

Imperial College London

Deep Learning for Human Activity Recognition: A Resource Efficient Implementation on Low-Power Devices

Daniele Ravì, Charence Wong, Benny Lo and Guang-Zhong Yang

To appear in the proceedings of the IEEE EMBS 13th Annual International Body Sensor Networks (BSN) Conference, June 2016

Activity Recognition

- Main Goal
 - Identify human activities (such as walking, jogging, cycling, etc.)

Applications

Wellbeing

Healthcare

Sports

How is it recorded?

- Inertial sensors
 - □ Accelerometer
 - Gyroscope
 - Magnetometer
- Camera
- GPS
- Audio
- Proximity
- Barometer

Can we use a phone?

Imperial College London

Deep Learning

- For many years, activity recognition approaches have been designed using shallow features
 - Those methods are task dependent and limited
- With Deep Learning, features are extracted from the training data instead of being handcrafted for a specific application

Shallow features

SIFT [Loewe IJCV 04]

TABLE I FEATURE TABLE

	Mean	Standard Deviation	Mean Derivatives
1	Median	Pairwise Correlation	Interquartile Range
S	kewness	Root Mean Square	Zero Crossing Rate
V	Variance	Mean Crossing Rate	Kurtosis
Pea	k-to-Peak	Max/Min Value	Amplitude

- We propose an approach that combines a descriptive input domain with a deep learning method
- The method must be efficient
- It must also be robust against transformations and variations in sensor properties

Spectrogram

- A spectrogram of an inertial signal is a new representation of the signal as a function of frequency and time
- The procedure for computing the spectrogram is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment
- This results in a representation that describes the changing spectra as a function of time
- The representation captures the inertial input signal whilst providing a form of temporal and sample rate invariance

Temporal convolution layer

Each filter w_i is applied to the spectrogram vertically and the weighted sum of the convolved signal is computed as follows:

$$o[t][i] = \sum_{j=1}^{st} \sum_{k=1}^{kw} w[i][j][k] * input[dw * (t-1) + k][j]$$

- These temporal convolutions produce an output layer of learned features with a small size for real-time processing
- This provides orientation invariance to the input signal
- The last two layers are used to finally classify the features

Training

- We use the error value in the backward propagation routine to update each weight of the network through the Stochastic Gradient Descent (SGD) approach
- To improve the training procedure of the weights, we have used 3 regularisations:
 - Weight decay causes the weights to exponentially decay to zero if no other update is scheduled to avoid over-fitting
 - Momentum accelerates gradient descent to move the global minimum of the function
 - Dropout removes units randomly from the neural network to lower generalisation error

Datasets

- Four datasets are considered in our analysis
- We also release a new dataset called ActiveMiles
 - It contains unconstrained real world data from 10 subjects
 - It is one of the largest dataset (around 30 hours of labelled raw data)
 - It is the first database that contains data captured using different devices

Number of			Sensors				
Dataset	Activities	Subjects	Sensor Placement	Accel.	Gyro.	Sampling Rate	Samples
ActiveMiles	7	10	Any placement	✓	√	50 – 200Hz	4,390,726
			(unconstrained)				
WISDM v1.1	6	29	Front trouser pocket	\checkmark	X	20Hz	1,098,207
			(thigh)				
Daphnet FoG	2	10	Trunk, thigh, ankle	\checkmark	X	64Hz	1,917,887
Skoda	10	1	Arms (20 positions)	✓	X	98Hz	$\sim 701,440$

Experimental setup

Classification accuracy changes when the spectrogram generation parameters are modified

Experimental setup

- The optimal size of the temporal convolution kernel is two or three, depending on the data being classified
- The proposed approach requires few levels in order to obtain good results

Experimental setup

 15 filters and just 80 nodes in the fully convolution layer are sufficient for a good classification

Imperial College London

Results

- A comparison of HAR results using four baselines, existing methods, and the considered datasets are shown in Table III
- The accuracy of the proposed method is typically better in comparison to the other methods

		** 7' 1		(61)	
Dataset	Approach	Window	Accura	•	
	Cs1	10s	81.0		
	Cs2		89.3		
ActiveMiles	Cs3		94.7		
	Cs4		95.0		
	Ours		95.1		
	Cs1		85.1		
	Cs2		91.3		
MACDIA	Cs3		96.7		
WISDM	Cs4	10s	97.4		
v1.1	[13]		98.2		
	[7]		94.3		
	Ours		98	3.2	
	Cs1		86.2		
	Cs2		89.2		
C1 1-	Cs3		94.0		
Skoda	Cs4	4s	95	95.9	
(Node 16)	[21]		86.0		
	[13]		89.4		
	Ours		91.7		
			Sensitivity	Specificity	
	Cs3		62.2	96.9	
Daphnet	Cs4		66.3	97.7	
FoG	[20]	4s	73.1	81.6	
	[13]		91.5	91.5	
	Ours		71.9	96.7	

Performance

- A comparison of the computation times required to classify activities on different devices
 - All resulting times are within the requirements for real-time processing

Device	Spectrogram	Deep Learning
LG Nexus 5	5.4ms	5.7ms
Samsung Galaxy S5	20ms	8ms
Intel Edison	13ms – 42ms	14.9ms

Conclusion

- The proposed system generates discriminative features that are generally more powerful than handcrafted features
- The accuracy of the proposed approach is better or comparable against existing state-of-the-art methods
- The ability of the proposed method to generalise across different classification tasks is demonstrated using a variety of human activity datasets
- The computation times obtained from low-power devices are consistent with real-time processing

Thank you for your attention!

