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The Security of Machine Learning

Machine Learning systems can be compromised:

* Proliferation and sophistication of attacks and threats.

* Machine learning systems are one of the weakest parts in the
security chain.

e Attackers can also use machine learning as a weapon.

Adversarial Machine Learning:
e Security of machine learning algorithms.
 Understanding the weaknesses of the algorithms. ‘ )

* Proposing more resilient techniques. \/




Threats

Evasion Attacks:

e Attacks at test time.

* The attacker aims to find the blind spots and
weaknesses of the ML system to evade it.

Poisoning Attacks:

.@. * Compromise data collection.

Y * The attacker subverts the learning process.

DANGER . Degrad§§ the performanc.:e of the system.
POISON | * Can facilitate future evasion.




Evasion Attacks
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Figure 1. An autonomous vehicle uses a camera to identify and recognize roadside signs. Once a sign has been identified, its image is fed to a
neural network for classification in one of the predefined sign classes. Here, the neural network identifies the sign as a stop sign. x
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P. McDaniel, N. Papernot, Z.B. Celik. “Machine Learning in

Adversarial Settings.” |IEEE Security & Privacy, 14(3), pp. 68-72,
2016.
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Figure 2. To humans, adversarial samples are indistinguishable from original samples. (a) An ordinary
image of a stop sign. (b) An image crafted by an adversary.
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Optimal Poisoning Attacks

General formulation of the problem:

* The attacker aims to optimize some objective function (evaluated on a validation dataset) by introducing
malicious examples in the training dataset used by the defender.

 The defender aims to learn the parameters of the model that optimise some objective function
evaluated on the (poisoned) training dataset.

* The attacker’s problem can be modelled as a bi-level optimization problem:

D, € argmax A (w”, D)

p

s.t. w" € argmin Cy.(w, Dy, UD,)




Optimal Poisoning Attacks for Classification

* Biggio et al. “Poisoning Attacks against Support Vector Machines.”

= C ( *) ICML 2012.
Xp alrg magc{ val\W ), * Meiand Zhu. “Using Machine Teaching to Identify Optimal Training-

XpE
P Set Attacks on Machine Learners.” AAAI 2015.

S.t. w* € arg min Ci, (W, Di U {Xp, yp}) * Xiao et al. “Is Feature Selection Secure against Training Data
w Poisoning?” ICML 2015.

v \ T
Poisoning points are learned following a gradient ascent strategy: Vi, Cia(W") = (—W) Vw Cyal(W™)

OXp

Applying Karush-Kuhn-Tucker conditions Vy, Ct, (W, Xp) = 0 and the implicit function theorem:

vxpcval — (vxp vWctr ) (victr) - VWCVEII

* Limited to a restricted family of classifiers.
* Poor scalability with the number of parameters of the model.



Optimal Poisoning Attacks for Classification

More efficient solution: ki
1) Don’tinvert matrices, use conjugate gradient instead: KEEP

CALM

* More Stable.
* Allows avoiding the computation of the Hessian.
2) Divide and Conquer:
* |nstead of computing Vi, Cual = —(Vx, VawCir) (Ve Cir) ™' Vi Cual
* Compute: Vzvctr v = VwCal

prcval — _vxp VwCir v

AND

SIMPLIFY

3) Don’t compute the Hessian! 9*f(u,v) = 1
vt 2T %13}] A (Vvf(u+hz,v)—=Vyf(uv))

2
6@&5?“1;)2 = % (Vuf(uthz,v)=Vuf(av))




Poisoning with Back-Gradient Optimization

* J. Domke. “Generic Methods for Optimization-Based Modelling.” AISTATS 2012.
* D. Maclaurin, D.K. Duvenaud, R.P. Adams. “Gradient-based Hyperparameter Optimization through Reversible Learning.” ICML 2015.

Algorithm 1 Gradient Descent Algorithm 2 Back-gradient Descent
Input: initial weights w), learning rate «, Dk,, loss func- Input: wr, o, L(w.X,y), Dy, Dyal
tion L(w. X, y) initialize dxp < 0, dw ¢ V4, Coal(W7)

I: fort =0,...,7 — 1do
2: g1 = VyCir(wy)

1: fort =171.....,1do
2

3: Wil <& Wy — 0 gy 3
4
5

dXp  dxp — @ AWV Vi Cir (Wi, Xp)
dw < dw — a dwVy Vi Cip (Wi, Xp)
gt—1 = thct-r(wt: Xp)
Wil = Wi+ Qg1

6: end for
Output: Vi Cyal < dXp

4: end for
Output: trained parameters wr




Greedy Attack Strategy

Algorithm 3 Greedy Poisoning Attack

Input: Dy,, Dy, iterations gradient descent T', set of ini-
tial . C int (0) 17p orad. asc learning
ial poisoning points {Xp, , Yp, j—0- grad. ascent learning
rate (3, small positive constant £
initialize D), <— {0}, Dy, < Dy,

I: forj=1,....n,do
140
repeat

wr < Gradient Descent on Dy, (T iterations)

n A= o b

prj C‘,al(xé?.ypj} < back-grad. descent with
wr (Alg. 2)

11 ' |
6: XD;EH_ ) — H‘J{(Xp;%) + 3 prj Cyal)
7: 14— 1+ 1

. i—1

8 1{11’[1] cwfl(xp f;}) — Cual(Xp ;,* ) < e
9: Dy < Dy U (XI(J?-. Yp;)
10: Dy DpU (x), yp,)
11: end for

Output: set of poisoning points D,

* Learn one poisoning point at a time.
* Performance comparable to coordinated
attack strategies.



Types of Poisoning Attacks

ES *k
Xp € arg max Cyq(w"),
XpEX

s.t. w* € argmin Cy.(w, Dy U {xp, yp})

Attacker’s Objective:

The attacker’s cost function Cyal determines the objective of the attack:

* Targeted Attacks: the attacker aims to cause some concrete error: particular classes, instances or
features to be selected/discarded by the learning algorithm.

* Indiscriminate Attacks: the attacker aims to increase the overall classification error.

Attacker’s Capabilities:

* The labels of the poisoning points Yp determine the attacker capabilities.
* Different modes: insertion, modification, deletion.

* Attacker’s capabilities also have an impact on the attacker objective.

* Full knowledge vs Partial Knowledge.



Synthetic Example
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Indiscriminate Attacks against Binary Classifiers
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* Spambase: Spam filtering application (54 features)
* Ransomware: Malware detection (400 features)
 IMNIST 1vs 7: Computer vision (784 features, 28 x 28)




Targeted vs Indiscriminate Attacks
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* Spambase dataset, Logistic Regression.

m Labels of poisoning points Attacker’s objective function

Indiscriminate Positive and negative Cross Entropy
Targeted Positive Cross Entropy

Targeted 2 Positive Cross Entropy only on positive samples



Classificaton Error

Transferability
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e Spambase dataset

e Attack points between linear classifiers are transferable

* Attack points generated from the non-linear classifier are transferable
to linear classifiers



Poisoning Multi-Class Classifiers

Indiscriminate Attack:

 MNIST dataset, Multi-class Logistic regression

* Selection of initial poisoning points: at random from the validation set, and then, flip the label randomly
e Comparison with random label flipping
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Poisoning Multi-Class Classifiers
Targeted Attack:

* MNIST dataset, Multi-class Logistic regression
* Selection of initial poisoning points: at random from samples of digit 3, then, flip the label to 8.
* Comparison with random label flipping (flipping the labels of samples from digit 3 to 8).
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Summary

* Machine learning algorithms are vulnerable to data I G 11 1
D 3 )y B - 8
ik P4 - |

poisoning. b/
e Optimal Poisoning Attacks can be modelled as bi-level
optimization problems.
* Back-Gradient optimization is efficient to compute poisoning points:

e Better scalability
* No KKT conditions required: can be applied to a broader range of algorithms

* Transferability: poisoning points generated to attack one particular algorithm can
also be harmful to other algorithms.

* |nterrelation between the attacker’s capabilities and objective.

* Ongoing work: Deep Networks, Hyperparameters.
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