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Figure 1: Diffraction pattern seen on a screen due to a beam incident on a gold plated Sunbeam snakeskin patch (setup and lab photo from
[Dhillon et al. 2014]). Rendering with our proposed method (left) qualitatively well matches the photograph (center left) with just two lookup
tables including reproducing the characteristic asymmetry in the diffraction lobes. In comparison, Dhillon et al.’s method (right) requires a
large number of tables for accurate rendering.

Abstract

We propose an efficient method for reproducing diffraction colours
on natural surfaces with complex nanostructures that can be repre-
sented as height-fields. Our method employs Chebyshev approxima-
tions to accurately model view-dependent iridescences for such a
surface into its spectral bidirectional reflectance distribution function
(BRDF). As main contribution, our method significantly reduces the
runtime memory footprint from precomputed lookup tables with-
out compromising photorealism. Our accuracy is comparable with
current state-of-the-art methods and better at equal memory usage.
Furthermore, a Chebyshev polynomial basis set with its near-best ap-
proximation properties allow for scalable memory-vs-performance
trade-offs. We show realistic diffraction effects with just two lookup
textures for natural, quasi-periodic surface nanostructures. Perfor-
mance intensive applications like games and VR can benefit from
our method, especially for low-end GPU or mobile platforms.

Keywords: Interactive rendering, diffraction, iridescence, struc-
tural colours, spectral BRDFs, shader, photorealism

1 Introduction

In computer graphics, photorealism is indispensable for virtual
reality simulations and natural objects pose several challenges to
it. We focus on one such challenge that deals with the rendering
of natural surfaces exhibiting complex, colourful and iridescent
appearances due to light diffraction. Common examples of it
include snake skins, insect wings, certain gems and shells (shown
below). Diffraction colours in nature are often hard to simulate
since they are produced by complex surface nanostructures and

Sunbeam snake Carpenter bee Mollusk shell
[Dhillon et al. 2014] [Matin et al. 2010] [Liu et al. 1999]
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modelling them involves scalar wave optics. Most state-of-the-art
diffraction shaders focus only on the speed and accuracy of their
algorithm while ignoring their GPU memory footprints. In this
paper, we propose a practicable method that is interactive, accurate
and memory efficient, all at the same time, even for low-end GPU
platforms.

Starting with Stam [1999], several authors proposed interactive
methods for rendering far-field diffraction effects using spectral
BRDFs. These methods often represent surface nanostructures as
height-fields. Most of these methods either work only with simple or
statistically known height-fields [Stam 1999; Wu and Zheng 2013]
or compromise accuracy for interactivity by overly simplifying their
models [Imura et al. 2009; Lindsay and Agu 2006]. On the other
hand, highly accurate models have been proposed based on Wigner
distribution functions (WDFs) [Cuypers et al. 2012] and finite dif-
ference time domain (FDTD) techniques [Musbach et al. 2013]. But
these methods are not interactive for complex height-fields represent-
ing natural nanostructures. Recently, Dhillon et al. [2014] proposed
a pre-computed lookup tables based method which is interactive as
well as highly accurate for generic, discrete height-fields. However,
with too few lookup tables it does not model some interesting as-
pects such as asymmetries in the diffraction pattern and adding just
a few more tables results in color streak artifacts (see Figure 1 for
an example). For convergence to accurate results, it requires a large
number of lookup tables.

Practically, we need a method which provides a good trade-off
between memory and performance (accuracy and speed). Also,
performance improvements must scale with increased memory usage.
To deliver these goals, we devise a method that employs Chebyshev
approximations for modelling spectral BRDFs in a diffraction shader.
For a given height-field, based on Fourier optics, we precompute
coefficients to linearly combine Chebyshev basis polynomials to
compute diffraction colours in CIE X,Y,Z components. Our basis
polynomials depend only on the half-vector from view geometry.
They can be easily generated and linearly combined at runtime. In
summary, our main contributions is: A Chebyshev approximation
based algorithm to produce realistic renderings for measured height-
fields with a scalable trade-off between memory and performance.

We show with a natural, quasi-periodic, measured height-field from



Table 1: Notations and formulae in�term: description� format

p: surface point under observation n̂: unit local surface normal and Z axis
m, n: discreteX ,Y spatial coordinates h(m,n): discretised height-field
ω̂i: unit vector pointing at light source ω̂v : unit vector pointing at viewpoint
ω̄h = ω̂i + ω̂v : half-vector (u, v, w) = −ω̄h: lookup coordinates
λ: wavelength for a given light-wave fλ(ω̂i, ω̂v): BRDF for spectral wave λ
F : Fresnel term DFT: discrete Fourier transform operator
s, t: discrete U ,V frequency coordinates ξs, ξt: ordinary frequencies at (s, t)

σw : spatial coherence length for light ξf = 1
2πσw

: spectral coherence length

pλ(m,n) = ei2πwh(m,n)/λ : a phasor-like auxiliary function
G(ω̂i, ω̂v) = (1 + ω̂i · ω̂v)2/(n̂ · ω̂i)(n̂ · ω̂v): geometric attenuation

W (u, v, s, t, λ) = e
−[(u/λ−ξs)2+(v/λ−ξt)2]/2ξ2f : coherence window

a snakeskin that using just two lookup tables can produce realistic
appearances. Furthermore, we also show that our approximations
work equally well even with seemingly random heigh-fields.

2 Data-Driven Spectral BRDF Model

Consider a measured, discrete height-field h(m,n) representing
given surface nanostructures. Based on Fourier optics and coherence
properites of light, Dhillon et al. [2014] formulate its spectral BRDF.
Their BRDF formulation is normalised against mirror reflections for
a reference beam of normal incident white-light. Table 1 introduces
all notations that are required to understand the following. We refor-
mulate Equations (4), (6), (7) and (8) from Dhillon et al. [2014] to
express their normalised spectral BRDF as

fλ(ω̂i, ω̂v) = C(ω̂i, ω̂v) |Sλ(ω̂i, ω̂v)|2 (1)

with Sλ(ω̂i, ω̂v) =
∑

s,t
Fλ(ξs, ξt)W (u, v, s, t, λ). (2)

Here,C(ω̂i, ω̂v) = F 2G/F 2
0w

2 with F0 as the Fresnel term for mir-
ror reflection of the normal incident beam. Fλ ≡ DFT{pλ(m,n)}
and W is a 2D Gaussian for light coherence, in the frequency do-
main. Please refer to Table 1 again for other notational details and
our supplemental material for further technical details.

Dhillon et al. [2014] implement Equation (2) with a Taylor series
expansion for the auxilary function pλ(m,n). This is analogous to a
Fourier series approximation of the BRDFs defined by Stam [1999].
Fourier series approximations suffer from Gibbs phenomena and
until sufficiently large number of Taylor series terms are not used,
their method exhibits disturbing visual artifacts. We propose a new
approach to better approximate spectral BRDFs with fewer lookup
tables that completely avoid such artifacts.

3 Chebyshev Approximation

The key challenge in evaluating Equation (2) involves repeating DFT
computations at each viewed point p. This view-dependency arises
from the w-term in the definition for operand pλ(m,n) to DFT. w is
the projection of inverted half-vector−ω̄h onto local surface normal
n̂. Our main idea is to directly model these w-dependent variations
in each DFT coefficient with a separate polynomial approximation.

Consider a discretised, nano-scale height-field h as shown in Fig-
ure 2a. To keep things as general as possible, we choose h to be a
random field. With a Taylor series expansion for the corresponding
pλ(m,n), each DFT coefficient Fλ(ξs, ξt) can be expressed as a
complex polynomial in w [Dhillon et al. 2014, Equation (7)]. We
studied w-dependent variations in several Fλ(ξs, ξt) coefficients
for our h(m,n) to find that most of them vary as smooth, slowly
varying functions of w. Figure 2b illustrates this fact for a few of
them. We cite three points that apparently explain these observations.

cut out from 65µm×65µm

(a) Random height-field (b) DFT coefficients (c) Hypothetical case

Figure 2: w-dependent variations in DFT coefficients for our ran-
dom height-field. With patch-size of 700×700 pixels, (s, t) for each
coefficient is indicated at bottom-right of its graph. The real and
imaginary parts are shown in solid and dashed lines, respectively.

For our experiments: (a) |w| has a small range [0, 2], (b) λ for visible
spectrum is in the range [380, 780]nm with a scale factor of ≈ 2
between the bounds, and (c) pλ is a complex exponentiation of a
band-limited, periodic function h and this bounds the magnitude of
its discrete Fourier transform. Without above three points, a DFT
coefficient can have high fluctuations as Figure 2c shows with an
unreal, large range for w. Next, we performed elaborate studies with
several different height-fields including natural measured nanostruc-
tures to empirically establish that smooth, slow varying nature is a
general trend for DFT terms in Equation (2). In short, for our prob-
lem, Fλ(ξs, ξt) can be approximated to a high-level of accuracy
with only few higher order terms in the polynomial function of w.

We now propose to model DFT coefficients in Equation (2) with
Chebyshev polynomial basis functions of the first kind. We explain
the reasons for this choice in Section 3.2. Without loss of generality,
with w ∈ [−2, 0], we define DFT coefficients as functions of w with

Fλ(ξs, ξt) = Aj
↓ + iBj

↓ +

M∑
m=0

(
Aj
↑a

j
m + iBj

↑b
j
m

)
Tm(w). (3)

Here j = (s, t, λ) refers to a specific frequency point. [Aj
↓, A

j
↑]

and [Bj
↓, B

j
↑] express ranges for real and imaginary parts of all

DFT coefficients at (s, t) for given height-field h with incident
wavelength λ. More importantly, Tm is the m-th order Chebyshev
polynomial of the first kind and ajm, bjm are the corresponding
Chebyshev coefficients for the polynomial fit. M represents the
highest polynomial order used in a specific approximation. For a
given height-field h, at each j, we compute Fλ(ξs, ξt) with different
values of w. We then fit a linear combination of Chebyshev basis
polynomial to generated Fλ values to estimate all above terms. With
our proposed model, the spectral power for Sλ in Equation (1) can
be formulated with substitutions from Equations (2) and (3) as,

|Sλ(ω̂i, ω̂v)|2 = SλS
∗
λ =

∑M

m=0
tm(u, v, λ)Tm(w). (4)

The consolidated Chebyshev coefficients tm are defined in terms of
previously computedAj

↓,A
j
↑,B

j
↓,B

j
↑, a

j
m and bjm from Equation (3)

and a known coherence window W from Equation (2). Mathemat-
ical derivation and form for tm terms is complex and left out for
the sake of brevity. For a given pair (u, v), we can precompute
tm(u, v, λ),∀λ. Next, we integrate tm terms over λ to tabulate final
Chebyshev coefficients for lookup.

3.1 Interactive Rendering

For interactive rendering, we substitute BRDF formulations from
Equations (1) and (4) into a general spectral rendering equation. Let
I be the spectral power distribution in relative units (RU) [Dhillon



et al. 2014]. Let ΓX , ΓY , ΓZ be the respective CIE X,Y,Z colour
component filters. The rendering equation then gives:

Y (u, v, w) =

∫
λ

fλ(ω̂i, ω̂v)(n̂ · ω̂i)I(λ)ΓY (λ)dλ, (5)

= C(ω̂i, ω̂v)(n̂ · ω̂i)
∑M

m=0
cYm(u, v)Tm(w), (6)

with cYm(u, v) =

∫
λ

tm(u, v, λ)I(λ)ΓY (λ)dλ. (7)

Similarly we obtain X and Z in terms of cXm and cZm respectively
to define diffraction colour at (u, v, w). With previously estimated
tm terms, we discretise u–v space and tabulate cXm, cYm and cZm, ∀m
(see Section 4 for details). We precompute L= M + 1 such lookup
tables to load them as textures in the GPU memory. At runtime,
for each pixel, we compute the half-vector (u, v, w) from the view
geometry, evaluate Chebyshev polynomials Tm(w) on-the-fly and
simultaneously accumulate their linear sum as scaled by lookups
terms from cXm, cYm, cZm. This summation gives us the CIE XYZ
components for rendering diffraction colour at that pixel.

3.2 Advantages

The core advantage of our approach is that it drastically reduces
the number of precomputed lookup tables required for accurate
renderings. This leads to significant performance gains in terms of
speed and accuracy against the amount of storage used. Furthermore,
the accuracy of our approach monotonically increases with each
additional table. Next, we explain these gains with technical details.

As discussed in Section 3, most of the DFT coefficients Fλ(ξs, ξt)
for a given discrete height-field h are smooth, slow varying functions
of w and we can approximate them as polynomials of a low degree.
For any continuous function f(w) defined over an interval for w,
approximation theory states that there exists a unique polynomial
of a given degree M that is its ‘best’ approximation [Burkill 1959].
A polynomial approximation is considered best if it minimizes the
maximum approximation error over the whole interval for w and
called as minimax polynomial for f(w). While there is no well-
defined strategy to estimate the minimax polynomial of function
f(w), it can be closely approximated with a linear combination of
Chebyshev polynomials Tm(w), in general [Burkill 1959]. Thus,
Chebyshev approximation is popularly used in several problems to
achieve near best approximations in a practicable manner.

Above properties of Chebyshev approximations imply that for a
given number L of lookup tables, our approach produces the best
practicable accuracy in rendering diffraction colours with polyno-
mial fits. With fewer lookup tables, our approach reduces runtime
computations from lookups as well as the memory required to store
the tables. In comparison, Dhillon et al. [2014] also use polynomial
approximations in terms of w. However, their lookup coefficients
are based on Fourier-series approximations which result in strong
ringing artifacts due to Gibbs phenomena unless a large number
of lookup tables are used. With Chebyshev approximations, these
artifacts translate into Runge phenomena. However, using nonlinear
sampling of the w-range while estimating coefficients ajm and bjm,
these Runge-phenomena related errors are minimised. With only a
few polynomial terms in our method, these errors are very low for
most of the approximated DFT coefficients and it rarely manifests
into noticeable visual artifacts. Furthermore, for difficult cases with
high overall brightness, accuracy is quickly improved by increasing
the number of lookup tables. Thus, our method provides scalable
gains for memory-vs-performance trade-offs.

L= 1 L= 2 L= 3

Reference Our method

Figure 3: BRDF slices for a Sunbeam snakeskin patch with a normal
incident white lightbeam. Each map centre represent ωv ≡ (0, 0)
and each point (x = sin θv cosφv, y = sin θv sinφv) represents
a view direction ωv ≡ (θv, φv). Leftmost image is generated with
the reference Method BR at 4000RU . With just two lookup tables
(L= 2), our method matches these expected results.

4 Experiments and Results

Implementation: We implement three methods for our evaluations.
Method M is our main approach, implemented as a GLSL shader.
We discretise u–v space and tabulate cXm for each discrete point
(u, v) by evaluating the integral in Equation (7) with a trapezoidal
rule. We take uniform steps of ∆λ = 5nm for these integrations.
Similarly, we tabulate cYm and cZm. For a given height-field h and
specified number of lookup tables L, we precompute one 3-element
texture array Tm ≡ (cXm, c

Y
m, c

Z
m) with 501× 501 discrete points,

for each m ∈ [0,L − 1] . With u, v ∈ [−2, 2], we discretise
u–v space nonlinearly for better results [Dhillon et al. 2014]. For
each pixel dij in the lookup table Tm, where i, j ∈ [−N,−N +
1, · · · , N ], u(i, j) = 2(i/N)5 and v(i, j) = 2(j/N)5. Except for
the contents of the lookup tables, our Method M is implemented
in same manner as that by Dhillon et al. [2014]. We implement
their lookup table based approach, say Method B, for performance
benchmarking and their non-interactive, reference shader as the
ultimate reference for visual comparisons, say Method BR.

Data: We use five test height-fields: (a) two natural, quasi-periodic
nanostructures from snakeskins (one each from Sunbeam and Corn
snakes), (b) one synthetic strictly regular blazed grating, (c) one
synthetic quasi-random and (d) one random height-field in our evalu-
ations. Each sample patch is 65µm×65µm in size to accommodate
a span of 4σs = 65µm for the Gaussian coherence window.

Results: Figure 3 shows BRDF slices for the Sunbeam snake with a
normal incident light beam, for different number of lookups for our
Method M. Even with a single lookup table, the BRDF slice looks
subjectively very similar to the reference image from Method BR.
However, overall brightness is apparently low. With two lookup
tables, results look almost indistinguishable from the reference. Us-
ing three lookup tables bring about only marginal changes near the
central specular region. Thereafter, increasing lookup tables did not
bring any noticeable change. We made similar observations for all
other height-fields in our data set. Figure 4 shows their BRDF slices
at 4000RU , except for the random field which is at 20000RU .

For comparison with the benchmark Method B, we produce sur-
face renderings. Figure 1 shows a reference photo with diffraction
colours emerging from a Sunbeam skin sample in a laboratory setup.
We simulate this lab setup to produce a subjectively similar render-
ing with just two lookup tables for our Method M. In particular, the
lower brightness of the lower blob of colours in the reference photo
is well-noticeable in our renderings. In comparison, Method B needs
atleast 3 lookup tables to produce diffraction colours. With three
tables, Method B only simulates a first-order Born approximation
where the upper and lower blobs of colour have similar intensities.
Increasing the number of lookups from three introduces disturbing
visual artifacts as seen for L= 25. These artifacts only disappear



when Method B converges with a large number of lookups L= 67.
Note that our Method M produces subjectively similar results as for
the convergence of Method B. We emphasise that both Method B
and Method M upon convergence match the accuracy of the ulti-
mate reference, Method BR (not shown). However, in general, our
method achieves this high accuracy with lot fewer tables.

Finally, we demonstrate the accuracy of our Method M on an actual
Corn snake skin. Figure 5 shows that our method produces realistic
secondary highlights with just 2 lookup tables at 1000RU . The
benchmark Method B cannot produce these secondary highlights
with fewer lookup tables. In summary, our Method M reduces the
required number of lookup tables for highly accurate renderings by
an order of magnitude when compared to the benchmark Method B.

We used FRAPS to evaluate the speed of our Method M and the
benchmark Method B on an NVIDIA GeForce GT 630 GPU with
192 CUDA Cores and shared system memory of 2048MB. With
equal lookups both methods perform similarly, frequently surpassing
60fps for a rendering window of 1024×1024 pixels. As our method
requires fewer tables, in comparison, it is faster than the benchmark.

5 Conclusion

Memory efficiency is critical for practical realisations of interactive
diffraction shaders. We improve upon current state-of-the-art in
realistic, interactive rendering of natural surfaces with complex
nanostructures. More specifically, we devise a new method based on
Chebyshev approximations to compute lookup tables, which reduces
runtime memory footprint of a recent state-of-the-art diffraction
shader by an order of magnitude. We achieve these improvements
without compromising on realistic appearances or the rendering
speed. On the contrary, reducing required lookup tables further
reduces computational load. With just two or three lookup tables,
we demonstrate highly accurate renderings for real, natural, quasi-
periodic nanostructures on snakeskins. Also, our method works
equally well for quasi-random or completely random height-fields.
In future, we would like to devise a quantitative analysis based
approach to pre-determine required number of lookup tables for a
given accuracy level. Also, our method can be adapted to efficiently
examine structural colours due to seemingly random nanostructures
on biological or other natural samples.
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