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Activity Recognition

= Main Goal

o Identify human activities (such as walking, jogging, cycling, etc.]
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Applications

Wellbeing Healthcare Sports
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How is it recorded?

=" |nertial sensors

o Accelerometer

o Gyroscope

o Magnetometer
= (Camera
* GPS
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" Proximity
= Barometer
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Can we use a phone?
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What about v(e bles?
Intel Edison P
= |ntel Atom dual-core CPU @ 500Hz -7

1GB DDR3 RAM
4GB eMMC Flash

Dimensions:; 3bmm X 25mm
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Deep Learning

= For many years, activity recognition
approaches have been designed
using shallow features

o Those methods are task dependent
and /imited

= \With Deep Learning, features are
extracted from the training data
instead of being handcrafted for a
specific application

s The Hamlyn Centre
S The Institute of Global Health Innovation

Shallow features
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TABLE I
FEATURE TABLE

descriplor

Mean Standard Deviation Mean Derivatives
Median Pairwise Correlation | Interquartile Range
Skewness Root Mean Square | Zero Crossing Rate
Variance Mean Crossing Rate Kurtosis
Peak-to-Peak Max/Min Value Amplitude
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Our approach
= \Ne propose an approach that
combines a descriptive input
domain with a deep learning
method - =
o . M
= The method must be efficient g~ ' s ! H;U
Fiters ° . I ﬁMax
. moih M.L s a:ﬂ Oupuframe Fully-Connected
" |t must also be robust against T e s
Input Layer

transformations and variations
IN sensor properties
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Our approach
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Our approach

Spectrogram

A spectrogram of an inertial signal is a new representation of
the signal as a function of frequency and time

The procedure for computing the spectrogram is to divide a
longer time signal into shorter segments of equal length and
then compute the Fourier transform separately on each
shorter segment

This results in a representation that describes the changing
spectra as a function of time

The representation captures the inertial input signal whilst
providing a form of temporal and sample rate invariance
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Our approach
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Our approach

Temporal convolution layer
= Each filter w, is applied to the spectrogram vertically and the
weighted sum of the convolved signal is computed as follows:

st kw

= Z Z wli][7][k] * input[dw * (t — 1) + k][]

j=1 k=1
* These temporal convolutions produce an output layer of learned
features with a small size for realtime processing
= This provides orientation invariance to the input signal
* The last two layers are used to finally classify the features
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Training

= \We use the error value in the backward propagation routine to
update each weight of the network through the Stochastic
Gradient Descent (SGD) approach

* To improve the training procedure of the weights, we have used
3 regularisations:

o Weight decay - causes the weights to exponentially decay to zero if no
other update is scheduled to avoid over-fitting

o Momentum - accelerates gradient descent to move the global minimum
of the function

o Dropout - removes units randomly from the neural network to lower
generalisation error
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Datasets

* [Four datasets are considered in our analysis
= \\e also release a new dataset called ActiveMliles

o It contains unconstrained real world data from 10 subjects

o Itis one of the largest dataset (around 30 hours of labelled raw data)
o Itis the first database that contains data captured using different devices

Number of Sensors
Dataset Activities  Subjects Sensor Placement ~ Accel. Gyro.  Sampling Rate Samples

ActiveMiles 7 10 Any placement v v 50 — 200Hz 4,390,726
(unconstrained)

WISDM vl.1 6 29  Front trouser pocket v X 20Hz 1,098,207
(thigh)

Daphnet FoG 2 10 Trunk, thigh, ankle v X 64Hz 1,917,887

Skoda 10 1 Arms (20 positions) v X 98Hz ~ 701,440
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Experimental setup

Classification accuracy changes when the spectrogram
generation parameters are modified
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Experimental setup

* The optimal size of the temporal convolution kernel is two or
three, depending on the data being classified

* The proposed approach requires few levels in order to obtain

3

good results
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Experimental setup

= 3 filters and just 80 nodes in the fully convolution layer are
sufficient for a good classification
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Results
Dataset Approach ~ Window Accuracy (%)
Csl 81.0
= Acomparison of HAR results  ,weriee o 106 o2
using four baselines, existing S poy
methods, and the considered o o
. Cs3 96.7
datasets are shown in Table lll WISDM ! 10s 074
: [13] 98.2
* The accuracy of the proposed Om 33'3
urs o
method is typically better in a1 562
S .
comparison to the other Skoda e N 940
(Node 16) s .
[21] 86.0
methods 21 86.0
Ours 91.7
Sensitivity  Specificity

Cs3 62.2 96.9

Daphnet C:4 66.3 97.7

FoG [20] 4s 73.1 81.6

[13] 91.5 91.5

Ours 71.9 96.7
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Performance

= A comparison of the computation times required to classify
activities on different devices
o All resulting times are within the requirements for real-time processing

Device Spectrogram  Deep Learning
LG Nexus 5 5.4ms 5.7ms
Samsung Galaxy S5 20ms 8ms
Intel Edison 13ms — 42ms 14.9ms
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Conclusion

The proposed system generates discriminative features that
are generally more powerful than handcrafted features

The accuracy of the proposed approach Is better or
comparable against existing state-of-the-art methods

The ability of the proposed method to generalise across
different classification tasks is demonstrated using a variety of
human activity datasets

The computation times obtained from low-power devices are
consistent with realtime processing
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Thank you for your attention!
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