
SquirrelJoin: Network Aware
Distributed Join Processing

with Lazy Partitioning

Lukas Rupprecht William Culhane Peter Pietzuch

To appear in VLDB 2017

Funded by:

Background

• Data is getting big
• AT&T’s phone record database is 312 TB (in 2014)

• Walmart’s private cloud can process 2.5 PB per hour

• Analysis joins data across tables or databases

• Data is distributed among machines

• Shared networks are susceptible to skew from
various applications

2

Distributed two-phase joins

3

SendersInput Receivers

Record from Table 1

Record from Table 2

Colors indicates join key partition

Network skew

• “Elephant” flows – 1% of flows, 90% of traffic

• Uneven distribution
• 50th percentile of 10 concurrent flows per machine

• 95th percentile of machine have >80 flows

• 99.99th percentile of 1600 flows

• Daily occurrence

M. Alizadeh et al. Data center TCP (DCTCP). In SIGCOMM, 2010.

A. Greenberg et al. VL2: a scalable and flexible data center network. In SIGCOMM, 2009.
S. Kandula et al. The nature of data center traffic: measurements & analysis. In IMC, 2009.

T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the wild. In IMC, 2010. 4

Joins with network skew

• Up to 70% of join time in network transfers (worse
for main memory systems)

• If the network is the bottleneck, slow network links
can create stragglers

• Slowest straggler determines the join time

5
Polychroniou et al. Track join: distributed joins with minimal network traffic. In SIGMOD, 2014.

Rödiger et al. Locality-sensitive operators for parallel main-memory database clusters. In ICDE, 2014.

Problem statement

Solve big data.

6

Improve the completion time of two phase
joins in the presence of network skew by
offsetting the effects of that skew to mitigate
stragglers with minimal overhead.

How can we address skew with
repartitioning?

When do we run out of spare capacity?
7

Maximum time savings with a
priori knowledge

Sender side bottleneck:

Receiver side bottleneck:

𝑈𝑏 - Fraction of bandwidth available on bottlenecks
𝑛 - Nodes in the cluster
𝑚 - Nodes with bottlenecks

.5
32
1

=
1−.5

.5 32−1 +1
= .03

=
1−.5
.5∗1

32−1
+1

= .49

8

Lazy partitioning

• Repartition before records sent via the network

• Buffer all records at senders

• Assign partitions to receivers when:
• Run out of buffer space

• Network skew is detected

• There is no more join traffic

• Partitions with the same join key assigned together

• Buffered records sent after assignment

9

Lazy partitioning visualization

⋈

⋈

10

Lazy partitions

Assigning lazy partitions

Estimate the completion time of the straggler

Initialize the “finished workers” set

If there is detectable skew
Balance each worker

Estimate each worker’s completion time

Estimate the change if assigned made

If the assignment is too big
Mark the worker as balanced

Assign the partitions to the worker

11

SquirrelJoin architecture

12

Experimental setup

• Implemented in Flink

• Google cloud ‘n1-standard-16’ machines
• 16 CPUs at 2.5 GHz

• 60 GB of RAM

• 1 master, 16 workers (15 saturated flows)

• Virtually limit the network interface to 1 Gbps

• Background applications sending from other
machines

• TPC-H queries

13

Results – workloads

14

Results – skew intensity

15

Results – scalability

16

Conclusions

• Network skew is a problem for distributed joins

• Repartitioning can impact join completion time in
the presence of skew (for receivers)

• Lazy partitioning is an elegant solution which
captures most of the gains available from
repartitioning

• SquirrelJoin is a lazy partitioning implementation in
Flink which shows a successful impact on many real
world workloads

17

Questions?

18

Data skew

• Track of assigned partition sizes and progress rates

• Synch point between the two phases (tradeoffs)

• What if the larger table is skewed:

19

Can we address sender side skew?

• Data is fixed at senders (file location)

• Using HDFS and replication we may be able to lazy
partition input without hitting the network

• Requires identifying sender vs. receiver skew

20

Is the network really the
bottleneck?
• We saturated a 1Gbps link

• Spark plus RAID SSD can saturate a 10 Gbps link

• IBM DB2 running in main memory can saturate a 40
Gbps link

• There is a recurring cycle of network vs local system
improvement

21

