
Algorithms and Framework for Energy Efficient

Parallel Stream CompuƟng on Many-Core

Architectures

Nicolas Melot

Linköping University

Dept. of Computer and Inf. Science

Linköping, Sweden

June 23, 2017

IntroducƟon Crown Scheduling Drake Conclusion

Outline

1 IntroducƟon

2 Crown Scheduling

3 Drake

4 Conclusion

Nicolas Melot Streaming over Manycores June 23, 2017 1 / 19

IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance

: Hollerith census machine

Census every 10 years.

8 years in 1880.

1 year in 1890.

Picture: “HollerithMachine.CHM” by Adam

Schuster

Flickr: Proto IBM. Licensed under CC BY 2.0 via

Wikimedia Commons
http://commons.wikimedia.org/wiki/File:HollerithMachine.CHM.jpg#/media/File:HollerithMachine.CHM.jpg

Nicolas Melot Streaming over Manycores June 23, 2017 2 / 19

http://commons.wikimedia.org/wiki/File:HollerithMachine.CHM.jpg#/media/File:HollerithMachine.CHM.jpg

IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance: Hollerith census machine

Census every 10 years.

8 years in 1880.

1 year in 1890.

Picture: “HollerithMachine.CHM” by Adam

Schuster

Flickr: Proto IBM. Licensed under CC BY 2.0 via

Wikimedia Commons
http://commons.wikimedia.org/wiki/File:HollerithMachine.CHM.jpg#/media/File:HollerithMachine.CHM.jpg

Nicolas Melot Streaming over Manycores June 23, 2017 2 / 19

http://commons.wikimedia.org/wiki/File:HollerithMachine.CHM.jpg#/media/File:HollerithMachine.CHM.jpg

IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance: Hollerith census machine

Census every 10 years.

8 years in 1880.

1 year in 1890.

Picture: “HollerithMachine.CHM” by Adam

Schuster

Flickr: Proto IBM. Licensed under CC BY 2.0 via

Wikimedia Commons
http://commons.wikimedia.org/wiki/File:HollerithMachine.CHM.jpg#/media/File:HollerithMachine.CHM.jpg

Nicolas Melot Streaming over Manycores June 23, 2017 2 / 19

http://commons.wikimedia.org/wiki/File:HollerithMachine.CHM.jpg#/media/File:HollerithMachine.CHM.jpg

IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance: Hollerith census machine

Census every 10 years.

8 years in 1880.

1 year in 1890.

Picture: “HollerithMachine.CHM” by Adam

Schuster

Flickr: Proto IBM. Licensed under CC BY 2.0 via

Wikimedia Commons
http://commons.wikimedia.org/wiki/File:HollerithMachine.CHM.jpg#/media/File:HollerithMachine.CHM.jpg

Nicolas Melot Streaming over Manycores June 23, 2017 2 / 19

http://commons.wikimedia.org/wiki/File:HollerithMachine.CHM.jpg#/media/File:HollerithMachine.CHM.jpg

IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance: Big data.

Social medias

Internet of things

ApplicaƟons:

ScienƟfic compuƟng

MarkeƟng

Intelligence

(GCHQ)

Picture: “View inside detector at the CMS

cavern LHC CERN” by Tighef

Own work. Licensed under CC BY-SA 3.0 via

Wikimedia Commons

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:

View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

Nicolas Melot Streaming over Manycores June 23, 2017 3 / 19

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg
http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance: Big data.

Social medias

Internet of things

ApplicaƟons:

ScienƟfic compuƟng

MarkeƟng

Intelligence

(GCHQ)

Picture: “View inside detector at the CMS

cavern LHC CERN” by Tighef

Own work. Licensed under CC BY-SA 3.0 via

Wikimedia Commons

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:

View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

Nicolas Melot Streaming over Manycores June 23, 2017 3 / 19

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg
http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance: Big data.

Social medias

Internet of things

ApplicaƟons:

ScienƟfic compuƟng

MarkeƟng

Intelligence

(GCHQ)

Picture: “View inside detector at the CMS

cavern LHC CERN” by Tighef

Own work. Licensed under CC BY-SA 3.0 via

Wikimedia Commons

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:

View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

Nicolas Melot Streaming over Manycores June 23, 2017 3 / 19

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg
http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance: Big data.

Social medias

Internet of things

ApplicaƟons:

ScienƟfic compuƟng

MarkeƟng

Intelligence

(GCHQ)

Picture: “View inside detector at the CMS

cavern LHC CERN” by Tighef

Own work. Licensed under CC BY-SA 3.0 via

Wikimedia Commons

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:

View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

Nicolas Melot Streaming over Manycores June 23, 2017 3 / 19

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg
http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

IntroducƟon Crown Scheduling Drake Conclusion

High performance compuƟng

Constant struggle for performance: Big data.

Social medias

Internet of things

ApplicaƟons:

ScienƟfic compuƟng

MarkeƟng

Intelligence (GCHQ)

Picture: “View inside detector at the CMS

cavern LHC CERN” by Tighef

Own work. Licensed under CC BY-SA 3.0 via

Wikimedia Commons

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:

View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

Nicolas Melot Streaming over Manycores June 23, 2017 3 / 19

http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg
http://commons.wikimedia.org/wiki/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg#/media/File:View_inside_detector_at_the_CMS_cavern_LHC_CERN.jpg

IntroducƟon Crown Scheduling Drake Conclusion

Accelerate computaƟon

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consumpƟon

Parallel programming

BeƩer energy consumpƟon

Very challenging

InstrucƟon-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann boƩleneck

P

f

S

Nicolas Melot Streaming over Manycores June 23, 2017 4 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Accelerate computaƟon

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consumpƟon

Parallel programming

BeƩer energy consumpƟon

Very challenging

InstrucƟon-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann boƩleneck

P

f

S

Nicolas Melot Streaming over Manycores June 23, 2017 4 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Accelerate computaƟon

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consumpƟon

Parallel programming

BeƩer energy consumpƟon

Very challenging

InstrucƟon-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann boƩleneck

P

f

S

Nicolas Melot Streaming over Manycores June 23, 2017 4 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Accelerate computaƟon

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consumpƟon

Parallel programming

BeƩer energy consumpƟon

Very challenging

InstrucƟon-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann boƩleneck

P

f

S

Nicolas Melot Streaming over Manycores June 23, 2017 4 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Accelerate computaƟon

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consumpƟon

Parallel programming

BeƩer energy consumpƟon

Very challenging

InstrucƟon-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann boƩleneck

P

f

S

Nicolas Melot Streaming over Manycores June 23, 2017 4 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Accelerate computaƟon

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consumpƟon

Parallel programming

BeƩer energy consumpƟon

Very challenging

InstrucƟon-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann boƩleneck

P

f

S

Nicolas Melot Streaming over Manycores June 23, 2017 4 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Accelerate computaƟon

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consumpƟon

Parallel programming

BeƩer energy consumpƟon

Very challenging

InstrucƟon-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann boƩleneck

P

f

S

Nicolas Melot Streaming over Manycores June 23, 2017 4 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Accelerate computaƟon

How to improve performance?

Miniaturize

End of Moore’s law?

Increase frequency

Too high energy consumpƟon

Parallel programming

BeƩer energy consumpƟon

Very challenging

InstrucƟon-Level parallelism

Wall

Scalability issues for consistent

shared memory

Von-Neumann boƩleneck

P

f

S

Nicolas Melot Streaming over Manycores June 23, 2017 4 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Streaming computaƟon

Streaming

SoŌware pipelining

Tasks execute in parallel in

steady-state

StaƟc scheduling

Moldable tasks

Steady state

Throughput constraint

OpƟmize energy

Streaming Task CollecƟon

Independent tasks

Balance workload

No communicaƟon cost

Figure: Streaming taskgraph.

Figure: Pipelined execuƟon of

streaming taskgraph.

Nicolas Melot Streaming over Manycores June 23, 2017 5 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Streaming computaƟon

Streaming

SoŌware pipelining

Tasks execute in parallel in

steady-state

StaƟc scheduling

Moldable tasks

Steady state

Throughput constraint

OpƟmize energy

Streaming Task CollecƟon

Independent tasks

Balance workload

No communicaƟon cost

Figure: Streaming taskgraph.

Figure: Steady state of the streaming

pipeline.

Nicolas Melot Streaming over Manycores June 23, 2017 5 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Streaming computaƟon

Streaming

SoŌware pipelining

Tasks execute in parallel in

steady-state

StaƟc scheduling

Moldable tasks

Steady state

Throughput constraint

OpƟmize energy

Streaming Task CollecƟon

Independent tasks

Balance workload

No communicaƟon cost

Figure: Streaming taskgraph.

Figure: Independent tasks in the

steady state.

Nicolas Melot Streaming over Manycores June 23, 2017 5 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Plaƞorm model

Plaƞorm

p uniform processors

Discrete frequency set F

Applied to individual cores

Voltage by auto-co-scaling

Can change dynamically any Ɵme

Power model

Dynamic power funcƟon of frequency

AnalyƟc funcƟon or measurements

No restricƟon

Replaceable

Energy linear in Ɵme, power and number of processors running

Nicolas Melot Streaming over Manycores June 23, 2017 6 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Task model

Moldable task j

Fixed work τj
AllocaƟon: run on wj ≥ 1 cores

MaximumWj: wj ≤ Wj

Arbitrary efficiency funcƟon

0 < ej(q) ≤ 1 for 1 ≤ q ≤ Wj

No convexity, monotony

or conƟnuity constraint

Time proporƟonal to work, parallel

degree and frequency

e

W

1

p
0 1

Figure: Arbitrary efficiency

funcƟon.

ttj

q = wj

Figure: Moldable task.

Nicolas Melot Streaming over Manycores June 23, 2017 7 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Problem formulaƟon

3 staƟc problems

Resource allocaƟon

Find wj ≤ min(p,Wj) for each task j

Define execuƟon Ɵme of tasks j

Task mapping to cores

Assign tasks to a subset of cores 1..p

Discrete frequency scaling

Assign tasks a frequency level in F

Respect a makespan constraintM

Repeated execuƟon of a task sequence

Non data-ready tasks are delayed to the

next round

All steps influence each other

Nicolas Melot Streaming over Manycores June 23, 2017 8 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Problem formulaƟon

3 staƟc problems

Resource allocaƟon

Find wj ≤ min(p,Wj) for each task j

Define execuƟon Ɵme of tasks j

Task mapping to cores

Assign tasks to a subset of cores 1..p

Discrete frequency scaling

Assign tasks a frequency level in F

Respect a makespan constraintM

Repeated execuƟon of a task sequence

Non data-ready tasks are delayed to the

next round

All steps influence each other

Nicolas Melot Streaming over Manycores June 23, 2017 8 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

Restrict allocaƟon and mapping to O(p) processor subsets (groups)

P1 P2 P3 P4 P5 P6 P7 P8

G4 G5 G6 G7

G3G2

G1

G15G14G13G12G11G10G9G8

G2

G4

P1

G8

P2

G9

G5

P3

G10

P4

G11

G3

G6

P5

G12

P6

G13

G7

P7

G14

P8

G15

G1

Tasks must be allocated as many cores as the size of a group

Reduce possible mapping targets from 2p − 1 groups to 2p− 1

Nicolas Melot Streaming over Manycores June 23, 2017 9 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

Restrict allocaƟon and mapping to O(p) processor subsets (groups)

P1 P2 P3 P4 P5 P6 P7 P8

G4 G5 G6 G7

G3G2

G1

G15G14G13G12G11G10G9G8

G2

G4

P1

G8

P2

G9

G5

P3

G10

P4

G11

G3

G6

P5

G12

P6

G13

G7

P7

G14

P8

G15

G1

Tasks must be allocated as many cores as the size of a group

Reduce possible mapping targets from 2p − 1 groups to 2p− 1

Nicolas Melot Streaming over Manycores June 23, 2017 9 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

Restrict allocaƟon and mapping to O(p) processor subsets (groups)

P1 P2 P3 P4 P5 P6 P7 P8

G4 G5 G6 G7

G3G2

G1

G15G14G13G12G11G10G9G8

G2

G4

P1

G8

P2

G9

G5

P3

G10

P4

G11

G3

G6

P5

G12

P6

G13

G7

P7

G14

P8

G15

G1

Tasks must be allocated as many cores as the size of a group

Reduce possible mapping targets from 2p − 1 groups to 2p− 1

Nicolas Melot Streaming over Manycores June 23, 2017 9 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

Restrict allocaƟon and mapping to O(p) processor subsets (groups)

P1 P2 P3 P4 P5 P6 P7 P8

G4 G5 G6 G7

G3G2

G1

G15G14G13G12G11G10G9G8

G2

G4

P1

G8

P2

G9

G5

P3

G10

P4

G11

G3

G6

P5

G12

P6

G13

G7

P7

G14

P8

G15

G1

Tasks must be allocated as many cores as the size of a group

Reduce possible mapping targets from 2p − 1 groups to 2p− 1

Nicolas Melot Streaming over Manycores June 23, 2017 9 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

Restrict allocaƟon and mapping to O(p) processor subsets (groups)

P1 P2 P3 P4 P5 P6 P7 P8

G4 G5 G6 G7

G3G2

G1

G15G14G13G12G11G10G9G8

G2

G4

P1

G8

P2

G9

G5

P3

G10

P4

G11

G3

G6

P5

G12

P6

G13

G7

P7

G14

P8

G15

G1

Tasks must be allocated as many cores as the size of a group

Reduce possible mapping targets from 2p − 1 groups to 2p− 1

Nicolas Melot Streaming over Manycores June 23, 2017 9 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

CompuƟng a crown schedule

Separated or integrated phases

Crown
configuration

Crown
allocation

Crown

mapping

Crown

scaling
Dynamic
Crown rescaling

Integrated Crown Scheduling

ILP formulaƟons for each step and for integrated scheduler

by (Kessler et al. [2013])

Phase separaƟon prevents compromises

Phase integrated constrained by the crown structure

Slow and limited in input problem size

Nicolas Melot Streaming over Manycores June 23, 2017 10 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown scheduling

Phase-

separated

1

2 3

4 56 7

8 911 1013
12 14 15

16 17 1820 22242728 2930 1921 23 2526 31

32 33 3435 3637 38394041 424344 454647 484950 5152 5354 55 565758 59 6061 6263

1
2
3
4
5Fr

e
q
u
e
n
cy

Crown
configuration

Crown
allocation

Crown

mapping

Crown

scaling
Dynamic
Crown rescaling

Integrated Crown Scheduling

Integrated 1
2
3
4
5

1 23 4
5

6 789 10 1112 131415

16

1718

19

202122 232425 2627 282930 3132 3334 3536 3738 39 40

41 42

43

44 45
46 474849

50 51 525354

55

56

57

58 5960 61 6263

Fr
e
q
u
e
n
cy

Nicolas Melot Streaming over Manycores June 23, 2017 10 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown Extensions

Adapt to realisƟc processors

p 6= 2i

Constraints: frequency islands

Crown ConfiguraƟon

Crown ConsolidaƟon

Account for idle energy

Switch unused cores off

Provable approximaƟon

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

G6 G7

G3G2

G1

G11G10G9G8

P5 P6P3 P4

G5G4

P1 P2

Nicolas Melot Streaming over Manycores June 23, 2017 11 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown Extensions

Adapt to realisƟc processors

p 6= 2i

Constraints: frequency islands

Crown ConfiguraƟon

Crown ConsolidaƟon

Account for idle energy

Switch unused cores off

Provable approximaƟon

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

G6 G7

G3G2

G1

G11G10G9G8

P5 P6P3 P4

G5G4

P1 P2

Nicolas Melot Streaming over Manycores June 23, 2017 11 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown Extensions

Adapt to realisƟc processors

p 6= 2i

Constraints: frequency islands

Crown ConfiguraƟon

Crown ConsolidaƟon

Account for idle energy

Switch unused cores off

Provable approximaƟon

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

G6 G7

G3G2

G1

G11G10G9G8

P5 P6P3 P4

G5G4

P1 P2

Nicolas Melot Streaming over Manycores June 23, 2017 11 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Crown Extensions

Adapt to realisƟc processors

p 6= 2i

Constraints: frequency islands

Crown ConfiguraƟon

Crown ConsolidaƟon

Account for idle energy

Switch unused cores off

Provable approximaƟon

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

G6 G7

G3G2

G1

G11G10G9G8

P5 P6P3 P4

G5G4

P1 P2

Nicolas Melot Streaming over Manycores June 23, 2017 11 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Voltage Islands topology influence

tight average loose
Task class

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

E
n
er

g
y

Energy quality of schedules
 Fast,ILP,ILP simple

Fast,Bal.ILP,ILP
Fast,LTLG,ILP

Fast,Bal.ILP,Height
Fast,LTLG,Height
Bin,LTLG,Height

Bin,LTLG,Height Ann.
Integ.

Pruhs [2008] (NLP,energy)
Xu [2012] (ILP)

Pruhs [2008] (heur,0) Pruhs [2008] (heur,0)

Pruhs [2008] (NLP,energy)

Fast,Bal.ILP,ILP
Fast,LTLG,ILP

Fast,Bal.ILP,Height
Fast,LTLG,Height
Bin,LTLG,Height

Bin,LTLG,Height Ann.

Xu [2012] (ILP)

Fast,ILP,ILP simple

Integ.

Energy quality of schedules

E
n
er

g
y

Task class

0

200000

400000

600000

800000

1e+06

tight average loose

Nicolas Melot Streaming over Manycores June 23, 2017 12 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Voltage Islands topology influence

tight average loose
Task class

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

E
n
er

g
y

Energy quality of schedules
 Fast,ILP,ILP simple

Fast,Bal.ILP,ILP
Fast,LTLG,ILP

Fast,Bal.ILP,Height
Fast,LTLG,Height
Bin,LTLG,Height

Bin,LTLG,Height Ann.
Integ.

Pruhs [2008] (NLP,energy)
Xu [2012] (ILP)

Pruhs [2008] (heur,0) Pruhs [2008] (heur,0)

Pruhs [2008] (NLP,energy)

Fast,Bal.ILP,ILP
Fast,LTLG,ILP

Fast,Bal.ILP,Height
Fast,LTLG,Height
Bin,LTLG,Height

Bin,LTLG,Height Ann.

Xu [2012] (ILP)

Fast,ILP,ILP simple

Integ.

Energy quality of schedules

E
n
er

g
y

Task class

0

200000

400000

600000

800000

1e+06

tight average loose

Nicolas Melot Streaming over Manycores June 23, 2017 12 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Voltage Islands topology influence

tight average loose
Task class

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

E
n
er

g
y

Energy quality of schedules
 Fast,ILP,ILP simple

Fast,Bal.ILP,ILP
Fast,LTLG,ILP

Fast,Bal.ILP,Height
Fast,LTLG,Height
Bin,LTLG,Height

Bin,LTLG,Height Ann.
Integ.

Pruhs [2008] (NLP,energy)
Xu [2012] (ILP)

Pruhs [2008] (heur,0) Pruhs [2008] (heur,0)

Pruhs [2008] (NLP,energy)

Fast,Bal.ILP,ILP
Fast,LTLG,ILP

Fast,Bal.ILP,Height
Fast,LTLG,Height
Bin,LTLG,Height

Bin,LTLG,Height Ann.

Xu [2012] (ILP)

Fast,ILP,ILP simple

Integ.

Energy quality of schedules

E
n
er

g
y

Task class

0

200000

400000

600000

800000

1e+06

tight average loose

Nicolas Melot Streaming over Manycores June 23, 2017 12 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Example: Mergesort

Developed by JohN Von Neumann in 1945 (Knuth [1998])

External algorithm

Limits use of slow memories

Stream program: tree structure

Leaves: presort (non-streamed)

other: merge (streamed)

Root task: biggest workload

2nd level tasks: half workload of root task

https://www.youtube.com/watch?v=XaqR3G_NVoo

Nicolas Melot Streaming over Manycores June 23, 2017 13 / 19

https://www.youtube.com/watch?v=XaqR3G_NVoo

IntroducƟon Crown Scheduling Drake Conclusion

Example: Mergesort

Developed by JohN Von Neumann in 1945 (Knuth [1998])

External algorithm

Limits use of slow memories

Stream program: tree structure

Leaves: presort (non-streamed)

other: merge (streamed)

Root task: biggest workload

2nd level tasks: half workload of root task

https://www.youtube.com/watch?v=XaqR3G_NVoo

Nicolas Melot Streaming over Manycores June 23, 2017 13 / 19

https://www.youtube.com/watch?v=XaqR3G_NVoo

IntroducƟon Crown Scheduling Drake Conclusion

Example: Mergesort

Developed by JohN Von Neumann in 1945 (Knuth [1998])

External algorithm

Limits use of slow memories

Stream program: tree structure

Leaves: presort (non-streamed)

other: merge (streamed)

Root task: biggest workload

2nd level tasks: half workload of root task

https://www.youtube.com/watch?v=XaqR3G_NVoo

Nicolas Melot Streaming over Manycores June 23, 2017 13 / 19

https://www.youtube.com/watch?v=XaqR3G_NVoo

IntroducƟon Crown Scheduling Drake Conclusion

Example: Mergesort

Developed by JohN Von Neumann in 1945 (Knuth [1998])

External algorithm

Limits use of slow memories

Stream program: tree structure

Leaves: presort (non-streamed)

other: merge (streamed)

Root task: biggest workload

2nd level tasks: half workload of root task

https://www.youtube.com/watch?v=XaqR3G_NVoo

Nicolas Melot Streaming over Manycores June 23, 2017 13 / 19

https://www.youtube.com/watch?v=XaqR3G_NVoo

IntroducƟon Crown Scheduling Drake Conclusion

Example: Mergesort

Developed by JohN Von Neumann in 1945 (Knuth [1998])

External algorithm

Limits use of slow memories

Stream program: tree structure

Leaves: presort (non-streamed)

other: merge (streamed)

Root task: biggest workload

2nd level tasks: half workload of root task

https://www.youtube.com/watch?v=XaqR3G_NVoo

Nicolas Melot Streaming over Manycores June 23, 2017 13 / 19

https://www.youtube.com/watch?v=XaqR3G_NVoo

IntroducƟon Crown Scheduling Drake Conclusion

Example: Mergesort

Developed by JohN Von Neumann in 1945 (Knuth [1998])

External algorithm

Limits use of slow memories

Stream program: tree structure

Leaves: presort (non-streamed)

other: merge (streamed)

Root task: biggest workload

2nd level tasks: half workload of root task

https://www.youtube.com/watch?v=XaqR3G_NVoo

Nicolas Melot Streaming over Manycores June 23, 2017 13 / 19

https://www.youtube.com/watch?v=XaqR3G_NVoo

IntroducƟon Crown Scheduling Drake Conclusion

Example: Mergesort

Developed by JohN Von Neumann in 1945 (Knuth [1998])

External algorithm

Limits use of slow memories

Stream program: tree structure

Leaves: presort (non-streamed)

other: merge (streamed)

Root task: biggest workload

2nd level tasks: half workload of root task

https://www.youtube.com/watch?v=XaqR3G_NVoo

Nicolas Melot Streaming over Manycores June 23, 2017 13 / 19

https://www.youtube.com/watch?v=XaqR3G_NVoo

IntroducƟon Crown Scheduling Drake Conclusion

Example: Mergesort

Developed by JohN Von Neumann in 1945 (Knuth [1998])

External algorithm

Limits use of slow memories

Stream program: tree structure

Leaves: presort (non-streamed)

other: merge (streamed)

Root task: biggest workload

2nd level tasks: half workload of root task

https://www.youtube.com/watch?v=XaqR3G_NVoo

Nicolas Melot Streaming over Manycores June 23, 2017 13 / 19

https://www.youtube.com/watch?v=XaqR3G_NVoo

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

All cores in one island: 100%

2 islands of 16 cores: 47%

Individual cores: 30%

Legend

Merge
tasksTi

m
e

Core ID

Fr
e
q

u
e
n
cy

Deadline

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

All cores in one island: 100%

2 islands of 16 cores: 47%

Individual cores: 30%

Legend

Merge
tasksTi

m
e

Core ID

Fr
e
q

u
e
n
cy

Deadline

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

All cores in one island: 100%

2 islands of 16 cores: 47%

Individual cores: 30%

Legend

Merge
tasksTi

m
e

Core ID

Fr
e
q

u
e
n
cy

Deadline

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

All cores in one island: 100%

2 islands of 16 cores: 47%

Individual cores: 30%

Legend

Merge
tasksTi

m
e

Core ID

Fr
e
q

u
e
n
cy

Deadline

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

All cores in one island: 100%

2 islands of 16 cores: 47%

Individual cores: 30%

Legend

Merge
tasksTi

m
e

Core ID

Fr
e
q

u
e
n
cy

Deadline

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

All cores in one island: 100%

2 islands of 16 cores: 47%

Individual cores: 30%

Legend

Merge
tasksTi

m
e

Core ID

Fr
e
q

u
e
n
cy

Deadline

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

All cores in one island: 100%

2 islands of 16 cores: 47%

Individual cores: 30%

Legend

Merge
tasksTi

m
e

Core ID

Fr
e
q

u
e
n
cy

Deadline

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

All cores in one island: 100%

2 islands of 16 cores: 47%

Individual cores: 30%

Legend

Merge
tasksTi

m
e

Core ID

Fr
e
q

u
e
n
cy

Deadline

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

Legend

Merge
tasksTi

m
e

Core ID
Fr

e
q

u
e
n
cy

Deadline

2 islands of 16 cores: 47%

Individual cores: 30%

Islands of 2 cores: 33%

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

Legend

Merge
tasksTi

m
e

Core ID
Fr

e
q

u
e
n
cy

Deadline

2 islands of 16 cores: 47%

Individual cores: 30%

Islands of 2 cores: 33%

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

Legend

Merge
tasksTi

m
e

Core ID
Fr

e
q

u
e
n
cy

Deadline

2 islands of 16 cores: 47%

Individual cores: 30%

Islands of 2 cores: 33%

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Island-aware scheduling: mergesort

Legend

Merge
tasksTi

m
e

Core ID
Fr

e
q

u
e
n
cy

Deadline

2 islands of 16 cores: 47%

Individual cores: 30%

Islands of 2 cores: 33%

Nicolas Melot Streaming over Manycores June 23, 2017 14 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Nicolas Melot Streaming over Manycores June 23, 2017 15 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applicaƟon

Stream topology

Tasks’ source code

Target plaƞorm-specifics

Host applicaƟon

Nicolas Melot Streaming over Manycores June 23, 2017 16 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applicaƟon

Stream topology

Tasks’ source code

Target plaƞorm-specifics

Host applicaƟon

Nicolas Melot Streaming over Manycores June 23, 2017 16 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applicaƟon

Stream topology

Tasks’ source code

Target plaƞorm-specifics

Host applicaƟon

Nicolas Melot Streaming over Manycores June 23, 2017 16 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applicaƟon

Stream topology

Tasks’ source code

Target plaƞorm-specifics

Host applicaƟon

Nicolas Melot Streaming over Manycores June 23, 2017 16 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applicaƟon

Stream topology

Tasks’ source code

Target plaƞorm-specifics

Host applicaƟon

Nicolas Melot Streaming over Manycores June 23, 2017 16 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applicaƟon

Stream topology

Tasks’ source code

Target plaƞorm-specifics

Host applicaƟon

Nicolas Melot Streaming over Manycores June 23, 2017 16 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applicaƟon

Stream topology

Tasks’ source code

Target plaƞorm-specifics

Host applicaƟon

Nicolas Melot Streaming over Manycores June 23, 2017 16 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applicaƟon

Stream topology

Tasks’ source code

Target plaƞorm-specifics

Host applicaƟon

Nicolas Melot Streaming over Manycores June 23, 2017 16 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake

Stream programming framework

On-chip pipelining

Moldable tasks

Frequency scaling

Scheduling experiments

(Melot et al. [2015])

Drake: derived from Schedeval (Janzén [2014])

Separate roles in an applicaƟon

Stream topology

Tasks’ source code

Target plaƞorm-specifics

Host applicaƟon

Nicolas Melot Streaming over Manycores June 23, 2017 16 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake C Streaming Framework

Takes code to execute on target plaƞorm

ApplicaƟon-specific: Mergesort, FFT, etc.

Plaƞorm-specific: SCC, Xeon, MPI, etc.

Message passing

Frequency scaling

Generate executable with monitoring.

Static
Scheduler

Drake
tools

LinkerC/C++
compiler

Platform
description

Platform
backend

Drake
framework
library

Final executable
binary

Main C/C++
program

Taskgraph Drake modules
C/C++ code

User-written

Static
schedule

Platform-
specific
plugin

Nicolas Melot Streaming over Manycores June 23, 2017 17 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake C Streaming Framework

Takes code to execute on target plaƞorm

ApplicaƟon-specific: Mergesort, FFT, etc.

Plaƞorm-specific: SCC, Xeon, MPI, etc.

Message passing

Frequency scaling

Generate executable with monitoring.

Static
Scheduler

Drake
tools

LinkerC/C++
compiler

Platform
description

Platform
backend

Drake
framework
library

Final executable
binary

Main C/C++
program

Taskgraph Drake modules
C/C++ code

User-written

Static
schedule

Platform-
specific
plugin

Nicolas Melot Streaming over Manycores June 23, 2017 17 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake C Streaming Framework

Takes code to execute on target plaƞorm

ApplicaƟon-specific: Mergesort, FFT, etc.

Plaƞorm-specific: SCC, Xeon, MPI, etc.

Message passing

Frequency scaling

Generate executable with monitoring.

Static
Scheduler

Drake
tools

LinkerC/C++
compiler

Platform
description

Platform
backend

Drake
framework
library

Final executable
binary

Main C/C++
program

Taskgraph Drake modules
C/C++ code

User-written

Static
schedule

Platform-
specific
plugin

Nicolas Melot Streaming over Manycores June 23, 2017 17 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake C Streaming Framework

Takes code to execute on target plaƞorm

ApplicaƟon-specific: Mergesort, FFT, etc.

Plaƞorm-specific: SCC, Xeon, MPI, etc.

Message passing

Frequency scaling

Generate executable with monitoring.

Static
Scheduler

Drake
tools

LinkerC/C++
compiler

Platform
description

Platform
backend

Drake
framework
library

Final executable
binary

Main C/C++
program

Taskgraph Drake modules
C/C++ code

User-written

Static
schedule

Platform-
specific
plugin

Nicolas Melot Streaming over Manycores June 23, 2017 17 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Drake C Streaming Framework

Takes code to execute on target plaƞorm

ApplicaƟon-specific: Mergesort, FFT, etc.

Plaƞorm-specific: SCC, Xeon, MPI, etc.

Message passing

Frequency scaling

Generate executable with monitoring.

Static
Scheduler

Drake
tools

LinkerC/C++
compiler

Platform
description

Platform
backend

Drake
framework
library

Final executable
binary

Main C/C++
program

Taskgraph Drake modules
C/C++ code

User-written

Static
schedule

Platform-
specific
plugin

Nicolas Melot Streaming over Manycores June 23, 2017 17 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Conclusion

Challenges in high-performance

parallel compuƟng

Programming difficulƟes

Lack of scalability of

architectures

Von Neumann boƩleneck

Stream programming

Mature research

No need of coherent shared

memory

Help reduce von Neumann

boƩleneck

Our contribuƟons

On-chip pipelining

Crown Scheduling for Moldable Streaming tasks

Drake Streaming Framework

Nicolas Melot Streaming over Manycores June 23, 2017 18 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Conclusion

Challenges in high-performance

parallel compuƟng

Programming difficulƟes

Lack of scalability of

architectures

Von Neumann boƩleneck

Stream programming

Mature research

No need of coherent shared

memory

Help reduce von Neumann

boƩleneck

Our contribuƟons

On-chip pipelining

Crown Scheduling for Moldable Streaming tasks

Drake Streaming Framework

Nicolas Melot Streaming over Manycores June 23, 2017 18 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Conclusion

Challenges in high-performance

parallel compuƟng

Programming difficulƟes

Lack of scalability of

architectures

Von Neumann boƩleneck

Stream programming

Mature research

No need of coherent shared

memory

Help reduce von Neumann

boƩleneck

Our contribuƟons

On-chip pipelining

Crown Scheduling for Moldable Streaming tasks

Drake Streaming Framework

Nicolas Melot Streaming over Manycores June 23, 2017 18 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Conclusion

Challenges in high-performance

parallel compuƟng

Programming difficulƟes

Lack of scalability of

architectures

Von Neumann boƩleneck

Stream programming

Mature research

No need of coherent shared

memory

Help reduce von Neumann

boƩleneck

Our contribuƟons

On-chip pipelining

Crown Scheduling for Moldable Streaming tasks

Drake Streaming Framework

Nicolas Melot Streaming over Manycores June 23, 2017 18 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Conclusion

Challenges in high-performance

parallel compuƟng

Programming difficulƟes

Lack of scalability of

architectures

Von Neumann boƩleneck

Stream programming

Mature research

No need of coherent shared

memory

Help reduce von Neumann

boƩleneck

Our contribuƟons

On-chip pipelining

Crown Scheduling for Moldable Streaming tasks

Drake Streaming Framework

Nicolas Melot Streaming over Manycores June 23, 2017 18 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Conclusion

Challenges in high-performance

parallel compuƟng

Programming difficulƟes

Lack of scalability of

architectures

Von Neumann boƩleneck

Stream programming

Mature research

No need of coherent shared

memory

Help reduce von Neumann

boƩleneck

Our contribuƟons

On-chip pipelining

Crown Scheduling for Moldable Streaming tasks

Drake Streaming Framework

Nicolas Melot Streaming over Manycores June 23, 2017 18 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Conclusion

Challenges in high-performance

parallel compuƟng

Programming difficulƟes

Lack of scalability of

architectures

Von Neumann boƩleneck

Stream programming

Mature research

No need of coherent shared

memory

Help reduce von Neumann

boƩleneck

Our contribuƟons

On-chip pipelining

Crown Scheduling for Moldable Streaming tasks

Drake Streaming Framework

Nicolas Melot Streaming over Manycores June 23, 2017 18 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Conclusion

Challenges in high-performance

parallel compuƟng

Programming difficulƟes

Lack of scalability of

architectures

Von Neumann boƩleneck

Stream programming

Mature research

No need of coherent shared

memory

Help reduce von Neumann

boƩleneck

Our contribuƟons

On-chip pipelining

Crown Scheduling for Moldable Streaming tasks

Drake Streaming Framework

Nicolas Melot Streaming over Manycores June 23, 2017 18 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Conclusion

Challenges in high-performance

parallel compuƟng

Programming difficulƟes

Lack of scalability of

architectures

Von Neumann boƩleneck

Stream programming

Mature research

No need of coherent shared

memory

Help reduce von Neumann

boƩleneck

Our contribuƟons

On-chip pipelining

Crown Scheduling for Moldable Streaming tasks

Drake Streaming Framework

Nicolas Melot Streaming over Manycores June 23, 2017 18 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

Future work

InvesƟgate more scheduling

techniques

Minimize communicaƟon

costs

Heterogeneous plaƞorms

Quasi-staƟc scheduling

Schedule main memory

accesses

Port Drake to mores

architectures

Implement Synchronous Data

Flow for Drake

OpƟmize on-chip memory

usage

Simultaneous LocalizaƟon

And Mapping

Other applicaƟons:

Machine learning

Provable High Performance

CompuƟng

AeronauƟc

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

IntroducƟon Crown Scheduling Drake Conclusion

QuesƟons

Thank you for your aƩenƟon.

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

References

Bibliography

Johan Janzén. EvaluaƟon of energy-opƟmizing scheduling algorithms for streaming computaƟons on massively parallel

mulƟcore architectures. Master’s thesis, Linköping University, 2014. URL

http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A756758.

Christoph Kessler, Nicolas Melot, Patrick Eitschberger, and Jörg Keller. Crown Scheduling: Energy-Efficient Resource AllocaƟon,

Mapping and Discrete Frequency Scaling for CollecƟons of Malleable Streaming Tasks. In Proc. of 23rd Int. Workshop on

Power and Timing Modeling, OpƟmizaƟon and SimulaƟon (PATMOS 2013), 2013.

Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) SorƟng and Searching. Addison Wesley Longman

Publishing Co., Inc., Redwood City, CA, USA, 1998. ISBN 0-201-89685-0.

Nicolas Melot, Johan Janzen, and Christoph Kessler. Mimer and Schedeval: Tools for Comparing StaƟc Schedulers for Streaming

ApplicaƟons on Manycore Architectures. In Parallel Processing Workshops (ICPPW), IEEE, pages 146–155, Sept 2015. doi:

10.1109/ICPPW.2015.24.

Nicolas Melot Streaming over Manycores June 23, 2017 19 / 19

http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A756758

	Appendix

