
Minimising Application Deployment Cost 
Using Spot Cloud Resources

Daniel J. Dubois
AESOP research group

daniel.dubois@imperial.ac.uk

RA Symposium – DoC – Imperial College London – 14 June 2016



Context

Enterprise applications with quality requirements

Minimise the costs for application deployment

Front-end Back-end Database



How to save on costs? Cloud Computing!

Pay for the time you use a resource

Different sizes of resources

Different providers

Different pricing strategies: ON DEMAND vs SPOT

S
M
£

L

££

XL

£££

The decision space is huge!



Deployment Possibilities

Resource 
sharing

Replication 
with load 
balancing

Less flexibility

More flexibility



Application Model

Closed Multi-class Queueing Network:

• Exponentially distributed
service times

Application constraints:

• maxMRTk: max. response time for each class
• maxRTPk,u: max. response time in the u-th percentile

SLO
Service Level Objectives

Application
Server

Database
Server

Delay Station



Resource Model

Parameters for each resource (case for Amazon spot resources)
• Speed of the resource (e.g., Amazon ECU)
• Number of processors
• On demand price
• Optimal bid price to obtain a certain level of availability
• Expected cost of the resource when bidding the bid price
• …

£ ££

£ £££ ££

vs

vs vsDifferent availability

Different speed

Different number of CPUs



Performance Prediction: Random Environment for Spot Instances

Use a Continuous-time Markov Chain to represent unreliable 
Spot instances:

Available
Spot: ON
OD: OFF

1/overbidTime

Available
Spot: ON

OD: Starting

Unavailable
Spot: OFF

OD: Starting

Available
Spot: OFF
OD: ON

Available
Spot: Starting

OD: ON

1/termNoticeTime

1/max(eps,
odStartupTime-termNoticeTime)

1/overbidTime

1/underbidTime

1/spotStartupTime

1

2

3

45



Performance Prediction: Evaluating the QN

We use this existing tool: LINE solver*
• Solves the QN using a fluid approximation
• Supports Random Environments

QN MRTk: max. response time for 
each class

RTPk,u: max. response time in 
the u-th percentile

Random Environment
(Markov Chain of 
QN evolution)

LINE Solver*

* http://line-solver.sf.net



Decision Parameters: Resource Type Vector

t=[ty] à resource type vector

Example: t1=small, t2=large

Total cost: 3

t1 t2
Rate: 1
Cost: 1

Rate: 3
Cost: 2

Which resources to choose?



Decision Parameters: Allocation Matrix

D=[dm,y] à allocation matrix of component m to resource y
Example:

1 0.5

0 2.5

How are application components allocated to resources?

t1

t2

App
Server

DB
Server

Rate: 1
Cost: 1

Rate: 3
Cost: 2

t1 t2
App Server
DB ServerD=

Req. rate: 1.5

Req. rate: 2.5



Optimisation Problem

Goal: 
• Minimise the total cost

Subject to:
• Speed constraints of the chosen resources
• Service Level Objectives



Adaptation: iterative process

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

Application QN
Service Level Objectives
Available resources

Cloud resources to instantiate (t vector)
Allocation of the application components 
to the resources (D matrix)

OptiSpot Heuristic



Step 1: Deciding Resource Rates

Input
Application Model (Queueing Network)
Constraints on the response time

Output
Service rates for each resource fulfilling the constraints

Problem (NLP)
Minimise the rate of each resource
Subject to: Service Level Objectives

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 1: Deciding Resource Rates

Idea: 
Start with high feasible resource rates
Scale-down the rates of all components until reaching the SLO boundary

Rate for
Component 1

Rate for
Component 2

Rate for
Component 3

Initial feasible rate

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 1: Deciding Resource Rates

Idea: 
Start with high feasible resource rates
Scale-down the rates of all components until reaching the SLO boundary

Rate for
Component 1

Rate for
Component 2

Rate for
Component 3

Initial feasible rate

SLO violated, fix the
bottleneck rate (component 2)

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 1: Deciding Resource Rates

Idea: 
Start with high feasible resource rates
Scale-down the rates of all components until reaching the SLO boundary

Rate for
Component 1

Rate for
Component 2

Rate for
Component 3

Initial feasible rate

SLO violated, fix the
bottleneck rate (component 2)

SLO violated, fix the
bottleneck rate (component 3)

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 1: Deciding Resource Rates

Idea: 
Start with high feasible resource rates
Scale-down the rates of all components until reaching the SLO boundary

Rate for
Component 1

Rate for
Component 2

Rate for
Component 3

Initial feasible rate

SLO violated, fix the
bottleneck rate (component 2)

SLO violated, fix the
bottleneck rate (component 3)

SLO violated, fix the
bottleneck rate (component 1)

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 2: Deciding the Resources to Rent

Find the cheapest way to provide the required resource rates

Input
• Sum of the resource rates found at STEP 1
• Available cloud resources (characteristics and costs)

Output
• List of resources to be rented (t vector)

Problem (ILP)
• Minimise the cost of rented resources
• Subject to: 

fulfilment of component service
rate requirement

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 3: Deciding Resource Allocation

Map application components to the resources to rent such that:
• Number of partitioned components is minimised
• Each component has enough resources allocated

Input
• Component rates (output of STEP 1)
• Rented resources (t vector, output of STEP 2)

Output
• Allocation matrix D

Idea
• Assign the component with the largest non-allocated rate to the

resource with the largest unused rate

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 3: Deciding Resource Allocation

Component 1 
(required 
rate: 10)

Component 2 
(required 
rate: 8)

Resource 1 (available rate: 6)

Resource 2 (available rate: 6)

Resource 3 (available rate: 6)

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 3: Deciding Resource Allocation

Component 1 
(required 
rate: 4)

Component 2 
(required 
rate: 8)

Resource 1 (available rate: 0)

Resource 2 (available rate: 6)

Resource 3 (available rate: 6)

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 3: Deciding Resource Allocation

Component 1 
(required 
rate: 4)

Component 2 
(required 
rate: 2)

Resource 1 (available rate: 0)

Resource 2 (available rate: 0)

Resource 3 (available rate: 6)

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 3: Deciding Resource Allocation

Component 1 
(required 
rate: 0)

Component 2 
(required 
rate: 2)

Resource 1 (available rate: 0)

Resource 2 (available rate: 0)

Resource 3 (available rate: 2)

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 3: Deciding Resource Allocation

Component 1 
(required 
rate: 0)

Component 2 
(required 
rate: 0)

Resource 1 (available rate: 0)

Resource 2 (available rate: 0)

Resource 3 (available rate: 0)

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 4: Check the solution
Is the SLO fulfilled?

YES: return the solution found
NO: 
• Identify the bottleneck (components that causes that major SLO violation)
• scale-up the bottleneck component and restart from STEP 2

Rate for Bottleneck
Component 1

Rate for
Component 2

Rate for
Component 3

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Step 4: Check the solution
Is the SLO fulfilled?

YES: return the solution found
NO: 
• Identify the bottleneck (components that causes that major SLO violation)
• scale-up the bottleneck component and restart from STEP 2

New rate for
Component 1

Rate for
Component 2

Rate for
Component 3

1. Decide resource rates 
(e.g., ECU requirements)

2. Decide resources 
to rent

3. Decide allocation

4a. Analyze the 
system:

SLO fulfilled?
Apply the solution

Wait for the next 
iteration

4b. Scale-up the 
bottleneck rates

YesNo

OptiSpot



Case study 1: SAP ERP Application

Real application with real measurements

1 Application Server
1 DB Server

QN description publicly
available

Compare our approach VS an exact approach based on a generic non-linear
solver provided by MATLAB (fmincon using interior-point method)



Varying the Number of Users (hourly cost)

1000 2000 5000 10000
Number of users (eu-west/Windows)

0

50

100

Q
N

 e
va

lu
at

io
ns

OptiSpot
Exact approach

1000 2000 5000 10000
Number of users (eu-west/Windows)

0

50

100

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

OptiSpot
Exact approach

1000 2000 5000 10000
Number of users (us-east/Windows)

0

0.5

1

1.5

2

H
ou

rly
 c

os
t (

U
S 

do
lla

rs
)

OptiSpot
Exact approach

1000 2000 5000 10000
Number of users (us-east/Windows)

0

0.5

1

1.5

2

H
ou

rly
 c

os
t (

U
S 

do
lla

rs
)

OptiSpot
Exact approach



1000 2000 5000 10000
Number of users (eu-west/Windows)

0

50

100

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

OptiSpot
Exact approach

Varying the Number of Users (execution time)

1000 2000 5000 10000
Number of users (eu-west/Windows)

0

50

100

Q
N

 e
va

lu
at

io
ns

OptiSpot
Exact approach

1000 2000 5000 10000
Number of users (eu-west/Windows)

0

50

100

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

OptiSpot
Exact approach

1000 2000 5000 10000
Number of users (us-east/Windows)

0

0.5

1

1.5

2

H
ou

rly
 c

os
t (

U
S 

do
lla

rs
)

OptiSpot
Exact approach



Varying the Number of Users (QN evaluations)

1000 2000 5000 10000
Number of users (eu-west/Windows)

0

50

100

Q
N

 e
va

lu
at

io
ns

OptiSpot
Exact approach

1000 2000 5000 10000
Number of users (eu-west/Windows)

0

50

100

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

OptiSpot
Exact approach

1000 2000 5000 10000
Number of users (us-east/Windows)

0

0.5

1

1.5

2

H
ou

rly
 c

os
t (

U
S 

do
lla

rs
)

OptiSpot
Exact approach

1000 2000 5000 10000
Number of users (eu-west/Windows)

0

50

100

Q
N

 e
va

lu
at

io
ns

OptiSpot
Exact approach



Model Improvement: Application Refactoring

Refactoring the Application Model (i.e., the QN) to improve the results

Software component 
replacement

Software component 
merge

Software component 
reassignment

A

B

Component A is
replaced by B

Components A and B are
merged into C

A

B

C

A

A

A

Functional separation of
component A into two replica 



Case study 2: SPECjAppServer Benchmark Application

Enterprise-level business-to-business e-commerce benchmark

1 Application Server
1 DB Processor
1 DB I/O

QN description publicly
available



Application Refactoring: Some Results

2.5k 5k 10k 20k 40k
Number of requests

0

5

10

15

H
ou

rly
 c

os
t (

U
S 

do
lla

rs
)

No Refactoring
Replacement
Reassignment
Full

2.5k 5k 10k 20k 40k
Number of requests

0

50

100

150

Q
ue

ui
ng

 n
et

w
or

k 
ev

al
ua

tio
ns

No Refactoring
Replacement
Reassignment
Full

+ Refactorings scale well
- More QN evaluations are 

needed

Some experiments:

1. Only OptiSpot
2. OptiSpot with Software replacement refactoring
3. OptiSpot with Software reassignment refactoring
4. OptiSpot with Both software refactorings



Conclusions

Cost-aware approach to support provisioning and allocation decisions

• Decide which resources to rent and what to deploy on them
• Random environment representation for spot and preemptible resources
• Model-driven Application Refactoring

Future challenges
• Runtime adaptation experiments
• Burstable instances
• Multidimensional requirements

Lightweight approach 
for a complex problem

Run-time 
adaptation

Allocation
Deallocation
Migration
Replication

vs
Different number of CPUs
Same number of ECUs



Thank You!


