closest to our work, Ghosh et al. [2010] have proposed measure-
ment of the full Stokes parameters of polarized reflectance under
circularly polarized incident illumination to estimate a complete
set of parameters for an isotropic BRDF, including index of refrac-
tion. Similarly, Riviere et al. [2017] have recently employed linear
polarization imaging for surface reflectometry under uncontrolled
outdoor illumination exhibiting partial linear polarization. Our po-
larization imaging setup is inspired by these works. However, due
to practical considerations, we employ a combination of circularly
polarized illumination and linear polarization imaging in this work
for estimating spatially varying anisotropic grating parameters in
manufactured holographic samples. Furthermore, instead of Mueller
calculus, we employ the reduced Jones calculus for our analysis.

3 OVERVIEW
Figure 3 depicts the structural aspects of dot-matrix holographic
prints. We refer the interested reader to the supplemental material
for a brief background on the manufacturing process of common
holographic surfaces. The rest of the paper is organized as follows:
we present a simple measurement setup employing flash illumi-
nation in Section 4 to acquire spatially varying orientations and
periodicities of planar holographic surfaces made up of a repetitive
exemplar tile containing a discrete set of orientations. The method
is also suitable for surfaces with stochastic variation of grating ori-
entations and periodicities. We present a more complex setup based
on polarization imaging in Section 5 that resolves truly spatially
varying non-repeating grating structures with continuous orien-
tations. Section 6 presents additional results including real-time
environmental renderings and examples of editing the maps for
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(a) Grating dots (b) Surface layout (c) Grating cross-section

Fig. 3. Illustration of grating dot matrix prints in a holographic film/paper.
(a) A close-up of hot-pressed grating dots on a plastic material. Grayscale
represents local depth variations from white as the top and black as the
bottom level. (b) The grating dots are organized in a specific layout that
makes a spatially varying holographic surface. (c) A cross-section on a
holographic dot showing sinusoidal grating structure on a metal base layer
with a protective plastic top layer.

creating new visual effects. Finally, Section 7 presents evaluations
of the two proposed methods.

4 ACQUIRING REPETITIVE SAMPLES
We first describe a very simple procedure to recover the grating ori-
entations and periodicities of planar spatially varying holographic
surfaces consisting of a repeating master tile. The method only re-
quires a small set of photographs of a sample under point source
illumination, resulting in a very accessible measurement process.
We further describe in Section 4.5 how the same measurement setup
can also be used to recreate iridescent effect from stochastic holo-
graphic surfaces by sampling the joint probability distribution of
the orientations and periodicities.

4.1 Flash illumination measurement
The acquisition setup only requires a point light source for which
we employ an iPhone 5S smartphone flash, and a camera for which
we employ a Canon 750D DSLR (Fig. 4a). During acquisition, we illu-
minate the sample with the flash and record the resulting diffraction
pattern on the sample. The distance between the camera and the
sample is chosen such that the entire sample can be observed while
having the highest resolution possible for each repeating tile (about
50 centimeters in our case). The distance between the light source
and the sample is chosen such that the entire diffraction pattern
is visible. In our experiments, the distance varied between 10 to
30 centimeters. Fig. 4a shows an example of a circular diffraction
pattern observed on a holographic paper made of a repeating tile of
polygons. Note that the central specular highlight must be visible
in the photograph as its position is later employed to recover both
the grating orientations and periodicities.
We generally record several high-dynamic range (HDR) images

[Debevec and Malik 1997] of the diffraction pattern for different
light positions with a fixed camera. The goal is to obtain a set of
photographs in which all the diffractive areas of the sample diffract
light in at least one of the photographs. If the holographic surface
is made of a repeating tile, it will only be necessary to solve for
a smaller region that corresponds to a master exemplar tile. As a

(a) (b)

Fig. 4. (a) Measurement setup consisting of a DSLR camera recording the
diffraction pattern on a sample due to a phone flash. (b) Photograph of
the holographic paper under house lights. Note how the polygonal pattern
repeats over the sample.

result, fewer photographs are required as several unique observa-
tions of the same tile can be obtained over the entire sample. In our
experiments, one to five photographs were required to recover the
exemplar tile depending on the complexity of the pattern drawn on
the holographic sample and the number of times the tile is repeated.
This varied from 6 × 4 repetitions to 10 × 8 repeated tiles depending
on the sample we acquired. Finally, we also take a photograph under
house light illumination in order to be able to clearly see and select
the repeating tiles on the holographic surface (see Fig. 4b). Note
that Aittala et al. [2015] have previously employed similar flash
illumination to measure SVBRDF parameters of stochastic textures
but their work focused on geometric optics.

4.2 Sinusoidal grating model
We now derive a BRDF model for the holographic surface under the
assumption that it is made of one dimensional sinusoidal diffraction
gratings. This assumption allows us to recover spatially varying
orientation and periodicity maps for rendering from our measure-
ments. The height field of a sinusoidal grating orientated along the x
axis is given in Eq. 1. The parameter a corresponds to the periodicity
of the grating, and h0 its height.

h(x ,y) =
h0
2
(1 + cos(2π

x

a
)) (1)

For such a height field, we can derive an analytic solution of
Stam’s BRDF [Stam 1999] assuming a Gaussian coherence window
and a second order Taylor expansion [Dhillon et al. 2014]. The full
derivation is explained in the accompanying supplemental docu-
ment. The final formulation of the BRDF has the following form:

fr (ωi ,ωo , λ) = C(ωi ,ωo )

∫
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a
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(2)

In the (u,v) space, i.e in the space that corresponds to the pro-
jection of the non normalized half vector onto the tangent and
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bitangent of the diffraction grating, the BRDF is a linear combi-
nation of Gaussians centered at (0, 0) for the specular highlight,
(± λ

a , 0) for the first order of diffraction, and (±
2λ
a , 0) for the second

order of diffraction. Note that the second order Taylor expansion
limits the diffraction to the second order lobes which reduces the
computational expense for rendering. Besides, high order diffrac-
tion lobes are only visible at grazing angles and quite often far
enough from the specular highlight to not be seen on the sample.
Note that the one dimensional grating only diffracts light along its
main orientation (here the x axis). This formulation of the BRDF al-
lows us to recover both the grating orientations and corresponding
periodicities as explained in the following sections.

4.3 Grating orientation
As can be seen in the renderings of Fig. 5a one dimensional grating
only diffracts light along its main direction. Hence if an order of
diffraction is observed at a surface point, the orientation of the
grating at that point is given by the orientation that the vector
towards the specular highlight makes with the x axis. This direction
will be denoted as the tangent to the grating. Note that because the
grating is symmetric, the observation of a positive or a negative
order of diffraction is not important as the grating direction will
remain the same modulo 180◦ rotation. As a result, inferring the
grating orientation from the measured data can be done in several
steps. First, a homography correction is applied on the photographs
in order to correct any misalignment. This is done by selecting the
four corners of the planar samples. Then all the repeating tiles on
the sample are manually selected (see Fig. 4b for a sense of the
repetition) and we apply homography corrections to align each tile
to the same coordinate frame of reference.
The final step is to find the pixels that diffract light in the input

photographs. This is done using an intensity threshold on the pixels
that are outside the specular region. Note that the intensity is a
measurement of the confidence that the grating orientation is cor-
rect. The higher the intensity, the closer the estimate of the correct
orientation. We employ this confidence measure due to the fact
that the flash is not a perfect point light with an infinite coherence
window. As a result, the response is not a delta Dirac but a Gaussian
lobe as shown in the accompanying supplemental document. In
order to take this into account, we first look for pixels with a high
intensity threshold and then progressively decrease the threshold
until all the orientations in the exemplar tile are computed.

Theoretically, it is sufficient to just observe half of the diffraction
pattern on the sample due to the symmetry of sinusoidal gratings
(observing positive or negative orders of diffraction give the same
orientation). In practice, it is best to observe asmany diffracted pixels
as possible as it decreases the number of photographs required to
recover the complete exemplar tile. The recovered orientation map
of the exemplar tile for the polygonal holographic paper seen in
Fig. 4 is shown in Fig. 6b. However, the orientations alone are not
sufficient to render the holographic surface as the grating periodicity
has to also be estimated at each surface point.

(a) (b) (c)

Fig. 5. Rendering of the diffraction pattern of a sinusoidal grating with
varying grating orientation and periodicity under the second order ap-
proximation. (a) Axis aligned grating with low periodicity of 600 lines per
millimeter. (b) Axis aligned grating with higher periodicity of 1000 lines per
millimeter. (c) Sinusoidal grating orientated at 45 degrees with a periodicity
of 1000 lines per millimeter. The pattern aligns with the orientation of the
grating.

(a) (b) (c)

Fig. 6. Computation of the grating orientations at each surface point. (a)
The local orientation of the diffraction grating at each diffracted pixel is
given by the direction towards the specular highlight (shown by the red
vectors). (b) Recovered master exemplar tile with angles encoded in HSV
space. (c) HSV color wheel showing orientations and their corresponding
color.

4.4 Grating periodicity
Although some holographic surfaces are made of grating dots that
all have the same periodicities, in general such surfaces can have
spatially varying periodicities as well as orientations. This can be
easily identified on a sample by looking at whether a given color
is diffracted at a fixed distance from the specular highlight or at
varying distances across the sample (see Fig. 7). In the former case,
we only solve for a single periodicity for the entire sample whereas
in the latter case we solve for periodicities at each surface point.

In Section 4.2, we showed that the location of a diffraction order
for a sinusoidal grating is directly linked to the periodicity of the
grating, the diffracted wavelength λ as well as the projection of the
non normalized half vector onto the tangent of the grating (variable
u). If these two parameters are known, the periodicity of the grating
is given by:

a =
nλ

|u |
(3)

where n is the order of the observed diffraction. A visual explana-
tion of the periodicity variation on the diffraction pattern is shown
in Fig. 5.
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(a) Constant periodicity (b) Varying periodicity

Fig. 7. Comparison of two holographic papers illuminated with a spectrally
filtered flash. (a) Constant periodicity. The green wavelength is diffracted
at a fixed distance from the specular highlight, creating a circle. (b) Varying
periodicity. The green wavelength is diffracted at varying distances from
the specular highlight.

In order to measure the periodicity, we attach a green spectral
filter (Roscolux thin film sheet with peak at 530 nm) in front of
the flash during measurements (see Fig. 7) and employ the green
channel of the camera in order to spectrally limit the data to a
narrow band. Now, estimating the periodicity only requires the
computation of the non normalized half vector at each pixel on the
sample. Ideally, this requires calibrating the camera and knowing
the exact 3D light position. In practice, precise calibration of the
camera was not required as the observations are done at normal
incidence. As a result, the light directions and view vectors over the
entire sample can be approximately calculated if the camera and
light distance to the sample are known. We do this in several steps
by first applying an homography correction to the entire sample
and then finding a correspondence between pixels and real world
size. This correspondence is found by neglecting the camera optical
distortion and using a known distance on the sample (e.g., the paper
is 29.7 centimeter wide in our case). This allows us to compute an
approximate distance between the specular highlight and any first
order diffracted pixel which gives us the x and y coordinates of the
light direction (z is known from the sample-light source distance).
The view vector is computed by assuming that the center of the
image before homography correction corresponds to the center of
the camera. The x and y coordinates of the view vector are then
computed by using the distance between the center and a diffracted
pixel (the z coordinate is given by the sample-camera distance).

The non normalized half vector can be computed with the above
procedure and projected on the grating direction giving us a mea-
surement ofu. Finally, the grating periodicity can be estimated using
Eq. 3 with n = 1 for first order diffraction measurements. We found
that with the above approximate calibration procedure, the peri-
odicity can be estimated up to a scaling factor which is sufficient
for reproducing the desired visual effect in rendering. If required,
explicit camera calibration can instead be employed for increased
accuracy of periodicity estimation (see Section 7.1). Having recov-
ered both the orientation and periodicity maps, we can evaluate
the BRDF of Eq. 2 in real-time on a modern GPU (e.g., NVIDIA
1080). Fig. 8 shows a point light source rendering of the polygonal
holographic surface with the recovered orientations and a single

(a) (b)

Fig. 8. Rendering comparison to photograph for polygonal holographic
paper. (a) Photograph. (b) Rendering. Inset shows HSV color visualization
of the recovered orientation map.

measured periodicity for the entire sample that qualitatively well
matches a reference photograph.

4.5 Stochastic holographic surfaces
The method described in previous sections work well for recovering
the orientations and periodicities of regular non-stochastic holo-
graphic surfaces. However, a specific type of holographic surface
is made of a stochastic texture that generates a distinct diffraction
pattern (e.g., spiral in Fig. 7b). In such samples, the grating dots are
printedwith a random orientation and periodicity and in such aman-
ner that it creates the desired diffraction pattern at the macro-scale.
We model this randomness as being drawn from a joint probability
distribution on the orientations and periodicities. We use a spectral
filter on the light source and employ the same method described in
Sections 4.3 and 4.4 to measure a set of orientations and correspond-
ing periodicities that are found on such a holographic surface. Given
the stochastic randomness, we employ a single input photograph
for the measurement. The obtained set is an estimation of the true
joint probability distribution of orientations and periodicities. Note
that the spectral filter is required as different wavelengths can be
diffracted by the same set of angles/periodicities giving redundant
information and an incorrect estimation of the joint distribution.

The estimated joint distribution can then be used to recreate ap-
propriate tangent and periodicity maps that will generate a similar
diffraction pattern in rendering. This is done by stochastically cre-
ating a texture from an input shape (e.g disk, square), with each
shape having an orientation and periodicity drawn from the esti-
mated joint probability distribution. Fig. 9 shows an example of
the rendering of a spiral diffraction pattern created by a stochastic
texture made of squares. The joint distribution of orientations and
periodicities of the squares is estimated from the corresponding
input photograph. As can be seen, the generated maps automati-
cally reproduce a spiral in rendering which qualitatively mimics
the photograph. Note that our approach is related to the work of
Jacob et al. [2014] on a microfacet BRDF model for the rendering
of surfaces with stochastic specular glitter. However, our method
goes further to render holographic glints besides specular ones from
measurements.

4.6 Limitations
The above described simple acquisition method works with a few
photographs under the assumption that the holographic surface is
made of repeating tiles and is large enough to cover the specular
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(a) Photograph (b) Rendering

Fig. 9. Comparison of the photograph and rendering of a stochastic paper
with varying periodicities. Inset shows HSV color visualization of the grating
orientation map.

(a) (b)

Fig. 10. Limitations of flash illumination based acquisition. (a) SIGGRAPH
2015 registration badge holographic logo is an example of a small non-
repeating sample. (b) Kinematic tile with continuous tangent variations is
discretized with flash illumination measurements.

lobe and first order diffraction. This is not always the case, as can
be seen in the case of the holographic logo on a SIGGRAPH 2015
registration badge (see Fig. 10a). For such samples, recovering the
orientations and periodicities is difficult using a point light source
due to the sample size as well as its non-repeating structure. Even for
larger samples with repetitive tiles, due to the sampling introduced
by a small set of flash illumination photographs, tangent fields with
continuous variations are discretized in the estimated tangent map.
This can be seen for the kinematic tile in Fig. 10b. These inherent
limitations of the flash illuminationmeasurement are overcomewith
a more complex setup employing an area source and polarization
imaging as explained in the next section.

5 ACQUIRING NON-REPEATING SAMPLES
We now describe a complementary acquisition method for resolv-
ing spatially varying orientations and periodicities in planar holo-
graphic samples exhibiting true spatial variation without any re-
peating texture. Instead of a point source illumination, our second
method employs an area source in the form of an LCD panel and
further exploits the inherent LCD polarization in conjunction with
polarization imaging on the camera to obtain an independent esti-
mate of grating orientation and periodicity at each surface point.
Unlike when using flash illumination, our second method can han-
dle continuous variations in grating orientations as well as deal with
small samples with fine geometric spatial variations, especially those
separating diffractive regions from surrounding non-diffractive re-
gions. We begin by first describing our polarization imaging setup
and providing an intuition for such measurements in Section 5.1.
We then detail the mathematical basis for our imaging setup by de-
scribing formulations for specular reflectance as per Jones calculus
in Section 5.2. Thereafter, we present derivations and formulations

(a) (b) (c)

Fig. 11. Acquisition setup for circularly polarized illumination. (a) Camera
and LCD Panel are both positioned fronto-parallel to the sample. (b) A
quarter-wave retarder film is mounted at 45◦ orientation in front of the
linearly polarized LCD screen to produce circularly polarized illumination.
Camera is mounted with a green spectral filter and a rotatable linear polar-
izing filter. (c) Optical equipment for filter mounting and rotation.

along with explaining our method details and an example result
for the kinematic tile in Section 5.3. Finally, we present the deriva-
tions and steps for estimating periodicities on a relative scale in
Section 5.4.

5.1 Polarization Imaging Setup
Fig. 11 shows the acquisition setup consisting of an LCD panel (HP
EliteDisplay E242) and a DSLR camera (Canon 750D), both posi-
tioned near fronto-parallel with respect to the planar sample. The
LCD panel is used to simultaneously illuminate an entire diffractive
patch on the sample in a single photograph with uniform white
illumination. The LCD panel inherently emits linearly polarized
illumination which we exploit to image reflected polarization off
the sample surface using the camera. We further mount a square
sheet of quarter wave retarder (Edmund Optics thin film retarder)
at a 45◦ orientation in front of the LCD panel to convert the linearly
polarized illumination into circularly polarized. In order to do this,
we limit the uniform illumination pattern on the LCD panel to a cir-
cular disc inscribed within the diagonally oriented square retarder
sheet. We will explain later in this section why this conversion to
circularly polarization is important for the measurements. For imag-
ing the polarization signal, we attach a rotatable linear polarization
filter and a fixed green spectral filter in front of the camera lens
using a professional filter mounting kit (LEE 100 SYSTEM). The
green filter is mounted between the polarizer and the lens and is
employed as previously to spectrally isolate the signal around a
single wavelength for analysis.

Motivation: For this method to resolve grating orientations from a
single non-repeating tile, we need to ensure that each grating dot is
lit to reflect light into camera. An obvious choice would be to use an
area-light illumination. In past, an LCD panel with appropriate struc-
tured lighting patterns has been employed to estimate reflectances
with spatial variations due to local surface anisotropies [Tunwat-
tanapong et al. 2013]. To understand the limitations of structured
lighting illuminations for our task, consider a tile on a holographic
paper with kinematic rotation pattern as shown in Fig. 12a. The
tile consists of ten quadrants of continuously rotating grating ori-
entation varying radially from the center, and four smaller such
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(a) Response to room lighting (b) Response to sinusoidal lighting

(c) Polarized illumination and imaging

Fig. 12. Holographic paper with kinematic effects. (a) Tile viewed under
room lighting shows radial bars of different colors and brightness. (b) Top
row show radially varying sinusoidal patterns that are projected using an
LCD panel and bottom row shows the corresponding images of the tile. Pixel
brightness in these images is strongly correlated with local surface normal
variations and poorly correlated with grating orientations. (c) A pair of
images acquired with the polarized imaging setup described in Section 5.1.
Rotating the linear polarizer filter by 45◦ turns local minimas of brightness
in left image into local maximas in the center image. These changes are
illustrated with white line markers for two local minima segments near the
top-left corner. Ratio of intensities in two green images is normalized and
shown on the right to illustrate relative changes with grating rotation.

centers of radial variations at the tile corners. Fig. 12b shows the
kinematic tile’s response to two radial sinusoidal patterns emitted
by the LCD panel, with the phase of the two sinusoids shifted by a
45◦ rotation with respect to each other. The sinusoidal patterns are
inspired by specific spherical harmonic illumination employed by
Tunwattanapong et al. [2013] to estimate local anisotropy. However,
unlike surface grooves of brushed metal, the grating anisotropy of
the kinematic tile is at a much smaller scale, rendering the sinu-
soidal lighting patterns ineffective for estimating the local grating
orientations. Instead, the sinusoidal patterns can be seen to be re-
sponding to the local surface mesostructure (bumps) on the surface
of the holographic paper. Instead, when we illuminate the tile with
uniform polarized illumination from the LCD panel and take two
photographs with a linear polarizer in front of the camera mounted
at 0◦ and 45◦ orientation (see Fig. 12c), we observe subtle changes in
the grating response to the polarizer orientations which can be more
clearly seen in the ratio of the two images on the right (grayscale).
Clearly, polarized illumination can help resolve grating orientations.

Intuition: Diffraction is essentially a wave optical phenomena
which can be influenced by the polarization of incident light wave.

Employing polarization imaging can reveal local grating orienta-
tions. This is due to relative interference of the incident polarization
by the local grating orientation which results in systematic mod-
ulation of specular reflections. In fact, we show later how these
modulations for each grating dot in our setup can be approximated
with a sinusoid that is a function of the rotations for the linearized
polarizer filter in front of the camera. The phase offsets for these ap-
proximating sinusoids are directly related to the grating orientations
of the dots.

Circularly polarized illumination: Our LCD panel emits linearly
polarized light with a horizontal orientation. Such linearly polarized
lighting itself has a well-defined relation to diffractive reflectances
and this relation could in theory be exploited for estimating grating
orientations. However, holographic grating samples are commonly
manufactured with an additional protective plastic layer which ex-
hibits some birefringence. This causes practical problems of ambigu-
ity in estimating grating orientations when using linearly polarized
illumination (please see the supplemental material for details). We
overcome this ambiguity in our measurements by transforming the
emitted linearly polarized light into circularly polarized illumination
using the quarter wave retarder. For acquisition, we still employ
linear polarization imaging in conjunction with circularly polar-
ized illumination, and additionally employ a green spectral filter
in front of the lens for removing the interference of other spectral
bands. Now, for our example in Fig. 12c, the ratios of intensities
shows how rotation of the linear polarizer in front of the camera in
the proposed setup systematically effects the intensities of reflected
light, depending upon gradually varying grating orientations within
the kinematic tile. Thus, we image a sample under different rota-
tions of the polarizer filter and employ those images to compute
spatially varying grating paramaters through sinusoidal approxi-
mations, as explained later. Next, we mathematically describe the
effect of various optical elements in our acquisition setup.

5.2 Grating reflectance and Jones calculus
In this section, we formulate the intensity modulation due to specu-
lar reflection by an individual grating dot in our acquisition setup.
These formulations are used in the next subsection to establish near
sinusoidal nature of intensity variations relating to camera polarizer
filter rotations. Fig. 13a depicts the imaging schema using a slice
along the X -O-Z plane of a global frame of reference. The planar
sample is placed at a distance d from the origin with its surface
normal pointing towards −ẑ. Fig. 13b shows a single holographic
dot with local orientation1 θ in the X -O-Y plane and periodicity p.
For simplicity, we assume that the angle of incidence ϕi → 0 with
near fronto-parallel placements and a baseline b << d between the
camera and the LCD screen. We employ Jones calculus to express po-
larization transformations that a beam of polarized light undergoes
while travelling from the LCD panel to the camera. Please refer to
Section 3 in the supplemental material for common configurations
and transformations of polarized light in Jones calculus. Consider
a circularly polarized monochromatic beam with wavelength λ as
emitted from its source (LCD panel + wave retarder) in our setup.
1θ is negative for the grating dot depicted here as it has a clockwise rotation in the
right-handed frame of reference.
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(a) Imaging schema (b) Grating plane of incidence

Fig. 13. Optical geometry for our polarization imaging setup.

This beam is expressed as Ei = ei · e
−i(k̂·x−ωt ) with ei = (1,−i)T

as the Jones vector of complex amplitudes for its polarization and
k̂ = (2π/λ)ẑ as its wave-vector, Here, x = d ẑ is the position vec-
tor for the grating dot under consideration and ω is the temporal
angular frequency for light propagation. Ei is subject to multiple
polarization transformations before reaching the camera through
ŕeflectance’ by the grating dot. The final transformed light wave,
say S, can be expressed as

S =
(
rpF × Rf × BR + tpS

)
× Ei , Ei = ei · e

i(k̂·x−ωt ) , and (4)

S = F × Rf × BT × Rd
T × D × Rd × BT (5)

=

[
1 0
0 0

] [
cosψ sinψ
− sinψ cosψ

] [
1 0
0 ei∆n

] [
cosθ − sinθ
sinθ cosθ

]
×[

−1 0
0 R−/R+

] [
cosθ sinθ
− sinθ cosθ

] [
1 0
0 ei∆n

]
. (6)

Eq. 4 represents summation of two waves: (a) a part of the incident
wave Ei which is reflected back from the interface between air and
the top plastic layer, and (b) second wave is the rest of Ei which
has undergone transmission through the plastic layer followed by
diffraction at the aluminium grating interface and finally transmis-
sion out from the plastic layer to air. rp and tp represent relative
reflectance and transmittance factors for the plastic layer2. The first,
immediately reflected component of Ei undergoes a birefringent
retardation BR due to the plastic layer. This causes it to become
slightly elliptically polarized. This partly reflected wave reaches
the camera which has a linear polarizer in front of it. Effects of the
polarizer filter are mathematically expressed by first rotating the
incoming elliptically polarized wave in its local frame of reference
through multiplication with the Jones matrix Rf . Rf represents a
rotation ofψ between the linear polarizer filter and the optical axis
of the birefringent plastic (assumed to be along X-axis). Finally, the
resultant wave is multiplied with matrix F to express filtered passage
through the polarizer filter.

For the second wave component which is transmitted, diffracted
back and finally transmitted back into the air3, its net optical trans-
formation is given by S which includes following sequence of trans-
formations: (a) First, a birefringent retardation BT occurs on trans-
mission through the plastic which converts the wave into elliptically
polarized. Without loss of generality, we assume that the optical
2Since we work with near normal incidence conditions, reflectance and transmittance
factors are approximately same for both s- and p-polarization.
3for simplicity, we assume zero absorption in the plastic layer.

Table 1. Symbols and notations.
Notation Description

Ei Monochromatic electromagnetic wave incident on a holographic dot
Si Electromagnetic wave scattered back to the camera by the dot

rp ,tp Scalar coefficients for reflection and transmission with the top-layer plastic mate-
rial

BR Birefringent retardation upon reflection by the top plastic layer
S Total optical transformation experienced by the wave that get transmitted through

the plastic layer, reflected back by the aluminium layer and finally transmitted out
of the plastic layer

BT Birefringent retardation upon transmission into the plastic layer
Rd Rotation from the global to the local frame of reference for the grating dot
D Diffractive transformation
Rd Rotation from the global to the local frame of reference for the linear polarizer in

front of the camera
F Linearly polarized filtering transformation

∆n Retardation phase difference during transmission in the plastic layer
θ Clockwise rotation angle between the global and the local frame of reference for

the grating dot
R+ , R− Complex scale factors for p-polarized and s-polarized wave components in the

grating dot’s frame of reference
ψ Clockwise rotation angle between the global and the local frame of reference for

the grating dot

axis of the birefringent material is aligned with X-axis. If this is not
the case, we have to rotate ei, adding equal phase shifts to both po-
larizer vectors which can then be ignored in our derivation; (b) This
is followed by diffraction. To express reflective diffraction, we first
apply a rotation of the transmitted wave into the local frame of ref-
erence for the 1D sinusoidal grating by multiplying its Jones vector
with matrix RD. RD corresponds to the relative angle θ between
the optical axis of birefringence and the grating X-axis. Next, the
elliptically polarized light wave gets diffracted from the grating
interface according to the transformation D and travels back with
the wave-vector along −ẑ. Note that we explicitly include −1 in the
top-left of D to model the 180◦ relative phase shift upon reflection,
which reverses the handedness of the incident wave. Next we bring
back the diffracted wave in the original frame of reference by multi-
plying its Jones vector with RD

T . The diffracted wave experiences
same amount of birefringence BT on its way out through the plastic
layer. The exited wave reaches camera with equal phase shifts in
both components of elliptic polarization. These phase-shifts do not
change their complex amplitudes or the intensity of reflections and,
thus, we ignore them; (c) Finally, as for the first wave component,
the second wave component undergoes filtering by the linear polar-
izer in front of the camera. As before, this filtering transformation is
expressed through multiplication with the combined matrix F × Rf .
The above two wave components superimpose to form the final
‘reflected’ wave S, as received by the camera. All terms involved
in Eq. 4—6 are tabulated in Table 1. Our method works with rel-
ative intensities. Thus, all equal scaling or equal phase shifts to
complex amplitudes of both polarizer vectors are ignored while
deriving above equations. In the following, we describe how Eq. 6
is employed to measure grating orientations with sinusoidal fitting.

5.3 Grating orientation measurement
For plastic materials rp ≪ tp near normal incidence conditions.
Thus for S, its intensity

I =
(rpF × Rf × BR + tpS) × ei

2
≈ ∥S × ei∥

2 , (7)

with tp ≈ 1 for our setup. Since our method works with relative
intensities, the above approximation is valid even for tp 0 1 as long
as it is far greater than rp and the bottom layer diffracts back nearly
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all the light4. We now present simplification of Eq. 6, which defines
S for devising a method to estimate grating orientations.

Case I: No birefringence. Let us consider the simplest case first,
i.e. no birefringence. In this case, ∆n = 0 and multiplying ei with
rotation matrix Rd only changes the phase of the two components
of the circularly polarized incident wave Ei . Thus, without loss of
generality, we can set θ = 0◦. In this case, I = ∥F × Rf × D × ei∥

2

and it further simplifies to:

I = |−(cosψ + iR sinψ )|2 , where R = R−/R+. (8)

In general, R is a complex number and substituting R = reiζ in
Equation 8 gives us

I = 1 + (r2 − 1)(1 − cos 2ψ )/2 − r sin ζ sin 2ψ . (9)

Setting ζ = 0 gives us our first intuition about sinusoidal profiles
for the specular intensity I . In this case, (9) clearly expresses I as a
sinusoidal function ofψ which represents the rotations of the linear
polarizer filter. Thus, for more general cases, we seek to relate or
approximate I as a sinusoidal function ofψ . With this aim, we first
normalize I . Let Ī be the mean intensity at a grating dot/pixel for
multiple rotations of the linear polarizer filter and Iσ be its scaled
standard deviation such that

Ī =
1
π

∫ π

0
Idψ and I2

σ =
2
π

∫ π

0
(I − Ī )2dψ . (10)

In this case, the mean Ī = 1 + (r2 − 1)/2 and subtracting it from I
gives us I0 = I − Ī = −(r2/2−1/2) cos 2ψ −r sin ζ 2ψ . I0 is composed
of two scaled sinusoids but it does not lend itself to any further
analytical simplification. However, we found that for most practical
cases, normalizing I as Inorm = I0/Iσ does trace out as a curve
that can be well-approximated by a single sinusoidal at twice the
frequency ofψ . Thus, we need to devise a way to compute Īr and
Iσ from images in our polarization setup.
Let the grating dot make an angle θ with our fixed X-axis and

let the polarizer filter make an angleψref with the same X-axis. In
this case, ψ = ψref − θ . Next, to compute Īr and Iσ , we vary ψr ef
anticlockwise from 0 to −π against X-axis, with N equal step sizes
and take corresponding images. We assume that each pixel x corre-
sponds to a single grating dot and it records a sequence of observed
intensities Ix(ψref). We use this set to statistically determine its mean
Īx
r and its standard deviation as Ix

σ . Using these values we compute
Ix
norm(ψref) = (Ix(ψref) − Īx

r )/I
x
σ . Next, we fit a cosine function to

discretized sample points Ix
norm(ψref) with its frequency twice as

that for the polarizer filter rotation step. For the best fitting cosine,
its phase offset angle η gives the grating orientation θ = η/2. Repeat
above steps for each pixel in the tile solves for corresponding grating
orientations. With simulations to be presented next, we find that
the proposed method solves for grating orientations only upto an
arbitrary global orientation offset factor. However, this global offset
does not impact final renderings subjectively, as demonstrated later.

4This is true for our samples with a top-layer of only few micrometers in thickness
and the bottom layer is with a metallic coating

(a) Fitting sinusoids in Case I (b) Specular Intensity Inorm

Fig. 14. Simulated specular intensities for different rotations ψref of the
polarizer filter and grating rotations θ , for cases with no birefingence. (a)
shows sine fitting for 0.5 < r < 1.5, where R = R−/R+ = r e iζ . RMS Error
for fitting was ≈ 0.002 ∀r shown here. (b) shows specular intensity as a
function ofψref and θ with indicated color-coding. Red dots overlaid on the
intensity map mark respective row maxima and the all fall on a straight
line. Thus θ varies linearly with ψref when mapped via these maxima.

Simulations for Case I:. We found that sine fitting on Inorm = I0/Iσ
works equally well while simulating Equation (9) for a large range
of 10−4 ≤ r ≤ 104. Figure 14a shows simulated values for Inorm
and corresponding sinusoidal fits when 0.5 < r < 1.5, ζref = π/6
and θ = 0. Similarly, Figure 14b shows maps for relative specular
intensities with r = 1.1, ζref = π/4 and for all values of θ = 0 to π . In
this map, we can see that peak intensity values (bright yellow) trace
out a linear relation θ = ψ +ψg_off, where ψg_off is a global offset
and it varies with R. We tried other values for ζref = π/3, π/2 and π
and the intensity map remains the same as in Figure 14b. Thus, we
can use the same method of sinusoidal fitting as in Case I to resolve
grating orientations upto an arbitrary global offsetψg_off.

Case II: General configuration with birefringence. For samples with
birefringence, Eq. 6 cannot be further simplified. Thus, to study the
influence of birefringence, we simulated Eq. 6 for different values
of birefringence value ∆n and the differential diffractive factor R =
R−/R+ in Jones matrix D. For a fixed set of values for R and ∆n,
we first compute spectral intensity I = ∥F × Rf × D × ei∥

2 for the
discretized range of values for θ and ψref. Next, for each value of
θ , we normalize I to Inorm. Fig. 15a shows one such map for the
case where the bottom layer is made up of aluminium (complex
refractive index: 1.0003 + 6.5044i for λ = 560nm) and the top layer
is cellophane (mean refractive index n = 1.4680). With these values,
we compute R = R−/R+ for a small angle near ϕi = 0◦. For up to
ϕi = 10◦, the value for R did not change much. We repeated above
simulations with six other metals for the base layer (silver, brass,
iron, gold, copper and platinum). Intensity maps for these metals
are included in the supplemental material. For all these cases and in
general, we found that for a birefringence of up to ∆n < 10, there is a
near linear relation betweenψref and θ as highlighted by the dotted
line in Fig. 15a. In dot matrix grating manufacturing process using
hot embossing, the plastic layer is typically 1µm thick [Jiang et al.
2014]. Thus, our method can work for materials with birefringent
refractive index difference of upto 0.0155. This value covers a large
variety of typical birefrengent materials (see [Roff and Scott 2013,
Table 60.T1]).

To examine the robustness of our method, we experimented fur-
ther with hypothetical values for R. We set R = 1.001 × exp(iζ )
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(a) Inorm (b) Inorm (c) Inorm (d) Doubly normalized intensity Înorm Vs Inorm

Fig. 15. Simulated specular intensity maps for different polarizer filter rotations ψref and grating rotations θ . (a)-(d)(left) visualize specular intensity Inorm as
a color-coded function ofψref and θ . All maps correspond to cases with birefringence. (a) corresponds to a practical case of aluminium coated under cellaphone
for gratings. (b),(c) and (d) correspond to hypothetical cases of R = R−/R+ = r exp iζ which differ only in their ζ values. Red dots indicate a mapping between
θ and ψref as established through row maxima in each sub-plot. (a) shows that for low grade birefringence of upto 10◦ we have near linear mapping between
ψref and θ . Black line in each map indicates expected linear relation in absence of birefringence. For (b) to (d) as ζ increases, the mapping between ψref and θ
becomes increasingly nonlinear. However, as shown in (d)-right, pre-normalizing images alleviates this issue to produce near linear mappings.

with ζ as a variable while keeping birefringence fixed at ∆n = 3◦.
Fig. 15b,c and d–(left) show that as ζ varies from 164◦ to 172◦ to
176◦, the mapping betweenψr e f and θ becomes highly non-linear,
as established through Inorm maxima for each θ . To elevate this
issue, we propose a pre-normalization step where we first subtract
the mean intensity for all diffractive pixels in an image to first give
Î = I −

∑
N

I
N for N diffractive pixels in the image. Next, using

Î in place of I for normalization as present above, we compute
Înorm =

Î− ¯̂I
Îσ

. Fig. 15d illustrates the importance of this step with
an arbitrary value for R. Inorm in the left image shows far from
usable mapping between ψref and θ with red dots. In this image,
each column of the map is considered as an image and used for
pre-normalization. Per image normalization rectifies the issue and
Înorm provides perfectly usable linear mapping betweenψref and θ
as shown in Fig. 15d–(right). In effect, pre-normalization separates
and discounts the effects of polarization ellipticity changes due to
birefringence from those compounded by diffraction. At the same
time, cases with low birefringence are agnostic to it. These facts are
verified with qualitative evaluations in Section 6.2 and quantitative
evaluations in Section 7.3. Section 5.3 in the supplemental material
provides additional details on pre-normalization.

Results. We now demonstrate the working of this method with
the kinematic exemplar from Figs. 2 and 12. Kinematic discs show
ten-spoked radial pattern of sharp diffracted colors. The spokes ro-
tate as light source moves horizontally or vertically. This subjective
effect appears due to continuously varying gradient orientations
which are difficult to capture using our flash illumination method.
Fig. 16a shows grating orientation map for a single tile using HSV
color-coding. We used 13 images taken with linear polarizer ro-
tating by 15◦ between images to acquire the orientation map. We
used MATLAB function imregister() to align input images that have
offsets due to slight camera movement from manual rotations for
the polarizer plate. The exemplar tile is 25mm × 25mm in size. Our
grating orientation map has continuous variations from 0 to π in
radial directions which are repeated ten times. We measured mean
correlation factors for sinusoidal fitting (see Section 7.3). Even with

Raw

Filtered
(a) Orientation map

Photograph

Rendering
(b) Rendering comparison

Fig. 16. Grating orientation map estimated using our polarized acquisition
method for a kinematic exemplar tile. 13 images at 15◦ intervals of filter
rotation where used. (a) Raw and bilaterally filtered (σpix = 3, σθ = 0.35
radians) orientationmaps inHSV colors. (b) Renderingwith this tile repeated
over a plane subjectively matches corresponding photographs. Each inset
shows a close-up view of corresponding white box from same image.

high numerical accuracy for this fitting, our method results in a raw
map with local variations due to: (a) surface bumps or scratches:
they cause local surface normal to violate the near-normal/specular
assumption for imaging, (b) grating imperfections: they do not have
a valid grating orientation to begin with, (c) overlapping grating
dots under single pixel: they violate the assumption about a single
grating orientation under pixel, (d) to high a pixel resolution: in this
case the observed pixel further modulates the coherence window to
cause pixel aperture diffraction effects, and (e) low level of elliptic
polarization by the grating: this results in a weak sinusoidal signal
that is easily corrupted by noise. We improve imperfections from
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these causes by applying an adaptive bilateral filter to the orien-
tation map, as seen in Fig. 16a. We discuss the effects of bilateral
filtering on renderings vis-a-vis the use of a raw map, later in Sec-
tion 6.2 (see Figure 18). Here, Figure 16b shows the rendering of a
20cm× 30cm planar plate with our filtered map repeated all over it’s
surface. We can subjectively validate that circular bands of colorful
spoked-wheels appears around the central highlight in our render-
ing, just like that for the image above. Also, the key subjective effect
of ten bright spokes rotating with light movements is distinctly visi-
ble in the accompanying supplemental video. Additional results for
the polarization imaging method are presented later in Section 6.2.

5.4 Grating periodicity measurement
The polarization imaging method can also be used to compute grat-
ing periodicities on a relative scale. Examining Eq. 6, we can see that
only Jones matrix D changes with the grating dot’s periodicity. Let
us study how diffraction efficiency for the zeroth-order diffraction
changes with grating periodicity under normal incident illumination.
Consider a 1D grating expressed as a height-field h(x ,y) with pe-
riod p for variations only along its X-axis. Under conditions for our
imaging setup, the specular reflectance from diffraction is related to
the sinusoidal height-field h(x ,y) through spectral diffraction BRDF
given by [Stam 1999, Equation (7)] as

f
p
r (ωi = 0,ωr = 0) ∝ |F{p(x ,y)}(0, 0)|2, where (11)

F is the Fourier transform of an auxiliary function:
p(x ,y) = ei

2π (cosθi +cosθr )
λ h(x ,y).ωi andωr are solid angles represent-

ing incidence and view directions and θi ,θr are angles between the
surface normal and these directions respectively. For our specu-
lar imaging setup with near normal incidence, both tend to align
with the surface normal: F{p}(0, 0) =

∫ −∞

−∞

∫ −∞

−∞
ei

4π
λ h(x ,y)dxdy.

Now consider another grating with period s = p/K , and the cor-
responding transform F{p2}(0, 0) =

∫ −∞

−∞

∫ −∞

−∞
ei

4π
λ h(Kx ,y)dxdy.

Changing variable x∗ = Kx and simplifying this equation gives
a simple relation F{p2}(0, 0) = 1

KF{p}(0, 0). Since the constant
of proportionality in Eq. 11 does not change with grating peri-
odicity, we obtain the relation between corresponding BRDFs as
fkr (ωi = 0,ωr = 0) = 1

K 2 f
p
r (ωi = 0,ωr = 0). This relation is valid

for both p- and s- polarizations5 and Ds = Dp/K . Thus, specular
intensities decrease proportionally with an inverse-squared law for
the decrease in the grating periodicity parameter p6, i.e. Ip/I s = K2

for respective specular intensities.
To compute relative periodicities, we first compute mean inten-

sity Imean for each pixel over all images taken with our setup. We
then divide each Imean by the maximum of all Imean values. The
normalized value represents relative 1

K 2 terms. We then take the
square roots to determine relative changes, i.e. 1/K , with respect
to the slowest grating dot or in other word, the grating dot with
the longest periodicity p. At runtime, p can be chosen arbitrarily
and relative periodicity of all other pixels can then be computed by
scaling p with 1/K . More generally, we re-target the range 0—1 for

5The BRDFs are linearly related to intensities where as Jones matrices are dealing with
wave amplitudes. Since intensities have a square-law relation with the amplitude, the
corresponding scale factor for Ds is the square-root of 1

K6Decrease in period p means more grating lines per mm.

(a) (b) (c)

Fig. 17. Measured exemplar tiles with the flash illumination method. The
orientations are encoded as the HSV color wheel mapped to the 0 to 180
degrees range. (a) Holographic gift bag with a star pattern. (b) Holographic
gift bag with circles. (c) Stochastic holographic paper.

1/K map to an arbitrary range [pmin,pmax] for periodicities. Results
with periodicity measurements are presented in Section 6.2.

6 ADDITIONAL RESULTS

6.1 Flash illumination measurement
We present several orientation tiles acquired using the flash illu-
mination setup in Fig. 17. Rendering comparison to photographs
of these samples are presented in the accompanying supplemental
document. The measured exemplar tile is repeated 12 × 8 times
in order to create a full size holographic paper. The rendering is
computed with a Gaussian point light source assuming a cool blue
light spectrum (inverse of CIE illuminant A as employed by [Toisoul
and Ghosh 2017a]) which looks visually similar to the spectrum of
the smartphone flash. The spectral integration is computed in CIE
XYZ space inside a fragment shader using the BRDF presented in Eq.
2, and with a wavelength sampling of 5 nanometers. Note that the
runtime spectral integration allows to render holographic surfaces
with varying periodicities.

6.2 Polarization imaging
Qualitative evaluations and adaptive bilateral filtering. Fig. 18

shows results for the holographic SIGGRAPH logo acquired using
polarization imaging. The logo is about 15mm in diameter which
makes it too small for the flash-illumination method. Our polariza-
tion imaging method solves for grating orientations with a very
high accuracy of sinusoidal fitting. Note that the raw orientation
map shown in Fig. 18b exhibits some low frequency variations due
to local surface bumps on the sample during acquisition. These vari-
ations in the raw map lead to discontinuities in renderings (please
see Fig. 8a—d, Row 2, in the supplemental material). We propose an
adaptive and iterative bilateral filtering approach to clean measured
orientation maps. This filtering is done in corresponding sine-cosine
domain for orientation angles with arctan transformation for filtered
results. We adapt bilateral filtering to take into account: (i) mask to
disregard non-diffractive pixels while filtering, (ii) pixel-level error
measure for the sinusoidal fit, and (iii) a local window to compute
a median which is then used as the pivot value for bilateral filter-
ing. Fig. 18c shows a map with few(ten) iterations of filtering that
remove discontinuity artefacts for point-source renderings while re-
taining some realistic variations. Fig. 18e—h, second-row, show a few
renderings under point-light with this orientation map. These ren-
derings match subjectively well with reference photographs to light
up corresponding polygons with diffraction colors. Note that color
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(a) Photograph (b) Raw map (c) Filtered map 1 (d) Filtered map 2
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Fig. 18. Holographic SIGGRAPH Logo. Results generated with 12 images
with polarizer filter rotation steps of about 13◦. (a) Photograph in room-
light. (b)–(d) Grating orientation maps estimated using polarized acquisition
method. (b) Raw estimated map. (c) and (d) show two different levels of
filtering using our adaptive bilateral filtering. (e)–(h) collectively show pho-
tographs under flash-light in the top-row. Row 2 shows renderings using
filtered map 1 from (c) which show subjectively similar polygon patterns
as above them. (i) and (j) show renderings similar to the photo in (f) while
using maps from (b) and(d) respectively. (k) shows a similar rendering with
map (d) plus synthesized surface bumps.

tones differ slightly in our renderings as we do not model white-
light reflections from back-paper upon full transmission through
semi-transparent logo. We also filter the raw map heavily (with 50
iterations) to have only sharp variations in the map (see Fig. 18d).
Such a map is better suited for rendering with environment maps
as shown in Fig. 1c where polygons have low but continuous color
variations. Under torch-light, heavy filtering may introduce minor
bias and slight subjective deviations. For eg., in Fig. 8c (Row 4) in the
supplemental material, the orange triangle on the left is not simul-
taneously light under similar lighting conditions as for two rows
above. However, with slight deviation in the lighting conditions this
triangle reappears (not shown). Finally, Fig. 18k shows our render-
ing with a surface bump-map and the filtered orientation map from
Fig. 18d. Here, we employed the bump map of a holographic paper
acquired with step-edge illumination [Wang et al. 2011]. Fig. 18i
with raw map shows black regions with missing diffraction inside

(a) Image 1 (b) Image 2 (c) Orientation(d) Periodicity (e) Rendering

Fig. 19. Holographic emblem on a currency note. Results generated with
17 images at polarizer filter rotation steps of about 13◦. (a) Photographic
image under a mobile torch-light illumination is subjective matched by our
rendering with fine geometric details in (e). (b) Room-light illumination
reveals colorful bands across the emblem. (c) Gradient orientation map
from our CPI method also shows such bands in false colors. (d) Periodicity
variations are depicted in grayscale where white represents the longest
period (lowest line count per mm).

(a) Gradient stars (b) Fireworks: left—polarization, right—flash-illum.

Fig. 20. Orientation maps for tiles with continuously varying orientations.
(a) Gradient stars. (b) Fireworks tile. Leftmap is estimated using polarization
imaging. Right map is using flash-illumination. Fine details are retrievable
with polarization imaging.

yellow-orange polygons. These missing diffraction effects are recov-
ered well through heavy filtering (see Fig. 18j) and Fig. 18k shows
that adding surface bumps make renderings look more realistic.
Next, we present results with both grating orientation as well

as periodicity maps. Fig. 19 shows the rendering of holographic
emblem on a Ten pound currency note. This example has many
fine scale features that are well presented in our maps as well as
renderings. Fig. 19c shows near horizontal bands of different orien-
tations at the top of the emblem. They are consistent in geometric
layout with colorful bands observed in a reference photograph un-
der room-lighting (Fig. 19b). Non-diffractive pixels are represented
in black color and marked using an intensity threshold. Fig. 19d
shows the periodicity map with fine concentric rings of high period
lengths. These rings result in subtle diffraction effects, similar to
those observed in images. Finally, Fig. 19e shows a rendering with
these maps under a point-light with the crown lit in green similar to
the photograph. The rendered colors differ slightly in the rendering
as we do not match the spectral profile for the flash light and the
absolute periodicities of the real grating dots remain unknown. We
also resolved two more sample tiles with continuous orientation
variations. One has diffractive stars of different sizes while the sec-
ond one has firework like pattern of strokes, circles and small stars.
Figure 20 shows resultant orientation maps obtained using the po-
larization setup. We present renderings for these cases in Section 6
for the supplemental material. The example with firework pattern
is particularly difficult to solve with our flash-illumination method
due to its fine-detail features.
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6.3 Environmental rendering
Wepresent environmental rendering of various acquired holographic
papers in Fig. 21 using the rendering method of [Toisoul and Ghosh
2017b]. Note that for performance reasons, we do not take into
account the Gaussian coherence window in the environmental ren-
dering and only use a delta Dirac response instead. Note that such
an approximation does not affect the rendering result much as the
convolution with the environment already blurs the diffraction pat-
tern. We also used a wavelength sampling of 20 nanometers for the
spectral integration of the BRDF in order to increase the framerate
without noticing any color artifact in the diffraction pattern. At full
HD resolution, we achieved a framerate of 30 FPS with an NVIDIA
1080 GPU.

6.4 Artistic design
Having access to such orientation and periodicity maps enables
creation of new types of effects such as the one shown in Fig. 22.
The original gift bag with circles has a constant periodicity over the
entire bag, hence producing a circularly shaped diffraction. Here,
we apply a varying periodicity on each feature of the bag. Such
an effect was produced by dividing the orientations of the circles
in 180 bins, and giving a quadratic blend (Fig. 22a) or a sinusoidal
blend (Fig. 22b) between a minimum periodicity (corresponding to
0◦ orientation) and a maximum (corresponding to 179◦ orientation).
We provide the dataset of measured maps to the community.

7 EVALUATION AND DISCUSSION

7.1 Periodicity measurement from simulated data
We first evaluate the periodicity measurement using flash illumina-
tion as described in Section 4.4. As we do not have access to the true
periodicity of our samples, we employ simulated data generated by
our renderer. We rendered a holographic paper (here the polygonal
pattern) at single wavelength (λ = 560 nm) with a periodicity of
1.66 micrometers (600 lines per millimeter) under a Gaussian light
source to take into account the fact that our flashlight is not a strict
point light (Figure 23a). We save the corresponding non-normalized
half-vector (Figure 23b). As explained in Section 4.4, under the sinu-
soidal grating assumption, the first order of diffraction appears at
|u | = λ

a where u is the projection of the non-normalized half-vector
on the grating orientation. Using our simulated data, we found a
periodicity that varies between 1.618 and 2.326 micrometers with
an average of 1.939 µm and a standard deviation of 0.15µm. The
slight inaccuracy in the measurement is due to both the Gaussian
coherence window that yields a Gaussian response to a diffracted
wavelength instead of a delta Dirac (more details the supplemental
material), as well as the Gaussian spread of light. However, this
demonstrates that the periodicity of a sinusoidal grating can be
measured accurately enough to be able to reproduce the subjective
effects in rendering.

7.2 Manual selection of tiles
In this section we evaluate the manual selection of the tiles in the
flash illumination method and look at the consequences of slight
misalignments between the tiles on the recovered orientations. We

manually selected a single reference tile (Figure 24a) and automati-
cally inferred all the other tiles on the holographic paper by assum-
ing that their position are given by a translation of the reference
tile. Such a process leads to a misalignment of the tiles with regards
to the reference tile (Figure 24b). We then compute our algorithm
using the set of misaligned tile and recover the master orientation
tile shown in Figure 24c. As expected the misalignments produce
errors in the recovered orientations especially at the edges of the
polygons compared to the reference solution shown in Figure 8.

7.3 Orientation measurement of a CD disk
We now present quantitative evaluation for the polarization imaging
method. We solved for the grating orientations on an unwritten
SONYCD, which has a known arrangement of diffractive tracks. The
tracks spiral out with grating orientations being tangential to local
radial vectors for the disc. Fig. 25a shows the orientation map for a
central region of the disk, 100mm in diameter. For error estimation,
we need to first compute and deduct the global offsetψg_off. Fig. 25b
shows the reference map which is used for comparison to compute
ψg_off and Fig. 25c shows the estimated grating orientation map
after accounting forψg_off. This aligned orientation map has a mean
error of µerror = 3.616◦ and standard deviation σerror = 3.016◦ in
the estimates. These error estimates are affected by the inner ring
that has some text prints and systematic deviations. The sample size
here is also rather large and we deviate from near-normal conditions
near the edges. Finally, the actual signal encoding the sinusoid has a
much lower amplitude in comparison to the mean intensities in the
diffractive region. We might be able to achieve lower errors using
HDR imaging.

We also quantify sinusoid fitting errors in solving grating orien-
tations for two samples. We measure these errors with normalized
correlation factors between the fitted sinusoid and the Înorm data
for each grating dot/pixel in the tile. With value 1 indicating a per-
fect fit, we found mean correlation error factors for the kinematic
and SIGGRAPH logo tiles to be 0.942 and 0.984 respectively.

8 LIMITATIONS AND METHOD COMPARISON
Both of our measurement approaches have advantages and disad-
vantages. Both usually employ a small number of photographs: one
to five for flash illumination, and a minimum of four photographs for
polarization imaging. The flash illumination method has the advan-
tage of being very simple and accessible without the requirement of
any additional optical components. It works better for holographic
surfaces with discrete orientations, creates a discretization of con-
tinuously varying tiles and leads to measurements at a lower spatial
resolution due to requiring to observe a larger sample area. Besides,
it works under the assumption of tileable surfaces and cannot re-
cover orientations on small holographic patterns. However, it can
resolve stochastic holographic surfaces as well as measure absolute
periodicities assuming that the camera is calibrated. The polariza-
tion imaging method has complementary strengths and weaknesses.
It can resolve non-repetitive holographic patterns with fine features
and continuous variations of orientation. However, it is limited to
samples of smaller size (upto 7 × 7 cm2) due to reliance on near
normal incidence imaging with LCD illumination. This method gen-
erally works well with 6 to 12 images. However, it may require
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(a) (b) (c) (d)

Fig. 21. Environmental renderings. (a) Circles holographic paper in bar environment acquired with the flash illumination method. (b) Kinematic pattern in
kitchen environment acquired with the polarized imaging setup. (b) Hologram on a ten pound bank note in bar environment acquired with the polarized
imaging setup. (c) Holographic paper with gradient variations inside the stars in bar environment measured with the polarized imaging setup.

(a) (b)

Fig. 22. Creating new artistic effects using the measured maps by varying
the periodicities. Periodicity variation following a square curve (a) and a
sine squared curve (b).

(a) (b)

Fig. 23. Computing the periodicity of the diffraction grating from a green
spectral measurement (a) with known half vector directions encoded as
XYZ=RGB (b). The data was generated with a renderer, using 600 lines per
millimeter for the diffraction grating and λ = 560nm.

(a) (b) (c)

Fig. 24. Computation of the orientation tile with slight misalignment be-
tween the tiles. (a) Reference manually selected tile. (b) One of the mis-
aligned tiles. The red square shows the top left corner of the reference tile
(c) Recovered orientation map with misalignments between the tiles. A
higher error is visible in the orientations especially at the border between
two polygons compared to that shown in Fig. 8.

a larger number of measurements for some samples (up to 17 in
our experiments) due to low SNR of the signal for sinusoidal fitting

(a) Raw map (b) Reference map (c) Re-aligned map

Fig. 25. Quantitative evaluations for polarizationmethod using an unwritten
CD disk. The region used for evaluations is about 100mm in diameter. (a)
The raw orientation map estimated by our method. (b) The corresponding
reference orientation map. (c) The raw map rotated to aligned with the
reference map. For the estimates: µerror = 3.616◦ and σerror = 3.016◦.

compared to themean intensity, and can only recover relative period-
icities and orientations. In summary, while the polarization imaging
approach is indeed more general, it is also more complicated from
the perspective of measurement and solving the inverse problem.
This is why we employ the simpler flash illumination setup for repet-
itive samples which can be resolved well with a few measurements
using flash illumination. The two methods also share a common
limitation: currently none of them can solve for orientations and
periodicities in multi-layered holographic surfaces.

9 CONCLUSION
We have presented two novel and complementary approaches for
acquiring spatially varying diffraction due to 1-D sinusoidal gratings
in commonly manufactured holographic surfaces. Such spatially
varying surfaces are increasingly common in our daily lives, gener-
ate striking and beautiful iridescence, and have not been previously
acquired for computer graphics applications. Our first setup sim-
ply involves a set of photographs under spectrally filtered flash
illumination and can resolve the appearance of many interesting
repeating and stochastic holographic samples. Our second setup
using polarization imaging is a bit more involved, requiring an
LCD panel and various optical accessories. However, the method
can resolve complex non-repetitive holographic patterns with fine
features. We present real-time photorealistic renderings of many
common holographic surfaces and patterns using the two proposed
acquisition setups. Given the fine scale imaging, the proposed polar-
ization imaging approach could also be employed for inspection and
defect detection in manufactured holographic samples. We further
demonstrate generation of novel diffraction patterns using artistic
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editing operations on the acquired orientation and periodicity maps,
and we make all our acquired maps available to the community.
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