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IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance

: Hollerith census machine

Census every 10 years.

8 years in 1880.

1 year in 1890.

Picture: “HollerithMachine.CHM” by Adam

Schuster

Flickr: Proto IBM. Licensed under CC BY 2.0 via

Wikimedia Commons
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IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance: Big data.

Social medias

Internet of things

ApplicaƟons:

ScienƟfic compuƟng

MarkeƟng

Intelligence

(GCHQ)

Picture: “View inside detector at the CMS

cavern LHC CERN” by Tighef

Own work. Licensed under CC BY-SA 3.0 via

Wikimedia Commons

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:

View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg
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IntroducƟon Crown Scheduling Drake Conclusion

Accelerate computaƟon

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consumpƟon

Parallel programming

BeƩer energy consumpƟon

Very challenging

InstrucƟon-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann boƩleneck

P

f
 

S
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IntroducƟon Crown Scheduling Drake Conclusion

Streaming computaƟon

Streaming

SoŌware pipelining

Tasks execute in parallel in

steady-state

StaƟc scheduling

Moldable tasks

Steady state

Throughput constraint

OpƟmize energy

Streaming Task CollecƟon

Independent tasks

Balance workload

No communicaƟon cost

Figure: Streaming taskgraph.

Figure: Pipelined execuƟon of

streaming taskgraph.
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IntroducƟon Crown Scheduling Drake Conclusion

Streaming computaƟon

Streaming

SoŌware pipelining

Tasks execute in parallel in

steady-state

StaƟc scheduling

Moldable tasks

Steady state

Throughput constraint

OpƟmize energy

Streaming Task CollecƟon

Independent tasks

Balance workload

No communicaƟon cost

Figure: Streaming taskgraph.

Figure: Independent tasks in the

steady state.
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IntroducƟon Crown Scheduling Drake Conclusion

Plaƞorm model

Plaƞorm

p uniform processors

Discrete frequency set F

Applied to individual cores

Voltage by auto-co-scaling

Can change dynamically any Ɵme

Power model

Dynamic power funcƟon of frequency

AnalyƟc funcƟon or measurements

No restricƟon

Replaceable

Energy linear in Ɵme, power and number of processors running
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IntroducƟon Crown Scheduling Drake Conclusion

Task model

Moldable task j

Fixed work τj
AllocaƟon: run on wj ≥ 1 cores

MaximumWj: wj ≤ Wj

Arbitrary efficiency funcƟon

0 < ej(q) ≤ 1 for 1 ≤ q ≤ Wj

No convexity, monotony

or conƟnuity constraint

Time proporƟonal to work, parallel

degree and frequency

e

W

1

p
0 1  

Figure: Arbitrary efficiency

funcƟon.

ttj

q = wj

Figure: Moldable task.
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IntroducƟon Crown Scheduling Drake Conclusion

Problem formulaƟon

3 staƟc problems

Resource allocaƟon

Find wj ≤ min(p,Wj) for each task j

Define execuƟon Ɵme of tasks j

Task mapping to cores

Assign tasks to a subset of cores 1..p

Discrete frequency scaling

Assign tasks a frequency level in F

Respect a makespan constraintM

Repeated execuƟon of a task sequence

Non data-ready tasks are delayed to the

next round

All steps influence each other
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IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

Restrict allocaƟon and mapping to O(p) processor subsets (groups)

P1 P2 P3 P4 P5 P6 P7 P8

G4 G5 G6 G7

G3G2

G1

G15G14G13G12G11G10G9G8

G2

G4

P1

G8

P2

G9

G5

P3

G10

P4

G11

G3

G6

P5

G12

P6

G13

G7

P7

G14

P8

G15

G1

Tasks must be allocated as many cores as the size of a group

Reduce possible mapping targets from 2p − 1 groups to 2p− 1
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IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

CompuƟng a crown schedule

Separated or integrated phases

Crown
configuration

Crown
allocation

Crown

mapping

Crown

scaling
Dynamic
Crown rescaling

Integrated  Crown  Scheduling

ILP formulaƟons for each step and for integrated scheduler

by (Kessler et al. [2013])

Phase separaƟon prevents compromises

Phase integrated constrained by the crown structure

Slow and limited in input problem size
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IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

Phase-

separated

1

2 3

4 56 7
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IntroducƟon Crown Scheduling Drake Conclusion

Crown Extensions

Adapt to realisƟc processors

p 6= 2i

Constraints: frequency islands

Crown ConfiguraƟon

Crown ConsolidaƟon

Account for idle energy

Switch unused cores off

Provable approximaƟon

L1
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IntroducƟon Crown Scheduling Drake Conclusion

Voltage Islands topology influence

tight average loose
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