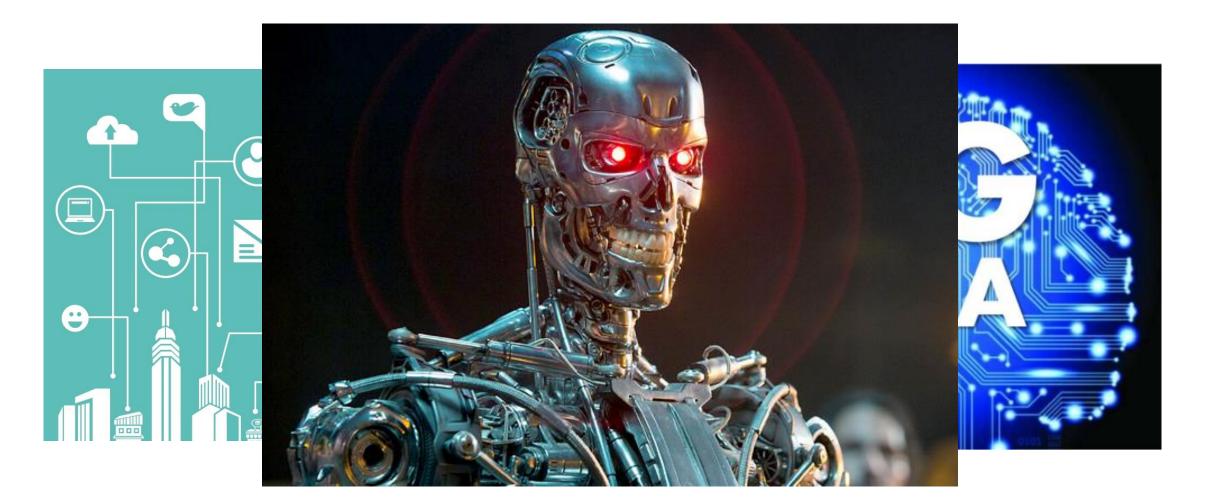


Poisoning Attacks through Back-Gradient Optimization

Luis Muñoz-González

RA Symposium London, June 2017



The Security of Machine Learning

Machine Learning systems can be compromised:

- Proliferation and sophistication of attacks and threats.
- Machine learning systems are one of the weakest parts in the security chain.
- Attackers can also use machine learning as a weapon.

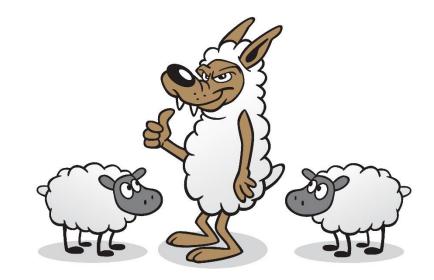
Adversarial Machine Learning:

- Security of machine learning algorithms.
- Understanding the weaknesses of the algorithms.
- Proposing more resilient techniques.

Threats

Evasion Attacks:

- Attacks at test time.
- The attacker aims to find the blind spots and weaknesses of the ML system to evade it.



Poisoning Attacks:

- Compromise data collection.
- The attacker subverts the learning process.
- Degrades the performance of the system.
- Can facilitate future evasion.

Evasion Attacks

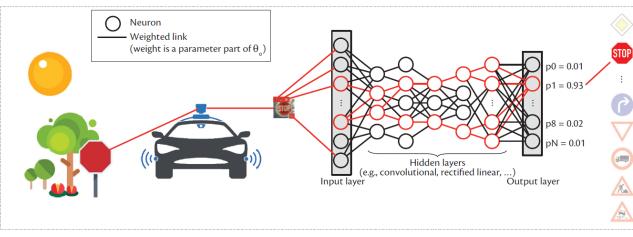
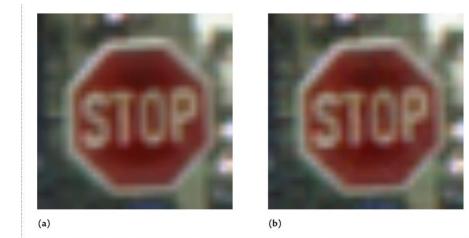
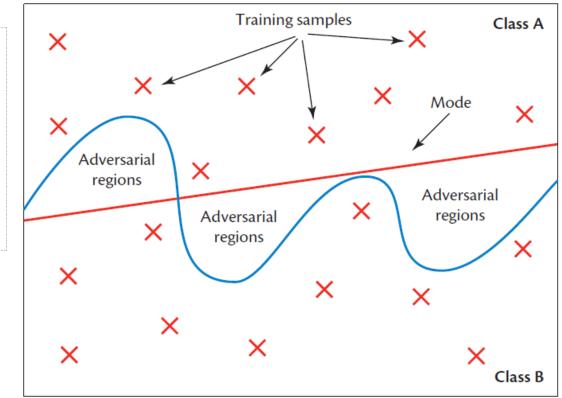


Figure 1. An autonomous vehicle uses a camera to identify and recognize roadside signs. Once a sign has been identified, its image is fed to a neural network for classification in one of the predefined sign classes. Here, the neural network identifies the sign as a stop sign.



P. McDaniel, N. Papernot, Z.B. Celik. "*Machine Learning in* Adversarial Settings." IEEE Security & Privacy, 14(3), pp. 68-72, 2016.

Figure 2. To humans, adversarial samples are indistinguishable from original samples. (a) An ordinary image of a stop sign. (b) An image crafted by an adversary.



Poisoning Attacks

MLP Gradient Ascent, n=1 10 8 0.9 6 0.8 4 0.7 2 0.6 0 0.5 -2 0.4 -4 0.3 -6 0.2 -8 -10 -10 0.1 10 -8 -6 -2 2 6 8 0 -4 4



Optimal Poisoning Attacks

General formulation of the problem:

- The attacker aims to optimize some objective function (evaluated on a validation dataset) by introducing malicious examples in the training dataset used by the defender.
- The defender aims to learn the parameters of the model that optimise some objective function evaluated on the (poisoned) training dataset.
- The attacker's problem can be modelled as a **bi-level optimization problem**:

$$\mathcal{D}_p^* \in rg\max_{\mathcal{D}_p} \ \mathcal{A}_{\mathrm{val}}(\mathbf{w}^*, \mathcal{D}_{\mathrm{val}}) \,,$$

s.t. $\mathbf{w}^* \in \arg\min_{\mathbf{w}} \mathcal{C}_{tr}(\mathbf{w}, \mathcal{D}_{tr} \cup \mathcal{D}_p)$

Optimal Poisoning Attacks for Classification

$$\mathbf{x_{p}}^{*} \in \arg \max_{\mathbf{x_{p}} \in \mathcal{X}} \mathcal{C}_{val}(\mathbf{w}^{*}),$$

s.t. $\mathbf{w}^{*} \in \arg \min_{\mathbf{w}} \mathcal{C}_{tr}(\mathbf{w}, \mathcal{D}_{tr} \cup \{\mathbf{x_{p}}, y_{p}\})$

- Biggio et al. "Poisoning Attacks against Support Vector Machines." ICML 2012.
- Mei and Zhu. "Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners." AAAI 2015.
- Xiao et al. "Is Feature Selection Secure against Training Data Poisoning?" ICML 2015.
- Poisoning points are learned following a gradient ascent strategy: $\nabla_{\mathbf{x}_{\mathbf{p}}} C_{val}(\mathbf{w}^*) = \left(\frac{\partial \mathbf{w}}{\partial \mathbf{x}_{\mathbf{p}}}\right)^T \nabla_{\mathbf{w}} C_{val}(\mathbf{w}^*)$
- Applying Karush-Kuhn-Tucker conditions $\nabla_{\mathbf{w}} \ C_{tr}(\mathbf{w}, \mathbf{x_p}) = \mathbf{0}$ and the implicit function theorem:

$$\nabla_{\mathbf{x}_{\mathbf{p}}} \mathcal{C}_{val} = -(\nabla_{\mathbf{x}_{\mathbf{p}}} \nabla_{\mathbf{w}} \mathcal{C}_{tr}) (\nabla_{\mathbf{w}}^{2} \mathcal{C}_{tr})^{-1} \nabla_{\mathbf{w}} \mathcal{C}_{val}$$

- Limited to a restricted family of classifiers.
- **Poor scalability** with the number of parameters of the model.

Optimal Poisoning Attacks for Classification

More efficient solution:

- 1) Don't invert matrices, use **conjugate gradient** instead:
 - More Stable.
 - Allows avoiding the computation of the Hessian.
- 2) Divide and Conquer:
 - Instead of computing $\nabla_{\mathbf{x}_{\mathbf{p}}} C_{val} = -(\nabla_{\mathbf{x}_{\mathbf{p}}} \nabla_{\mathbf{w}} C_{tr}) (\nabla_{\mathbf{w}}^2 C_{tr})^{-1} \nabla_{\mathbf{w}} C_{val}$
 - Compute: $\nabla^2_{\mathbf{w}} \mathcal{C}_{tr} \ \mathbf{v} = \nabla_{\mathbf{w}} \mathcal{C}_{val}$

$$\nabla_{\mathbf{x}_{\mathbf{p}}} \mathcal{C}_{\mathrm{val}} = -\nabla_{\mathbf{x}_{\mathbf{p}}} \nabla_{\mathbf{w}} \mathcal{C}_{\mathrm{tr}} \mathbf{v}$$

3) Don't compute the Hessian! $\frac{\partial^2 f(\mathbf{u}, \mathbf{v})}{\partial \mathbf{u} \partial \mathbf{v}^T} \mathbf{z} = \lim_{h \to 0} \frac{1}{h} \left(\nabla_{\mathbf{v}} f(\mathbf{u} + h\mathbf{z}, \mathbf{v}) - \nabla_{\mathbf{v}} f(\mathbf{u}, \mathbf{v}) \right)$ $\frac{\partial^2 f(\mathbf{u}, \mathbf{v})}{\partial \mathbf{u} \partial \mathbf{u}^T} \mathbf{z} = \lim_{h \to 0} \frac{1}{h} \left(\nabla_{\mathbf{u}} f(\mathbf{u} + h\mathbf{z}, \mathbf{v}) - \nabla_{\mathbf{u}} f(\mathbf{u}, \mathbf{v}) \right)$

Poisoning with Back-Gradient Optimization

- J. Domke. "Generic Methods for Optimization-Based Modelling." AISTATS 2012.
- D. Maclaurin, D.K. Duvenaud, R.P. Adams. "Gradient-based Hyperparameter Optimization through Reversible Learning." ICML 2015.

Algorithm 1 Gradient Descent		
Input: initial weights \mathbf{w}_0 , learning rate α , \mathcal{D}_{tr} , loss func-		
tion $\mathcal{L}(\mathbf{w}, \mathbf{x}, y)$		
1: for $t = 0, \ldots, T - 1$ do		
2: $\mathbf{g}_t = \nabla_{\mathbf{w}} \mathcal{C}_{\mathrm{tr}}(\mathbf{w}_t)$		
3: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \alpha \mathbf{g}_t$		
4: end for		
Output: trained parameters \mathbf{w}_T		

Algorithm 2 Back-gradient DescentInput: \mathbf{w}_T , α , $\mathcal{L}(\mathbf{w}, \mathbf{x}, y)$, \mathcal{D}_{tr} , \mathcal{D}_{val} initialize $d\mathbf{x}_{\mathbf{p}} \leftarrow \mathbf{0}$, $d\mathbf{w} \leftarrow \nabla_{\mathbf{w}} \mathcal{C}_{val}(\mathbf{w}_T)$ 1: for $t = T, \dots, 1$ do2: $d\mathbf{x}_{\mathbf{p}} \leftarrow d\mathbf{x}_{\mathbf{p}} - \alpha \ d\mathbf{w} \nabla_{\mathbf{w}} \nabla_{\mathbf{x}_{\mathbf{p}}} \mathcal{C}_{tr}(\mathbf{w}_t, \mathbf{x}_{\mathbf{p}})$ 3: $d\mathbf{w} \leftarrow d\mathbf{w} - \alpha \ d\mathbf{w} \nabla_{\mathbf{w}} \nabla_{\mathbf{w}} \mathcal{C}_{tr}(\mathbf{w}_t, \mathbf{x}_{\mathbf{p}})$ 4: $\mathbf{g}_{t-1} = \nabla_{\mathbf{w}_t} \mathcal{C}_{tr}(\mathbf{w}_t, \mathbf{x}_{\mathbf{p}})$ 5: $\mathbf{w}_{t-1} = \mathbf{w}_t + \alpha \ \mathbf{g}_{t-1}$ 6: end for

Output: $\nabla_{\mathbf{x}_{\mathbf{p}}} \mathcal{C}_{\mathrm{val}} \leftarrow d\mathbf{x}_{\mathbf{p}}$

Greedy Attack Strategy

Algorithm 3 Greedy Poisoning Attack

Input: \mathcal{D}_{tr} , \mathcal{D}_{val} , iterations gradient descent T, set of initial poisoning points $\{\mathbf{x}_{p_j}^{(0)}, y_{p_j}\}_{j=0}^{n_p}$, grad. ascent learning rate β , small positive constant ε

initialize
$$\mathcal{D}_p \leftarrow \{\emptyset\}, \mathcal{D}_{\mathrm{tr}} \leftarrow \mathcal{D}_{\mathrm{tr}}$$

1: **for**
$$j = 1, ..., n_p$$
 d

- $2: \quad i \leftarrow 0$
- 3: repeat
- 4: $\mathbf{w}_T \leftarrow \text{Gradient Descent on } \hat{\mathcal{D}}_{\text{tr}} \ (T \text{ iterations})$
- 5: $\nabla_{\mathbf{x}_{p_j}} C_{val}(\mathbf{x}_{p_j}^{(i)}, y_{p_j}) \leftarrow back-grad.$ descent with \mathbf{w}_T (Alg. 2)
- 6: $\mathbf{x}_{\mathbf{p}_{j}}^{(i+1)} \leftarrow \Pi_{\mathcal{X}}(\mathbf{x}_{\mathbf{p}_{j}}^{(i)} + \beta \nabla_{\mathbf{x}_{p_{j}}} \mathcal{C}_{val})$
- 7: $i \leftarrow i+1$ 8: **until** $C_{\text{val}}(\mathbf{x}_{\mathbf{p}_{j}}^{(i)}) - C_{\text{val}}(\mathbf{x}_{\mathbf{p}_{j}}^{(i-1)}) < \varepsilon$
- 9: $\hat{\mathcal{D}}_{\mathrm{tr}} \leftarrow \hat{\mathcal{D}}_{\mathrm{tr}} \cup (\mathbf{x}_{p_j}^{(i)}, y_{p_j})$
- 10: $\mathcal{D}_p \leftarrow \mathcal{D}_p \cup (\mathbf{x}_{p_j}^{(i)}, y_{p_j})$
- 11: **end for**

Output: set of poisoning points \mathcal{D}_p

- Learn one poisoning point at a time.
- Performance comparable to coordinated attack strategies.

Types of Poisoning Attacks

$$\mathbf{x_{p}}^{*} \in \arg \max_{\mathbf{x_{p}} \in \mathcal{X}} \ \mathcal{C}_{val}(\mathbf{w}^{*}),$$

s.t. $\mathbf{w}^{*} \in \arg \min_{\mathbf{w}} \ \mathcal{C}_{tr}(\mathbf{w}, \mathcal{D}_{tr} \cup \{\mathbf{x_{p}}, y_{p}\})$

Attacker's Objective:

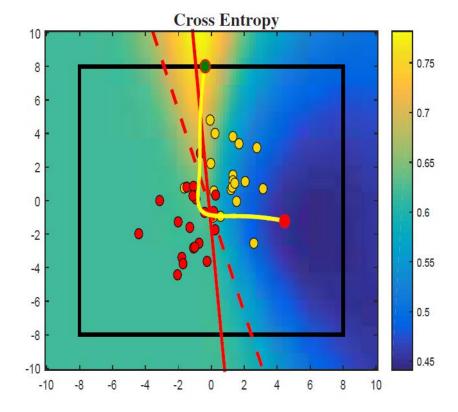
The attacker's cost function \mathcal{C}_{val} determines the objective of the attack:

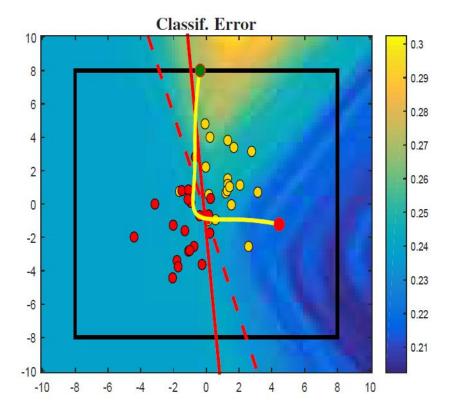
- **Targeted Attacks**: the attacker aims to cause some concrete error: particular classes, instances or features to be selected/discarded by the learning algorithm.
- Indiscriminate Attacks: the attacker aims to increase the overall classification error.

Attacker's Capabilities:

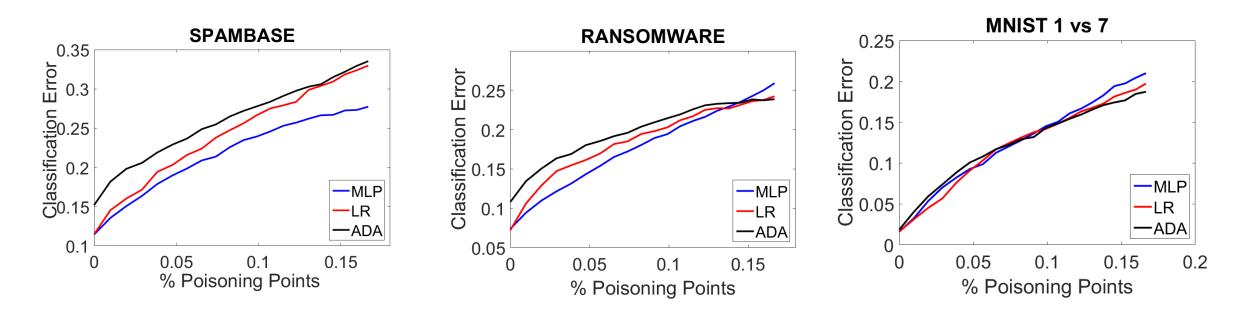
- The labels of the poisoning points y_p determine the attacker capabilities.
- Different modes: **insertion**, modification, deletion.
- Attacker's capabilities also have an impact on the attacker objective.
- Full knowledge vs Partial Knowledge.

Synthetic Example

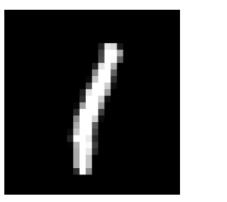




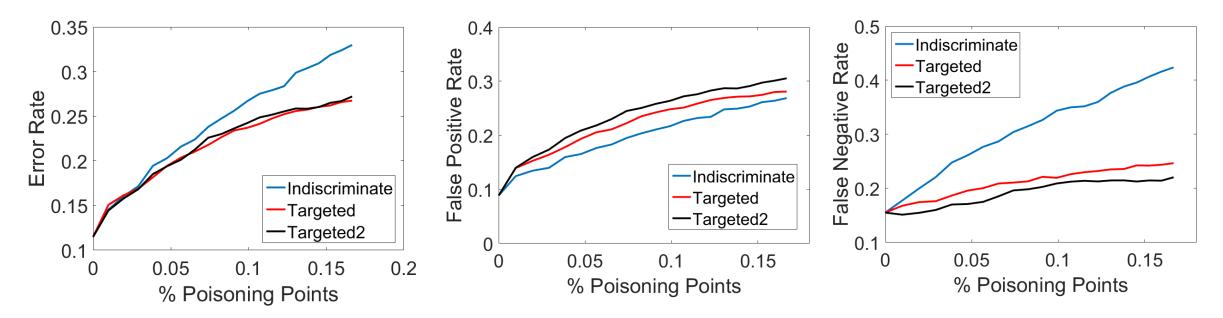
Indiscriminate Attacks against Binary Classifiers



- **Spambase**: Spam filtering application (54 features)
- **Ransomware**: Malware detection (400 features)
- MNIST 1vs 7: Computer vision (784 features, 28 x 28)



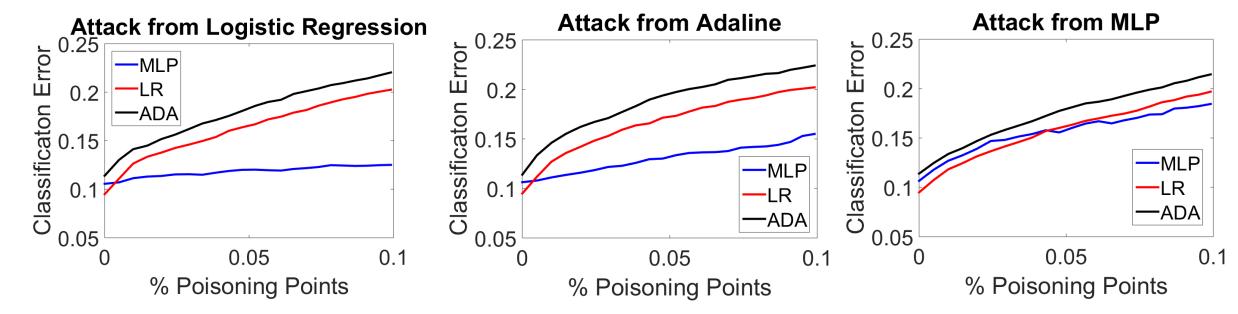
Targeted vs Indiscriminate Attacks



• Spambase dataset, Logistic Regression.

Attack	Labels of poisoning points	Attacker's objective function
Indiscriminate	Positive and negative	Cross Entropy
Targeted	Positive	Cross Entropy
Targeted 2	Positive	Cross Entropy only on positive samples

Transferability

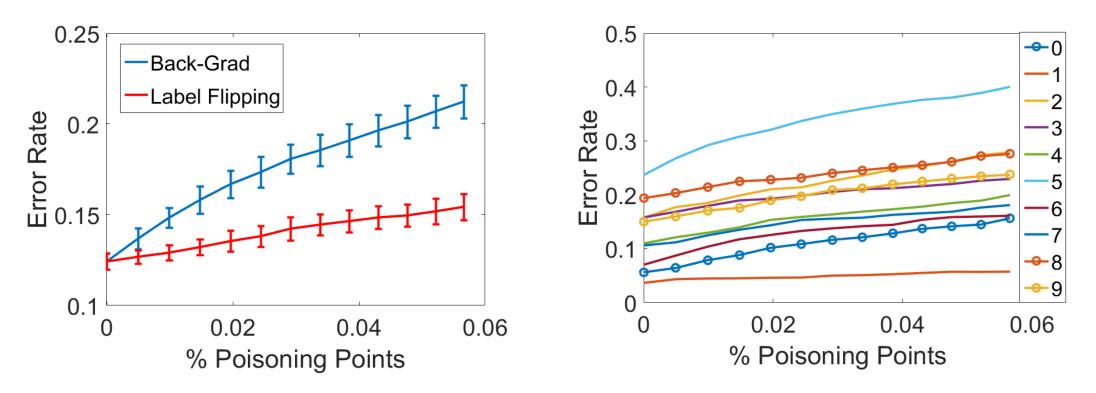


- Spambase dataset
- Attack points between linear classifiers are transferable
- Attack points generated from the non-linear classifier are transferable to linear classifiers

Poisoning Multi-Class Classifiers

Indiscriminate Attack:

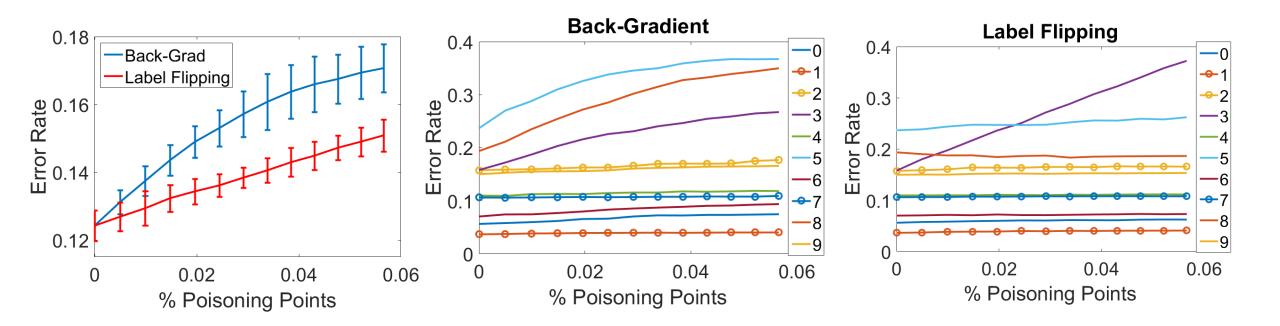
- MNIST dataset, Multi-class Logistic regression
- Selection of initial poisoning points: at random from the validation set, and then, flip the label randomly
- Comparison with random label flipping



Poisoning Multi-Class Classifiers

Targeted Attack:

- MNIST dataset, Multi-class Logistic regression
- Selection of initial poisoning points: at random from samples of digit 3, then, flip the label to 8.
- Comparison with random label flipping (flipping the labels of samples from digit 3 to 8).



Summary

- Machine learning algorithms are vulnerable to data poisoning.
- Optimal Poisoning Attacks can be modelled as bi-level optimization problems.

- **Back-Gradient optimization** is efficient to compute poisoning points:
 - Better scalability
 - No KKT conditions required: can be applied to a broader range of algorithms
- **Transferability**: poisoning points generated to attack one particular algorithm can also be harmful to other algorithms.
- Interrelation between the **attacker's capabilities and objective**.
- **Ongoing work**: Deep Networks, Hyperparameters.

Collaborators

Imperial College London

- Dr Emil C. Lupu
- Andrea Paudice
- Vasin Wongrassamee
- Kenneth Co
- Lisa Tse

- Prof Fabio Roli
- Dr Battista Biggio
- Ambra Demontis

Thank you!

Contact: <u>I.munoz@imperial.ac.uk</u> Room 502 (Huxley Building)