Transfer Learning for Optimal Configuration of Big Data Software

<u>Pooyan Jamshidi</u>, Giuliano Casale Imperial College London p.jamshidi@imperial.ac.uk

> Department of Computing Research Associate Symposium 14th June 2016

Imperial College London

Motivation

1- Many different
Parameters =>
- large state space
- interactions

2- Defaults are
typically used =>
poor performance

```
102
    drpc.port: 3772
103
104
     drpc.worker.threads: 64
     drpc.max_buffer_size: 1048576
105
    drpc.queue.size: 128
106
     drpc.invocations.port: 3773
107
     drpc.invocations.threads: 64
108
    drpc.request.timeout.secs: 600
109
110
    drpc.childopts: "-Xmx768m"
111
    drpc.http.port: 3774
112
    drpc.https.port: -1
    drpc.https.keystore.password: ""
113
114
    drpc.https.keystore.type: "JKS"
    drpc.http.creds.plugin: org.apache.storm.security.auth.DefaultHttpCredentialsPlugi
115
    drpc.authorizer.acl.filename: "drpc-auth-acl.yaml"
116
    drpc.authorizer.acl.strict: false
117
118
     transactional.zookeeper.root: "/transactional"
119
     transactional.zookeeper.servers: null
120
     transactional.zookeeper.port: null
121
122
123
    ## blobstore configs
     supervisor.blobstore.class: "org.apache.storm.blobstore.NimbusBlobStore"
124
    supervisor.blobstore.download.thread.count: 5
125
    supervisor.blobstore.download.max retries: 3
126
    supervisor.localizer.cache.target.size.mb: 10240
127
    supervisor.localizer.cleanup.interval.ms: 600000
128
129
```


Goal!

Finding optimum configuration is difficult!

 $egin{aligned} oldsymbol{x}^* &= rg\min_{oldsymbol{x}\in\mathbb{X}} f(oldsymbol{x}) \ &\mathbb{X} &= Dom(X_1) imes \cdots imes Dom(X_d) \ &y_i &= f(oldsymbol{x}_i), oldsymbol{x}_i \in \mathbb{X} \ &y_i &= f(oldsymbol{x}_i) + \epsilon \end{aligned}$

- Response surface is:
- Non-linear
- Non convex
- Multi-modal

Bayesian Optimization for Configuration Optimization (BO4CO) Code: https://github.com/dice-project/DICE-Configuration-BO4CO

GP for modeling blackbox response function

 $y = f(\boldsymbol{x}) \sim \mathcal{GP}(\mu(\boldsymbol{x}), k(\boldsymbol{x}, \boldsymbol{x}')),$

$$\mu_t(\boldsymbol{x}) = \mu(\boldsymbol{x}) + \boldsymbol{k}(\boldsymbol{x})^{\mathsf{T}}(\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1}(\boldsymbol{y} - \boldsymbol{\mu})$$

$$\sigma_t^2(\boldsymbol{x}) = k(\boldsymbol{x}, \boldsymbol{x}) + \sigma^2 \boldsymbol{I} - \boldsymbol{k}(\boldsymbol{x})^{\mathsf{T}}(\boldsymbol{K} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{k}(\boldsymbol{x})$$

Motivations:

1- mean estimates + variance

2- all computations are linear algebra

Kernel function:

$$oldsymbol{K} := egin{bmatrix} k(oldsymbol{x}_1,oldsymbol{x}_1) & \dots & k(oldsymbol{x}_1,oldsymbol{x}_t) \ dots & \ddots & dots \ k(oldsymbol{x}_t,oldsymbol{x}_1) & \dots & k(oldsymbol{x}_t,oldsymbol{x}_t) \end{bmatrix}$$

$$k_{\theta}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp(\Sigma_{\ell=1}^d (-\theta_{\ell} \delta(\boldsymbol{x}_i \neq \boldsymbol{x}_j))),$$

Acquisition function:

$$u_{LCB}(\boldsymbol{x}|\mathcal{M}, \mathbb{S}_{1:n}) = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{X}} \mu_t(\boldsymbol{x}) - \kappa \sigma_t(\boldsymbol{x}),$$

Code: https://github.com/pooyanjamshidi/BO4CO

Algorithm 1 : BO4CO

Input: Configuration space X, Maximum budget N_{max} , Response function f, Kernel function K_{θ} , Hyper-parameters θ , Design sample size n, learning cycle N_l

Output: Optimal configurations x^* and learned model \mathcal{M}

- 1: choose an initial sparse design (*lhd*) to find an initial design samples $\mathcal{D} = \{x_1, \dots, x_n\}$
- 2: obtain *performance measurements* of the initial design, $y_i \leftarrow f(\boldsymbol{x}_i) + \epsilon_i, \forall \boldsymbol{x}_i \in \mathcal{D}$
- 3: $\mathbb{S}_{1:n} \leftarrow \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n; t \leftarrow n+1$
- 4: $\mathcal{M}(\boldsymbol{x}|\mathbb{S}_{1:n}, \boldsymbol{\theta}) \leftarrow \text{fit a } \mathcal{GP} \text{ model to the design } \triangleright \text{Eq.(3)}$ 5: while $t \leq N_{max}$ do
- 6: if $(t \mod N_l = 0)$ $\theta \leftarrow learn$ the kernel hyperparameters by maximizing the likelihood
- 7: find *next configuration* x_t by optimizing the selection criteria over the estimated response surface given the data, $x_t \leftarrow \arg \max_{x} u(x|\mathcal{M}, \mathbb{S}_{1:t-1}) \qquad \triangleright \text{Eq.(9)}$
- 8: obtain performance for the *new configuration* $\boldsymbol{x}_t, y_t \leftarrow f(\boldsymbol{x}_t) + \epsilon_t$
- 9: Augment the configuration $\mathbb{S}_{1:t} = \{\mathbb{S}_{1:t-1}, (\boldsymbol{x}_t, y_t)\}$

10: $\mathcal{M}(\boldsymbol{x}|\mathbb{S}_{1:t}, \boldsymbol{\theta}) \leftarrow \textit{re-fit} \text{ a new GP model} \triangleright \text{Eq.(7)}$

- 11: $t \leftarrow t+1$
- 12: end while

13:
$$(\boldsymbol{x}^*, y^*) = \min \mathbb{S}_{1:N_{max}}$$

14: $\mathcal{M}(oldsymbol{x})$

Correlations across different versions

- Different versions are continuously delivered (daily basis).
- Big Data systems are developed using similar frameworks (Apache Storm, Spark, Hadoop, Kafka, etc).
- Different versions share similar business logics.

Solution: Transfer Learning for Configuration Optimization

Transfer Learning for Configuration Optimization (TL4CO) Code: https://github.com/dice-project/DICE-Configuration-TL4CO

$$\mu_t(\boldsymbol{x}) = \mu(\boldsymbol{x}) + \boldsymbol{k}^{\mathsf{T}}(\boldsymbol{K}(X,X) + \Sigma)^{-1}(\boldsymbol{y} - \boldsymbol{\mu})$$

$$\sigma_t^2(\boldsymbol{x}) = k(\boldsymbol{x},\boldsymbol{x}) + \sigma^2 - \boldsymbol{k}^{\mathsf{T}}(\boldsymbol{K}(X,X) + \Sigma)^{-1}\boldsymbol{k},$$

$$k_{TL4CO}(l, l', \boldsymbol{x}, \boldsymbol{x}') = k_t(l, l') \times k_{xx}(\boldsymbol{x}, \boldsymbol{x}'),$$

correlation between different versions covariance functions

Code: https://github.com/pooyanjamshidi/TL4CO

Algorithm 1 : TL4CO

Input: Configuration space X, Number of historical configuration optimization datasets T, Maximum budget N_{max} , Response function f, Kernel function K, Hyperparameters $\boldsymbol{\theta}^{j}$, The current dataset $\mathbb{S}^{j=1}$, Datasets belonging to other versions $\mathbb{S}^{j=2:T}$, Diagonal noise matrix Σ , Design sample size n, Learning cycle N_l **Output:** Optimal configurations x^* and learned model \mathcal{M} 1: $\mathcal{D} = \{ \boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \}$ create an initial sparse design (*lhd*) 2: Obtain the performance $\forall x_i \in \mathcal{D}, y_i \leftarrow f(x_i) + \epsilon_i$ 3: $\mathbb{S}^{j=2:T} \leftarrow \text{select } m \text{ points from other versions } (j=2:T)$ that reduce entropy \triangleright Eq.(8) 4: $\mathbb{S}^1_{1\cdot n} \leftarrow \mathbb{S}^{j=2:T} \cup \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n; t \leftarrow n+1$ 5: $\mathcal{M}(\boldsymbol{x}|\mathbb{S}^{1}_{1:n}, \boldsymbol{\theta}^{\boldsymbol{j}}) \leftarrow \text{fit a multi-task } \mathcal{GP} \text{ to } \mathcal{D}$ ⊳ Eq. (6) 6: while $t \leq N_{max}$ do If $(t \mod N_l = 0)$ then $[\boldsymbol{\theta} \leftarrow learn$ the kernel hyper-7: parameters by maximizing the likelihood] Determine the next configuration, \boldsymbol{x}_t , by optimizing 8: LCB over $\mathcal{M}, \boldsymbol{x}_t \leftarrow \arg \max_{\boldsymbol{x}} u(\boldsymbol{x}|\mathcal{M}, \mathbb{S}^1_{1:t-1}) \triangleright \text{Eq.}(11)$ Obtain the *performance* of $\boldsymbol{x}_t, y_t \leftarrow f(\boldsymbol{x}_t) + \epsilon_t$ 9: Augment the configuration $\mathbb{S}_{1:t}^1 = \mathbb{S}_{1:t-1}^1 \bigcup \{(\boldsymbol{x}_t, y_t)\}$ 10: 11: $\mathcal{M}(\boldsymbol{x}|\mathbb{S}^{1}_{1:t},\boldsymbol{\theta}) \leftarrow re\text{-fit a new GP model}$ \triangleright Eq.(6) $t \leftarrow t+1$ 12:13: end while 14: $(\boldsymbol{x}^*, \boldsymbol{y}^*) = \min[\mathbb{S}^1_{1:N_{max}} - \mathbb{S}^{j=2:T}]$ locating the optimum configuration by discarding data for other system versions 15: $\mathcal{M}(\boldsymbol{x})$ storing the learned model

Multi-task GP vs single-task GP

Exploitation vs exploration

TL4CO architecture

Comparison with default and expert prescription

Model accuracy

Prediction accuracy over time

Entropy of the density function of the minimizers

Effect of correlation between tasks

Runtime overhead

Key takeaways

- A principled way to leverage prior knowledge gained from searches over previous versions of the system.
- Multi-task GPs can be used in order to capture correlation between related tuning tasks.
- MTGPs are more accurate than STGP and other regression models.
- Application to SPSs, Batch and NoSQL
- Lead to a better performance in practice

Acknowledgement: BO4CO and TL4CO are now integrated with other DevOps tools in the delivery pipeline for Big Data in H2O2O DICE project (http://www.dice-h2O2O.eu/)

Tool Demo: http://www.slideshare.net/pooyanjamshidi/configuration-optimization-tool