
Transfer	Learning	for	Optimal	Configuration	of	
Big	Data	Software	

Pooyan Jamshidi, Giuliano Casale
Imperial College London
p.jamshidi@imperial.ac.uk

Department of Computing
Research Associate Symposium

14th June 2016

1- Many different
Parameters =>
- large state space
- interactions

2- Defaults are
typically used =>
- poor performance

0 1 2 3 4 5
average read latency (µs)

×104

0

20

40

60

80

100

120

140

160

o
b
se

rv
a
tio

n
s

1000 1200 1400 1600 1800 2000
average read latency (µs)

0

10

20

30

40

50

60

70

o
b
se

rv
a
tio

n
s

1

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

1

0
.5 1

1
.5 2

2
.5 3

3
.5 4

×
1
0

4
(a) cass-20 (b) cass-10

Best configurations

Worst configurations

Experiments on
Apache Cassandra:
- 6 parameters, 1024 configurations
- Average read latency
- 10 millions records (cass-10)
- 20 millions records (cass-20)

information from the previous versions, the acquired data on
the current version, and apply a variety of kernel estimators
[27] to locate regions where optimal configurations may lie.
The key benefit of MTGPs over GPs is that the similarity
between the response data helps the model to converge to
more accurate predictions much earlier. We experimentally
show that TL4CO outperforms state-of-the-art configuration
tuning methods. Our real configuration datasets are collected
for three stream processing systems (SPS), implemented with
Apache Storm, a NoSQL benchmark system with Apache
Cassandra, and using a dataset on 6 cloud-based clusters
obtained in [21] worth 3 months of experimental time.
The rest of this paper is organized as follows. Section 2

overviews the problem and motivates the work via an exam-
ple. TL4CO is introduced in Section 3 and then validated in
Section 4. Section 5 provides behind the scene and Section 6
concludes the paper.

2. PROBLEM AND MOTIVATION

2.1 Problem statement
In this paper, we focus on the problem of optimal system

configuration defined as follows. Let Xi indicate the i-th
configuration parameter, which ranges in a finite domain
Dom(Xi). In general, Xi may either indicate (i) integer vari-
able such as level of parallelism or (ii) categorical variable
such as messaging frameworks or Boolean variable such as
enabling timeout. We use the terms parameter and factor in-
terchangeably; also, with the term option we refer to possible
values that can be assigned to a parameter.

We assume that each configuration x 2 X in the configura-
tion space X = Dom(X1)⇥ · · ·⇥Dom(Xd) is valid, i.e., the
system accepts this configuration and the corresponding test
results in a stable performance behavior. The response with
configuration x is denoted by f(x). Throughout, we assume
that f(·) is latency, however, other metrics for response may
be used. We here consider the problem of finding an optimal
configuration x

⇤ that globally minimizes f(·) over X:

x

⇤ = argmin
x2X

f(x) (1)

In fact, the response function f(·) is usually unknown or
partially known, i.e., yi = f(xi),xi ⇢ X. In practice, such
measurements may contain noise, i.e., yi = f(xi) + ✏. The
determination of the optimal configuration is thus a black-
box optimization program subject to noise [27, 33], which
is considerably harder than deterministic optimization. A
popular solution is based on sampling that starts with a
number of sampled configurations. The performance of the
experiments associated to this initial samples can deliver
a better understanding of f(·) and guide the generation of
the next round of samples. If properly guided, the process
of sample generation-evaluation-feedback-regeneration will
eventually converge and the optimal configuration will be
located. However, a sampling-based approach of this kind can
be prohibitively expensive in terms of time or cost (e.g., rental
of cloud resources) considering that a function evaluation in
this case would be costly and the optimization process may
require several hundreds of samples to converge.

2.2 Related work
Several approaches have attempted to address the above

problem. Recursive Random Sampling (RRS) [43] integrates
a restarting mechanism into the random sampling to achieve
high search e�ciency. Smart Hill Climbing (SHC) [42] inte-
grates the importance sampling with Latin Hypercube Design

(lhd). SHC estimates the local regression at each potential
region, then it searches toward the steepest descent direction.
An approach based on direct search [45] forms a simplex
in the parameter space by a number of samples, and itera-
tively updates a simplex through a number of well-defined
operations including reflection, expansion, and contraction
to guide the sample generation. Quick Optimization via
Guessing (QOG) in [31] speeds up the optimization process
exploiting some heuristics to filter out sub-optimal configu-
rations. The statistical approach in [33] approximates the
joint distribution of parameters with a Gaussian in order to
guide sample generation towards the distribution peak. A
model-based approach [35] iteratively constructs a regression
model representing performance influences. Some approaches
like [8] enable dynamic detection of optimal configuration
in dynamic environments. Finally, our earlier work BO4CO
[21] uses Bayesian Optimization based on GPs to accelerate
the search process, more details are given later in Section 3.

2.3 Solution
All the previous e↵orts attempt to improve the sampling

process by exploiting the information that has been gained in
the current task. We define a task as individual tuning cycle
that optimizes a given version of the system under test. As a
result, the learning is limited to the current observations and
it still requires hundreds of sample evaluations. In this pa-
per, we propose to adopt a transfer learning method to deal
with the search e�ciency in configuration tuning. Rather
than starting the search from scratch, the approach transfers
the learned knowledge coming from similar versions of the
software to accelerate the sampling process in the current
version. This idea is inspired from several observations arise
in real software engineering practice [2, 3]. For instance, (i)
in DevOps di↵erent versions of a system is delivered con-
tinuously, (ii) Big Data systems are developed using similar
frameworks (e.g., Apache Hadoop, Spark, Kafka) and run
on similar platforms (e.g., cloud clusters), (iii) and di↵erent
versions of a system often share a similar business logic.

To the best of our knowledge, only one study [9] explores
the possibility of transfer learning in system configuration.
The authors learn a Bayesian network in the tuning process
of a system and reuse this model for tuning other similar
systems. However, the learning is limited to the structure of
the Bayesian network. In this paper, we introduce a method
that not only reuse a model that has been learned previously
but also the valuable raw data. Therefore, we are not limited
to the accuracy of the learned model. Moreover, we do not
consider Bayesian networks and instead focus on MTGPs.

2.4 Motivation
A motivating example. We now illustrate the previous

points on an example. WordCount (cf. Figure 1) is a popular
benchmark [12]. WordCount features a three-layer architec-
ture that counts the number of words in the incoming stream.
A Processing Element (PE) of type Spout reads the input
messages from a data source and pushes them to the system.
A PE of type Bolt named Splitter is responsible for splitting
sentences, which are then counted by the Counter.

Kafka Spout Splitter Bolt Counter Bolt

(sentence) (word)
[paintings, 3]
[poems, 60]
[letter, 75]

Kafka Topic

Stream to
Kafka

File
(sentence)

(sentence)

(s
en

te
nc

e)

Figure 1: WordCount architecture.

2

information from the previous versions, the acquired data on
the current version, and apply a variety of kernel estimators
[27] to locate regions where optimal configurations may lie.
The key benefit of MTGPs over GPs is that the similarity
between the response data helps the model to converge to
more accurate predictions much earlier. We experimentally
show that TL4CO outperforms state-of-the-art configuration
tuning methods. Our real configuration datasets are collected
for three stream processing systems (SPS), implemented with
Apache Storm, a NoSQL benchmark system with Apache
Cassandra, and using a dataset on 6 cloud-based clusters
obtained in [21] worth 3 months of experimental time.
The rest of this paper is organized as follows. Section 2

overviews the problem and motivates the work via an exam-
ple. TL4CO is introduced in Section 3 and then validated in
Section 4. Section 5 provides behind the scene and Section 6
concludes the paper.

2. PROBLEM AND MOTIVATION

2.1 Problem statement
In this paper, we focus on the problem of optimal system

configuration defined as follows. Let Xi indicate the i-th
configuration parameter, which ranges in a finite domain
Dom(Xi). In general, Xi may either indicate (i) integer vari-
able such as level of parallelism or (ii) categorical variable
such as messaging frameworks or Boolean variable such as
enabling timeout. We use the terms parameter and factor in-
terchangeably; also, with the term option we refer to possible
values that can be assigned to a parameter.

We assume that each configuration x 2 X in the configura-
tion space X = Dom(X1)⇥ · · ·⇥Dom(Xd) is valid, i.e., the
system accepts this configuration and the corresponding test
results in a stable performance behavior. The response with
configuration x is denoted by f(x). Throughout, we assume
that f(·) is latency, however, other metrics for response may
be used. We here consider the problem of finding an optimal
configuration x

⇤ that globally minimizes f(·) over X:

x

⇤ = argmin
x2X

f(x) (1)

In fact, the response function f(·) is usually unknown or
partially known, i.e., yi = f(xi),xi ⇢ X. In practice, such
measurements may contain noise, i.e., yi = f(xi) + ✏. The
determination of the optimal configuration is thus a black-
box optimization program subject to noise [27, 33], which
is considerably harder than deterministic optimization. A
popular solution is based on sampling that starts with a
number of sampled configurations. The performance of the
experiments associated to this initial samples can deliver
a better understanding of f(·) and guide the generation of
the next round of samples. If properly guided, the process
of sample generation-evaluation-feedback-regeneration will
eventually converge and the optimal configuration will be
located. However, a sampling-based approach of this kind can
be prohibitively expensive in terms of time or cost (e.g., rental
of cloud resources) considering that a function evaluation in
this case would be costly and the optimization process may
require several hundreds of samples to converge.

2.2 Related work
Several approaches have attempted to address the above

problem. Recursive Random Sampling (RRS) [43] integrates
a restarting mechanism into the random sampling to achieve
high search e�ciency. Smart Hill Climbing (SHC) [42] inte-
grates the importance sampling with Latin Hypercube Design

(lhd). SHC estimates the local regression at each potential
region, then it searches toward the steepest descent direction.
An approach based on direct search [45] forms a simplex
in the parameter space by a number of samples, and itera-
tively updates a simplex through a number of well-defined
operations including reflection, expansion, and contraction
to guide the sample generation. Quick Optimization via
Guessing (QOG) in [31] speeds up the optimization process
exploiting some heuristics to filter out sub-optimal configu-
rations. The statistical approach in [33] approximates the
joint distribution of parameters with a Gaussian in order to
guide sample generation towards the distribution peak. A
model-based approach [35] iteratively constructs a regression
model representing performance influences. Some approaches
like [8] enable dynamic detection of optimal configuration
in dynamic environments. Finally, our earlier work BO4CO
[21] uses Bayesian Optimization based on GPs to accelerate
the search process, more details are given later in Section 3.

2.3 Solution
All the previous e↵orts attempt to improve the sampling

process by exploiting the information that has been gained in
the current task. We define a task as individual tuning cycle
that optimizes a given version of the system under test. As a
result, the learning is limited to the current observations and
it still requires hundreds of sample evaluations. In this pa-
per, we propose to adopt a transfer learning method to deal
with the search e�ciency in configuration tuning. Rather
than starting the search from scratch, the approach transfers
the learned knowledge coming from similar versions of the
software to accelerate the sampling process in the current
version. This idea is inspired from several observations arise
in real software engineering practice [2, 3]. For instance, (i)
in DevOps di↵erent versions of a system is delivered con-
tinuously, (ii) Big Data systems are developed using similar
frameworks (e.g., Apache Hadoop, Spark, Kafka) and run
on similar platforms (e.g., cloud clusters), (iii) and di↵erent
versions of a system often share a similar business logic.

To the best of our knowledge, only one study [9] explores
the possibility of transfer learning in system configuration.
The authors learn a Bayesian network in the tuning process
of a system and reuse this model for tuning other similar
systems. However, the learning is limited to the structure of
the Bayesian network. In this paper, we introduce a method
that not only reuse a model that has been learned previously
but also the valuable raw data. Therefore, we are not limited
to the accuracy of the learned model. Moreover, we do not
consider Bayesian networks and instead focus on MTGPs.

2.4 Motivation
A motivating example. We now illustrate the previous

points on an example. WordCount (cf. Figure 1) is a popular
benchmark [12]. WordCount features a three-layer architec-
ture that counts the number of words in the incoming stream.
A Processing Element (PE) of type Spout reads the input
messages from a data source and pushes them to the system.
A PE of type Bolt named Splitter is responsible for splitting
sentences, which are then counted by the Counter.

Kafka Spout Splitter Bolt Counter Bolt

(sentence) (word)
[paintings, 3]
[poems, 60]
[letter, 75]

Kafka Topic

Stream to
Kafka

File
(sentence)

(sentence)

(s
en

te
nc

e)

Figure 1: WordCount architecture.

2

information from the previous versions, the acquired data on
the current version, and apply a variety of kernel estimators
[27] to locate regions where optimal configurations may lie.
The key benefit of MTGPs over GPs is that the similarity
between the response data helps the model to converge to
more accurate predictions much earlier. We experimentally
show that TL4CO outperforms state-of-the-art configuration
tuning methods. Our real configuration datasets are collected
for three stream processing systems (SPS), implemented with
Apache Storm, a NoSQL benchmark system with Apache
Cassandra, and using a dataset on 6 cloud-based clusters
obtained in [21] worth 3 months of experimental time.
The rest of this paper is organized as follows. Section 2

overviews the problem and motivates the work via an exam-
ple. TL4CO is introduced in Section 3 and then validated in
Section 4. Section 5 provides behind the scene and Section 6
concludes the paper.

2. PROBLEM AND MOTIVATION

2.1 Problem statement
In this paper, we focus on the problem of optimal system

configuration defined as follows. Let Xi indicate the i-th
configuration parameter, which ranges in a finite domain
Dom(Xi). In general, Xi may either indicate (i) integer vari-
able such as level of parallelism or (ii) categorical variable
such as messaging frameworks or Boolean variable such as
enabling timeout. We use the terms parameter and factor in-
terchangeably; also, with the term option we refer to possible
values that can be assigned to a parameter.

We assume that each configuration x 2 X in the configura-
tion space X = Dom(X1)⇥ · · ·⇥Dom(Xd) is valid, i.e., the
system accepts this configuration and the corresponding test
results in a stable performance behavior. The response with
configuration x is denoted by f(x). Throughout, we assume
that f(·) is latency, however, other metrics for response may
be used. We here consider the problem of finding an optimal
configuration x

⇤ that globally minimizes f(·) over X:

x

⇤ = argmin
x2X

f(x) (1)

In fact, the response function f(·) is usually unknown or
partially known, i.e., yi = f(xi),xi ⇢ X. In practice, such
measurements may contain noise, i.e., yi = f(xi) + ✏. The
determination of the optimal configuration is thus a black-
box optimization program subject to noise [27, 33], which
is considerably harder than deterministic optimization. A
popular solution is based on sampling that starts with a
number of sampled configurations. The performance of the
experiments associated to this initial samples can deliver
a better understanding of f(·) and guide the generation of
the next round of samples. If properly guided, the process
of sample generation-evaluation-feedback-regeneration will
eventually converge and the optimal configuration will be
located. However, a sampling-based approach of this kind can
be prohibitively expensive in terms of time or cost (e.g., rental
of cloud resources) considering that a function evaluation in
this case would be costly and the optimization process may
require several hundreds of samples to converge.

2.2 Related work
Several approaches have attempted to address the above

problem. Recursive Random Sampling (RRS) [43] integrates
a restarting mechanism into the random sampling to achieve
high search e�ciency. Smart Hill Climbing (SHC) [42] inte-
grates the importance sampling with Latin Hypercube Design

(lhd). SHC estimates the local regression at each potential
region, then it searches toward the steepest descent direction.
An approach based on direct search [45] forms a simplex
in the parameter space by a number of samples, and itera-
tively updates a simplex through a number of well-defined
operations including reflection, expansion, and contraction
to guide the sample generation. Quick Optimization via
Guessing (QOG) in [31] speeds up the optimization process
exploiting some heuristics to filter out sub-optimal configu-
rations. The statistical approach in [33] approximates the
joint distribution of parameters with a Gaussian in order to
guide sample generation towards the distribution peak. A
model-based approach [35] iteratively constructs a regression
model representing performance influences. Some approaches
like [8] enable dynamic detection of optimal configuration
in dynamic environments. Finally, our earlier work BO4CO
[21] uses Bayesian Optimization based on GPs to accelerate
the search process, more details are given later in Section 3.

2.3 Solution
All the previous e↵orts attempt to improve the sampling

process by exploiting the information that has been gained in
the current task. We define a task as individual tuning cycle
that optimizes a given version of the system under test. As a
result, the learning is limited to the current observations and
it still requires hundreds of sample evaluations. In this pa-
per, we propose to adopt a transfer learning method to deal
with the search e�ciency in configuration tuning. Rather
than starting the search from scratch, the approach transfers
the learned knowledge coming from similar versions of the
software to accelerate the sampling process in the current
version. This idea is inspired from several observations arise
in real software engineering practice [2, 3]. For instance, (i)
in DevOps di↵erent versions of a system is delivered con-
tinuously, (ii) Big Data systems are developed using similar
frameworks (e.g., Apache Hadoop, Spark, Kafka) and run
on similar platforms (e.g., cloud clusters), (iii) and di↵erent
versions of a system often share a similar business logic.

To the best of our knowledge, only one study [9] explores
the possibility of transfer learning in system configuration.
The authors learn a Bayesian network in the tuning process
of a system and reuse this model for tuning other similar
systems. However, the learning is limited to the structure of
the Bayesian network. In this paper, we introduce a method
that not only reuse a model that has been learned previously
but also the valuable raw data. Therefore, we are not limited
to the accuracy of the learned model. Moreover, we do not
consider Bayesian networks and instead focus on MTGPs.

2.4 Motivation
A motivating example. We now illustrate the previous

points on an example. WordCount (cf. Figure 1) is a popular
benchmark [12]. WordCount features a three-layer architec-
ture that counts the number of words in the incoming stream.
A Processing Element (PE) of type Spout reads the input
messages from a data source and pushes them to the system.
A PE of type Bolt named Splitter is responsible for splitting
sentences, which are then counted by the Counter.

Kafka Spout Splitter Bolt Counter Bolt

(sentence) (word)
[paintings, 3]
[poems, 60]
[letter, 75]

Kafka Topic

Stream to
Kafka

File
(sentence)

(sentence)

(s
en

te
nc

e)

Figure 1: WordCount architecture.

2

information from the previous versions, the acquired data on
the current version, and apply a variety of kernel estimators
[27] to locate regions where optimal configurations may lie.
The key benefit of MTGPs over GPs is that the similarity
between the response data helps the model to converge to
more accurate predictions much earlier. We experimentally
show that TL4CO outperforms state-of-the-art configuration
tuning methods. Our real configuration datasets are collected
for three stream processing systems (SPS), implemented with
Apache Storm, a NoSQL benchmark system with Apache
Cassandra, and using a dataset on 6 cloud-based clusters
obtained in [21] worth 3 months of experimental time.
The rest of this paper is organized as follows. Section 2

overviews the problem and motivates the work via an exam-
ple. TL4CO is introduced in Section 3 and then validated in
Section 4. Section 5 provides behind the scene and Section 6
concludes the paper.

2. PROBLEM AND MOTIVATION

2.1 Problem statement
In this paper, we focus on the problem of optimal system

configuration defined as follows. Let Xi indicate the i-th
configuration parameter, which ranges in a finite domain
Dom(Xi). In general, Xi may either indicate (i) integer vari-
able such as level of parallelism or (ii) categorical variable
such as messaging frameworks or Boolean variable such as
enabling timeout. We use the terms parameter and factor in-
terchangeably; also, with the term option we refer to possible
values that can be assigned to a parameter.

We assume that each configuration x 2 X in the configura-
tion space X = Dom(X1)⇥ · · ·⇥Dom(Xd) is valid, i.e., the
system accepts this configuration and the corresponding test
results in a stable performance behavior. The response with
configuration x is denoted by f(x). Throughout, we assume
that f(·) is latency, however, other metrics for response may
be used. We here consider the problem of finding an optimal
configuration x

⇤ that globally minimizes f(·) over X:

x

⇤ = argmin
x2X

f(x) (1)

In fact, the response function f(·) is usually unknown or
partially known, i.e., yi = f(xi),xi ⇢ X. In practice, such
measurements may contain noise, i.e., yi = f(xi) + ✏. The
determination of the optimal configuration is thus a black-
box optimization program subject to noise [27, 33], which
is considerably harder than deterministic optimization. A
popular solution is based on sampling that starts with a
number of sampled configurations. The performance of the
experiments associated to this initial samples can deliver
a better understanding of f(·) and guide the generation of
the next round of samples. If properly guided, the process
of sample generation-evaluation-feedback-regeneration will
eventually converge and the optimal configuration will be
located. However, a sampling-based approach of this kind can
be prohibitively expensive in terms of time or cost (e.g., rental
of cloud resources) considering that a function evaluation in
this case would be costly and the optimization process may
require several hundreds of samples to converge.

2.2 Related work
Several approaches have attempted to address the above

problem. Recursive Random Sampling (RRS) [43] integrates
a restarting mechanism into the random sampling to achieve
high search e�ciency. Smart Hill Climbing (SHC) [42] inte-
grates the importance sampling with Latin Hypercube Design

(lhd). SHC estimates the local regression at each potential
region, then it searches toward the steepest descent direction.
An approach based on direct search [45] forms a simplex
in the parameter space by a number of samples, and itera-
tively updates a simplex through a number of well-defined
operations including reflection, expansion, and contraction
to guide the sample generation. Quick Optimization via
Guessing (QOG) in [31] speeds up the optimization process
exploiting some heuristics to filter out sub-optimal configu-
rations. The statistical approach in [33] approximates the
joint distribution of parameters with a Gaussian in order to
guide sample generation towards the distribution peak. A
model-based approach [35] iteratively constructs a regression
model representing performance influences. Some approaches
like [8] enable dynamic detection of optimal configuration
in dynamic environments. Finally, our earlier work BO4CO
[21] uses Bayesian Optimization based on GPs to accelerate
the search process, more details are given later in Section 3.

2.3 Solution
All the previous e↵orts attempt to improve the sampling

process by exploiting the information that has been gained in
the current task. We define a task as individual tuning cycle
that optimizes a given version of the system under test. As a
result, the learning is limited to the current observations and
it still requires hundreds of sample evaluations. In this pa-
per, we propose to adopt a transfer learning method to deal
with the search e�ciency in configuration tuning. Rather
than starting the search from scratch, the approach transfers
the learned knowledge coming from similar versions of the
software to accelerate the sampling process in the current
version. This idea is inspired from several observations arise
in real software engineering practice [2, 3]. For instance, (i)
in DevOps di↵erent versions of a system is delivered con-
tinuously, (ii) Big Data systems are developed using similar
frameworks (e.g., Apache Hadoop, Spark, Kafka) and run
on similar platforms (e.g., cloud clusters), (iii) and di↵erent
versions of a system often share a similar business logic.

To the best of our knowledge, only one study [9] explores
the possibility of transfer learning in system configuration.
The authors learn a Bayesian network in the tuning process
of a system and reuse this model for tuning other similar
systems. However, the learning is limited to the structure of
the Bayesian network. In this paper, we introduce a method
that not only reuse a model that has been learned previously
but also the valuable raw data. Therefore, we are not limited
to the accuracy of the learned model. Moreover, we do not
consider Bayesian networks and instead focus on MTGPs.

2.4 Motivation
A motivating example. We now illustrate the previous

points on an example. WordCount (cf. Figure 1) is a popular
benchmark [12]. WordCount features a three-layer architec-
ture that counts the number of words in the incoming stream.
A Processing Element (PE) of type Spout reads the input
messages from a data source and pushes them to the system.
A PE of type Bolt named Splitter is responsible for splitting
sentences, which are then counted by the Counter.

Kafka Spout Splitter Bolt Counter Bolt

(sentence) (word)
[paintings, 3]
[poems, 60]
[letter, 75]

Kafka Topic

Stream to
Kafka

File
(sentence)

(sentence)

(s
en

te
nc

e)

Figure 1: WordCount architecture.

2

number of counters
number of splitters

la
te

nc
y

(m
s)

100

150

1

200

250

2

300

Cubic Interpolation Over Finer Grid

2
43

6
84 10

125 14
166 18

Partially known

Measurements contain noise

Configuration space

0 5 10 15 20
Number of counters

100

120

140

160

180

200

220

240

L
a
te

n
cy

 (
m

s)

splitters=2
splitters=3

number of counters
number of splitters

la
te

nc
y

(m
s)

100

150

1

200

250

2

300

Cubic Interpolation Over Finer Grid

2
43

6
84 10

125 14
166 18

information from the previous versions, the acquired data on
the current version, and apply a variety of kernel estimators
[27] to locate regions where optimal configurations may lie.
The key benefit of MTGPs over GPs is that the similarity
between the response data helps the model to converge to
more accurate predictions much earlier. We experimentally
show that TL4CO outperforms state-of-the-art configuration
tuning methods. Our real configuration datasets are collected
for three stream processing systems (SPS), implemented with
Apache Storm, a NoSQL benchmark system with Apache
Cassandra, and using a dataset on 6 cloud-based clusters
obtained in [21] worth 3 months of experimental time.
The rest of this paper is organized as follows. Section 2

overviews the problem and motivates the work via an exam-
ple. TL4CO is introduced in Section 3 and then validated in
Section 4. Section 5 provides behind the scene and Section 6
concludes the paper.

2. PROBLEM AND MOTIVATION

2.1 Problem statement
In this paper, we focus on the problem of optimal system

configuration defined as follows. Let Xi indicate the i-th
configuration parameter, which ranges in a finite domain
Dom(Xi). In general, Xi may either indicate (i) integer vari-
able such as level of parallelism or (ii) categorical variable
such as messaging frameworks or Boolean variable such as
enabling timeout. We use the terms parameter and factor in-
terchangeably; also, with the term option we refer to possible
values that can be assigned to a parameter.

We assume that each configuration x 2 X in the configura-
tion space X = Dom(X1)⇥ · · ·⇥Dom(Xd) is valid, i.e., the
system accepts this configuration and the corresponding test
results in a stable performance behavior. The response with
configuration x is denoted by f(x). Throughout, we assume
that f(·) is latency, however, other metrics for response may
be used. We here consider the problem of finding an optimal
configuration x

⇤ that globally minimizes f(·) over X:

x

⇤ = argmin
x2X

f(x) (1)

In fact, the response function f(·) is usually unknown or
partially known, i.e., yi = f(xi),xi ⇢ X. In practice, such
measurements may contain noise, i.e., yi = f(xi) + ✏. The
determination of the optimal configuration is thus a black-
box optimization program subject to noise [27, 33], which
is considerably harder than deterministic optimization. A
popular solution is based on sampling that starts with a
number of sampled configurations. The performance of the
experiments associated to this initial samples can deliver
a better understanding of f(·) and guide the generation of
the next round of samples. If properly guided, the process
of sample generation-evaluation-feedback-regeneration will
eventually converge and the optimal configuration will be
located. However, a sampling-based approach of this kind can
be prohibitively expensive in terms of time or cost (e.g., rental
of cloud resources) considering that a function evaluation in
this case would be costly and the optimization process may
require several hundreds of samples to converge.

2.2 Related work
Several approaches have attempted to address the above

problem. Recursive Random Sampling (RRS) [43] integrates
a restarting mechanism into the random sampling to achieve
high search e�ciency. Smart Hill Climbing (SHC) [42] inte-
grates the importance sampling with Latin Hypercube Design

(lhd). SHC estimates the local regression at each potential
region, then it searches toward the steepest descent direction.
An approach based on direct search [45] forms a simplex
in the parameter space by a number of samples, and itera-
tively updates a simplex through a number of well-defined
operations including reflection, expansion, and contraction
to guide the sample generation. Quick Optimization via
Guessing (QOG) in [31] speeds up the optimization process
exploiting some heuristics to filter out sub-optimal configu-
rations. The statistical approach in [33] approximates the
joint distribution of parameters with a Gaussian in order to
guide sample generation towards the distribution peak. A
model-based approach [35] iteratively constructs a regression
model representing performance influences. Some approaches
like [8] enable dynamic detection of optimal configuration
in dynamic environments. Finally, our earlier work BO4CO
[21] uses Bayesian Optimization based on GPs to accelerate
the search process, more details are given later in Section 3.

2.3 Solution
All the previous e↵orts attempt to improve the sampling

process by exploiting the information that has been gained in
the current task. We define a task as individual tuning cycle
that optimizes a given version of the system under test. As a
result, the learning is limited to the current observations and
it still requires hundreds of sample evaluations. In this pa-
per, we propose to adopt a transfer learning method to deal
with the search e�ciency in configuration tuning. Rather
than starting the search from scratch, the approach transfers
the learned knowledge coming from similar versions of the
software to accelerate the sampling process in the current
version. This idea is inspired from several observations arise
in real software engineering practice [2, 3]. For instance, (i)
in DevOps di↵erent versions of a system is delivered con-
tinuously, (ii) Big Data systems are developed using similar
frameworks (e.g., Apache Hadoop, Spark, Kafka) and run
on similar platforms (e.g., cloud clusters), (iii) and di↵erent
versions of a system often share a similar business logic.

To the best of our knowledge, only one study [9] explores
the possibility of transfer learning in system configuration.
The authors learn a Bayesian network in the tuning process
of a system and reuse this model for tuning other similar
systems. However, the learning is limited to the structure of
the Bayesian network. In this paper, we introduce a method
that not only reuse a model that has been learned previously
but also the valuable raw data. Therefore, we are not limited
to the accuracy of the learned model. Moreover, we do not
consider Bayesian networks and instead focus on MTGPs.

2.4 Motivation
A motivating example. We now illustrate the previous

points on an example. WordCount (cf. Figure 1) is a popular
benchmark [12]. WordCount features a three-layer architec-
ture that counts the number of words in the incoming stream.
A Processing Element (PE) of type Spout reads the input
messages from a data source and pushes them to the system.
A PE of type Bolt named Splitter is responsible for splitting
sentences, which are then counted by the Counter.

Kafka Spout Splitter Bolt Counter Bolt

(sentence) (word)
[paintings, 3]
[poems, 60]
[letter, 75]

Kafka Topic

Stream to
Kafka

File
(sentence)

(sentence)
(s

en
te

nc
e)

Figure 1: WordCount architecture.

2

information from the previous versions, the acquired data on
the current version, and apply a variety of kernel estimators
[27] to locate regions where optimal configurations may lie.
The key benefit of MTGPs over GPs is that the similarity
between the response data helps the model to converge to
more accurate predictions much earlier. We experimentally
show that TL4CO outperforms state-of-the-art configuration
tuning methods. Our real configuration datasets are collected
for three stream processing systems (SPS), implemented with
Apache Storm, a NoSQL benchmark system with Apache
Cassandra, and using a dataset on 6 cloud-based clusters
obtained in [21] worth 3 months of experimental time.
The rest of this paper is organized as follows. Section 2

overviews the problem and motivates the work via an exam-
ple. TL4CO is introduced in Section 3 and then validated in
Section 4. Section 5 provides behind the scene and Section 6
concludes the paper.

2. PROBLEM AND MOTIVATION

2.1 Problem statement
In this paper, we focus on the problem of optimal system

configuration defined as follows. Let Xi indicate the i-th
configuration parameter, which ranges in a finite domain
Dom(Xi). In general, Xi may either indicate (i) integer vari-
able such as level of parallelism or (ii) categorical variable
such as messaging frameworks or Boolean variable such as
enabling timeout. We use the terms parameter and factor in-
terchangeably; also, with the term option we refer to possible
values that can be assigned to a parameter.

We assume that each configuration x 2 X in the configura-
tion space X = Dom(X1)⇥ · · ·⇥Dom(Xd) is valid, i.e., the
system accepts this configuration and the corresponding test
results in a stable performance behavior. The response with
configuration x is denoted by f(x). Throughout, we assume
that f(·) is latency, however, other metrics for response may
be used. We here consider the problem of finding an optimal
configuration x

⇤ that globally minimizes f(·) over X:

x

⇤ = argmin
x2X

f(x) (1)

In fact, the response function f(·) is usually unknown or
partially known, i.e., yi = f(xi),xi ⇢ X. In practice, such
measurements may contain noise, i.e., yi = f(xi) + ✏. The
determination of the optimal configuration is thus a black-
box optimization program subject to noise [27, 33], which
is considerably harder than deterministic optimization. A
popular solution is based on sampling that starts with a
number of sampled configurations. The performance of the
experiments associated to this initial samples can deliver
a better understanding of f(·) and guide the generation of
the next round of samples. If properly guided, the process
of sample generation-evaluation-feedback-regeneration will
eventually converge and the optimal configuration will be
located. However, a sampling-based approach of this kind can
be prohibitively expensive in terms of time or cost (e.g., rental
of cloud resources) considering that a function evaluation in
this case would be costly and the optimization process may
require several hundreds of samples to converge.

2.2 Related work
Several approaches have attempted to address the above

problem. Recursive Random Sampling (RRS) [43] integrates
a restarting mechanism into the random sampling to achieve
high search e�ciency. Smart Hill Climbing (SHC) [42] inte-
grates the importance sampling with Latin Hypercube Design

(lhd). SHC estimates the local regression at each potential
region, then it searches toward the steepest descent direction.
An approach based on direct search [45] forms a simplex
in the parameter space by a number of samples, and itera-
tively updates a simplex through a number of well-defined
operations including reflection, expansion, and contraction
to guide the sample generation. Quick Optimization via
Guessing (QOG) in [31] speeds up the optimization process
exploiting some heuristics to filter out sub-optimal configu-
rations. The statistical approach in [33] approximates the
joint distribution of parameters with a Gaussian in order to
guide sample generation towards the distribution peak. A
model-based approach [35] iteratively constructs a regression
model representing performance influences. Some approaches
like [8] enable dynamic detection of optimal configuration
in dynamic environments. Finally, our earlier work BO4CO
[21] uses Bayesian Optimization based on GPs to accelerate
the search process, more details are given later in Section 3.

2.3 Solution
All the previous e↵orts attempt to improve the sampling

process by exploiting the information that has been gained in
the current task. We define a task as individual tuning cycle
that optimizes a given version of the system under test. As a
result, the learning is limited to the current observations and
it still requires hundreds of sample evaluations. In this pa-
per, we propose to adopt a transfer learning method to deal
with the search e�ciency in configuration tuning. Rather
than starting the search from scratch, the approach transfers
the learned knowledge coming from similar versions of the
software to accelerate the sampling process in the current
version. This idea is inspired from several observations arise
in real software engineering practice [2, 3]. For instance, (i)
in DevOps di↵erent versions of a system is delivered con-
tinuously, (ii) Big Data systems are developed using similar
frameworks (e.g., Apache Hadoop, Spark, Kafka) and run
on similar platforms (e.g., cloud clusters), (iii) and di↵erent
versions of a system often share a similar business logic.

To the best of our knowledge, only one study [9] explores
the possibility of transfer learning in system configuration.
The authors learn a Bayesian network in the tuning process
of a system and reuse this model for tuning other similar
systems. However, the learning is limited to the structure of
the Bayesian network. In this paper, we introduce a method
that not only reuse a model that has been learned previously
but also the valuable raw data. Therefore, we are not limited
to the accuracy of the learned model. Moreover, we do not
consider Bayesian networks and instead focus on MTGPs.

2.4 Motivation
A motivating example. We now illustrate the previous

points on an example. WordCount (cf. Figure 1) is a popular
benchmark [12]. WordCount features a three-layer architec-
ture that counts the number of words in the incoming stream.
A Processing Element (PE) of type Spout reads the input
messages from a data source and pushes them to the system.
A PE of type Bolt named Splitter is responsible for splitting
sentences, which are then counted by the Counter.

Kafka Spout Splitter Bolt Counter Bolt

(sentence) (word)
[paintings, 3]
[poems, 60]
[letter, 75]

Kafka Topic

Stream to
Kafka

File
(sentence)

(sentence)

(se
nt

en
ce

)

Figure 1: WordCount architecture.

2

information from the previous versions, the acquired data on
the current version, and apply a variety of kernel estimators
[27] to locate regions where optimal configurations may lie.
The key benefit of MTGPs over GPs is that the similarity
between the response data helps the model to converge to
more accurate predictions much earlier. We experimentally
show that TL4CO outperforms state-of-the-art configuration
tuning methods. Our real configuration datasets are collected
for three stream processing systems (SPS), implemented with
Apache Storm, a NoSQL benchmark system with Apache
Cassandra, and using a dataset on 6 cloud-based clusters
obtained in [21] worth 3 months of experimental time.
The rest of this paper is organized as follows. Section 2

overviews the problem and motivates the work via an exam-
ple. TL4CO is introduced in Section 3 and then validated in
Section 4. Section 5 provides behind the scene and Section 6
concludes the paper.

2. PROBLEM AND MOTIVATION

2.1 Problem statement
In this paper, we focus on the problem of optimal system

configuration defined as follows. Let Xi indicate the i-th
configuration parameter, which ranges in a finite domain
Dom(Xi). In general, Xi may either indicate (i) integer vari-
able such as level of parallelism or (ii) categorical variable
such as messaging frameworks or Boolean variable such as
enabling timeout. We use the terms parameter and factor in-
terchangeably; also, with the term option we refer to possible
values that can be assigned to a parameter.

We assume that each configuration x 2 X in the configura-
tion space X = Dom(X1)⇥ · · ·⇥Dom(Xd) is valid, i.e., the
system accepts this configuration and the corresponding test
results in a stable performance behavior. The response with
configuration x is denoted by f(x). Throughout, we assume
that f(·) is latency, however, other metrics for response may
be used. We here consider the problem of finding an optimal
configuration x

⇤ that globally minimizes f(·) over X:

x

⇤ = argmin
x2X

f(x) (1)

In fact, the response function f(·) is usually unknown or
partially known, i.e., yi = f(xi),xi ⇢ X. In practice, such
measurements may contain noise, i.e., yi = f(xi) + ✏. The
determination of the optimal configuration is thus a black-
box optimization program subject to noise [27, 33], which
is considerably harder than deterministic optimization. A
popular solution is based on sampling that starts with a
number of sampled configurations. The performance of the
experiments associated to this initial samples can deliver
a better understanding of f(·) and guide the generation of
the next round of samples. If properly guided, the process
of sample generation-evaluation-feedback-regeneration will
eventually converge and the optimal configuration will be
located. However, a sampling-based approach of this kind can
be prohibitively expensive in terms of time or cost (e.g., rental
of cloud resources) considering that a function evaluation in
this case would be costly and the optimization process may
require several hundreds of samples to converge.

2.2 Related work
Several approaches have attempted to address the above

problem. Recursive Random Sampling (RRS) [43] integrates
a restarting mechanism into the random sampling to achieve
high search e�ciency. Smart Hill Climbing (SHC) [42] inte-
grates the importance sampling with Latin Hypercube Design

(lhd). SHC estimates the local regression at each potential
region, then it searches toward the steepest descent direction.
An approach based on direct search [45] forms a simplex
in the parameter space by a number of samples, and itera-
tively updates a simplex through a number of well-defined
operations including reflection, expansion, and contraction
to guide the sample generation. Quick Optimization via
Guessing (QOG) in [31] speeds up the optimization process
exploiting some heuristics to filter out sub-optimal configu-
rations. The statistical approach in [33] approximates the
joint distribution of parameters with a Gaussian in order to
guide sample generation towards the distribution peak. A
model-based approach [35] iteratively constructs a regression
model representing performance influences. Some approaches
like [8] enable dynamic detection of optimal configuration
in dynamic environments. Finally, our earlier work BO4CO
[21] uses Bayesian Optimization based on GPs to accelerate
the search process, more details are given later in Section 3.

2.3 Solution
All the previous e↵orts attempt to improve the sampling

process by exploiting the information that has been gained in
the current task. We define a task as individual tuning cycle
that optimizes a given version of the system under test. As a
result, the learning is limited to the current observations and
it still requires hundreds of sample evaluations. In this pa-
per, we propose to adopt a transfer learning method to deal
with the search e�ciency in configuration tuning. Rather
than starting the search from scratch, the approach transfers
the learned knowledge coming from similar versions of the
software to accelerate the sampling process in the current
version. This idea is inspired from several observations arise
in real software engineering practice [2, 3]. For instance, (i)
in DevOps di↵erent versions of a system is delivered con-
tinuously, (ii) Big Data systems are developed using similar
frameworks (e.g., Apache Hadoop, Spark, Kafka) and run
on similar platforms (e.g., cloud clusters), (iii) and di↵erent
versions of a system often share a similar business logic.

To the best of our knowledge, only one study [9] explores
the possibility of transfer learning in system configuration.
The authors learn a Bayesian network in the tuning process
of a system and reuse this model for tuning other similar
systems. However, the learning is limited to the structure of
the Bayesian network. In this paper, we introduce a method
that not only reuse a model that has been learned previously
but also the valuable raw data. Therefore, we are not limited
to the accuracy of the learned model. Moreover, we do not
consider Bayesian networks and instead focus on MTGPs.

2.4 Motivation
A motivating example. We now illustrate the previous

points on an example. WordCount (cf. Figure 1) is a popular
benchmark [12]. WordCount features a three-layer architec-
ture that counts the number of words in the incoming stream.
A Processing Element (PE) of type Spout reads the input
messages from a data source and pushes them to the system.
A PE of type Bolt named Splitter is responsible for splitting
sentences, which are then counted by the Counter.

Kafka Spout Splitter Bolt Counter Bolt

(sentence) (word)
[paintings, 3]
[poems, 60]
[letter, 75]

Kafka Topic

Stream to
Kafka

File
(sentence)

(sentence)

(se
nt

en
ce

)

Figure 1: WordCount architecture.

2

information from the previous versions, the acquired data on
the current version, and apply a variety of kernel estimators
[27] to locate regions where optimal configurations may lie.
The key benefit of MTGPs over GPs is that the similarity
between the response data helps the model to converge to
more accurate predictions much earlier. We experimentally
show that TL4CO outperforms state-of-the-art configuration
tuning methods. Our real configuration datasets are collected
for three stream processing systems (SPS), implemented with
Apache Storm, a NoSQL benchmark system with Apache
Cassandra, and using a dataset on 6 cloud-based clusters
obtained in [21] worth 3 months of experimental time.
The rest of this paper is organized as follows. Section 2

overviews the problem and motivates the work via an exam-
ple. TL4CO is introduced in Section 3 and then validated in
Section 4. Section 5 provides behind the scene and Section 6
concludes the paper.

2. PROBLEM AND MOTIVATION

2.1 Problem statement
In this paper, we focus on the problem of optimal system

configuration defined as follows. Let Xi indicate the i-th
configuration parameter, which ranges in a finite domain
Dom(Xi). In general, Xi may either indicate (i) integer vari-
able such as level of parallelism or (ii) categorical variable
such as messaging frameworks or Boolean variable such as
enabling timeout. We use the terms parameter and factor in-
terchangeably; also, with the term option we refer to possible
values that can be assigned to a parameter.

We assume that each configuration x 2 X in the configura-
tion space X = Dom(X1)⇥ · · ·⇥Dom(Xd) is valid, i.e., the
system accepts this configuration and the corresponding test
results in a stable performance behavior. The response with
configuration x is denoted by f(x). Throughout, we assume
that f(·) is latency, however, other metrics for response may
be used. We here consider the problem of finding an optimal
configuration x

⇤ that globally minimizes f(·) over X:

x

⇤ = argmin
x2X

f(x) (1)

In fact, the response function f(·) is usually unknown or
partially known, i.e., yi = f(xi),xi ⇢ X. In practice, such
measurements may contain noise, i.e., yi = f(xi) + ✏. The
determination of the optimal configuration is thus a black-
box optimization program subject to noise [27, 33], which
is considerably harder than deterministic optimization. A
popular solution is based on sampling that starts with a
number of sampled configurations. The performance of the
experiments associated to this initial samples can deliver
a better understanding of f(·) and guide the generation of
the next round of samples. If properly guided, the process
of sample generation-evaluation-feedback-regeneration will
eventually converge and the optimal configuration will be
located. However, a sampling-based approach of this kind can
be prohibitively expensive in terms of time or cost (e.g., rental
of cloud resources) considering that a function evaluation in
this case would be costly and the optimization process may
require several hundreds of samples to converge.

2.2 Related work
Several approaches have attempted to address the above

problem. Recursive Random Sampling (RRS) [43] integrates
a restarting mechanism into the random sampling to achieve
high search e�ciency. Smart Hill Climbing (SHC) [42] inte-
grates the importance sampling with Latin Hypercube Design

(lhd). SHC estimates the local regression at each potential
region, then it searches toward the steepest descent direction.
An approach based on direct search [45] forms a simplex
in the parameter space by a number of samples, and itera-
tively updates a simplex through a number of well-defined
operations including reflection, expansion, and contraction
to guide the sample generation. Quick Optimization via
Guessing (QOG) in [31] speeds up the optimization process
exploiting some heuristics to filter out sub-optimal configu-
rations. The statistical approach in [33] approximates the
joint distribution of parameters with a Gaussian in order to
guide sample generation towards the distribution peak. A
model-based approach [35] iteratively constructs a regression
model representing performance influences. Some approaches
like [8] enable dynamic detection of optimal configuration
in dynamic environments. Finally, our earlier work BO4CO
[21] uses Bayesian Optimization based on GPs to accelerate
the search process, more details are given later in Section 3.

2.3 Solution
All the previous e↵orts attempt to improve the sampling

process by exploiting the information that has been gained in
the current task. We define a task as individual tuning cycle
that optimizes a given version of the system under test. As a
result, the learning is limited to the current observations and
it still requires hundreds of sample evaluations. In this pa-
per, we propose to adopt a transfer learning method to deal
with the search e�ciency in configuration tuning. Rather
than starting the search from scratch, the approach transfers
the learned knowledge coming from similar versions of the
software to accelerate the sampling process in the current
version. This idea is inspired from several observations arise
in real software engineering practice [2, 3]. For instance, (i)
in DevOps di↵erent versions of a system is delivered con-
tinuously, (ii) Big Data systems are developed using similar
frameworks (e.g., Apache Hadoop, Spark, Kafka) and run
on similar platforms (e.g., cloud clusters), (iii) and di↵erent
versions of a system often share a similar business logic.

To the best of our knowledge, only one study [9] explores
the possibility of transfer learning in system configuration.
The authors learn a Bayesian network in the tuning process
of a system and reuse this model for tuning other similar
systems. However, the learning is limited to the structure of
the Bayesian network. In this paper, we introduce a method
that not only reuse a model that has been learned previously
but also the valuable raw data. Therefore, we are not limited
to the accuracy of the learned model. Moreover, we do not
consider Bayesian networks and instead focus on MTGPs.

2.4 Motivation
A motivating example. We now illustrate the previous

points on an example. WordCount (cf. Figure 1) is a popular
benchmark [12]. WordCount features a three-layer architec-
ture that counts the number of words in the incoming stream.
A Processing Element (PE) of type Spout reads the input
messages from a data source and pushes them to the system.
A PE of type Bolt named Splitter is responsible for splitting
sentences, which are then counted by the Counter.

Kafka Spout Splitter Bolt Counter Bolt

(sentence) (word)
[paintings, 3]
[poems, 60]
[letter, 75]

Kafka Topic

Stream to
Kafka

File
(sentence)

(sentence)

(se
nt

en
ce

)

Figure 1: WordCount architecture.

2

Response surface is:
- Non-linear
- Non convex
- Multi-modal
- Measurements subject to noise

Bayesian	Optimization	for	
Configuration	Optimization	(BO4CO)
Code:	https://github.com/dice-project/DICE-Configuration-BO4CO

true function

GP mean

GP variance

observation

selected point

true
minimum

Table 1: Pearson (Spearman) correlation coe�cients.
v1 v2 v3 v4

v1 1 0.41 (0.49) -0.46 (-0.51) -0.50 (-0.51)
v2 7.36E-06 (5.5E-08) 1 -0.20 (-0.2793) -0.18 (-0.24)
v3 6.92E-07 (1.3E-08) 0.04 (0.003) 1 0.94 (0.88)
v4 2.54E-08 (1.4E-08) 0.07 (0.01) 1.16E-52 (8.3E-36) 1

Table 2: Signal to noise ratios for WordCount.

Top. µ � µci �ci
µ
�

wc(v1) 516.59 7.96 [515.27, 517.90] [7.13, 9.01] 64.88
wc(v2) 584.94 2.58 [584.51, 585.36] [2.32, 2.92] 226.32
wc(v3) 654.89 13.56 [652.65, 657.13] [12.15, 15.34] 48.30
wc(v4) 1125.81 16.92 [1123, 1128.6] [15.16, 19.14] 66.56

Figure 2 (a,b,c,d) shows the response surfaces for 4 di↵er-
ent versions of the WordCount when splitters and counters
are varied in [1, 6] and [1, 18]. WordCount v1, v2 (also v3, v4)
are identical in terms of source code, but the environment
in which they are deployed on is di↵erent (we have deployed
several other systems that compete for capacity in the same
cluster). WordCount v1, v3 (also v2, v4) are deployed on a sim-
ilar environment, but they have undergone multiple software
changes (we artificially injected delays in the source code
of its components). A number of interesting observations
can be made from the experimental results in Figure 2 and
Tables 1, 2 that we describe in the following subsections.

Correlation across di↵erent versions. We have measured
the correlation coe�cients between the four versions of Word-
Count in Table 1 (upper triangle shows the coe�cients while
lower triangle shows the p-values). The correlations be-
tween the response functions are significant (p-values are
less than 0.05). However, the correlation di↵ers between
versions to versions. Also, more interestingly, di↵erent ver-
sions of the system have di↵erent optimal configurations:
x⇤
v1 = (5, 1), x⇤

v2 = (6, 2), x⇤
v3 = (2, 13), x⇤

v4 = (2, 16). In
DevOps, di↵erent versions of a system will be delivered con-
tinuously on daily basis [3]. Current DevOps practices do
not systematically use the knowledge from previous versions
for performance tuning of the current version under test de-
spite such significant correlations [3]. There are two reasons
behind this: (i) the techniques that are used for performance
tuning cannot exploit the historical data belong to a di↵erent
version. (ii) they assume di↵erent versions have the same
optimum configuration. However, based on our experimental
observations above, this is not true. As a result, the existing
practice treat the experimental data as one-time-use.

Nonlinear interactions. The response functions f(·) in Fig-
ure 2 are strongly non-linear, non-convex and multi-modal.
The performance di↵erence between the best and worst set-
tings is substantial, e.g., 65% in v4, providing a case for
optimal tuning. Moreover, the non-linear relations among
the parameters imply that the optimal number of counters
depends on splitters, and vice-versa. In other words, if one
tries to minimize latency by acting just on one of these
parameters, this may not lead to a global optimum [21].
Measurement uncertainty. We have taken samples of the

latency for the same configuration (splitters=counters=1) of
the 4 versions of WordCount. The experiment were conducted
on Amazon EC2 (m3.large (2 CPU, 7.5 GB)). After filtering
the initial burn-in, we have computed average and variance of
the measurements. The results in Table 2 illustrate that the
variability of measurements across di↵erent versions can be
of di↵erent scales. In traditional techniques, such as design
of experiments, the variability is typically disregarded by
repeating experiments and obtaining the mean. However, we
here pursue an alternative approach that relies on MTGP
models that are able to explicitly take into account variability.

3. TL4CO: TRANSFER LEARNING FOR CON-
FIGURATION OPTIMIZATION

3.1 Single-task GP Bayesian optimization
Bayesian optimization [34] is a sequential design strategy

that allows us to perform global optimization of black-box
functions. Figure 3 illustrates the GP-based Bayesian Op-
timization approach using a 1-dimensional response. The
curve in blue is the unknown true response, whereas the
mean is shown in yellow and the 95% confidence interval at
each point in the shaded red area. The stars indicate ex-
perimental measurements (or observation interchangeably).
Some points x 2 X have a large confidence interval due to
lack of observations in their neighborhood, while others have
a narrow confidence. The main motivation behind the choice
of Bayesian Optimization here is that it o↵ers a framework
in which reasoning can be not only based on mean estimates
but also the variance, providing more informative decision
making. The other reason is that all the computations in
this framework are based on tractable linear algebra.
In our previous work [21], we proposed BO4CO that ex-

ploits single-task GPs (no transfer learning) for prediction of
posterior distribution of response functions. A GP model is
composed by its prior mean (µ(·) : X ! R) and a covariance
function (k(·, ·) : X⇥ X ! R) [41]:

y = f(x) ⇠ GP(µ(x), k(x,x0)), (2)

where covariance k(x,x0) defines the distance between x

and x

0. Let us assume S1:t = {(x1:t, y1:t)|yi := f(xi)} be
the collection of t experimental data (observations). In this
framework, we treat f(x) as a random variable, conditioned
on observations S1:t, which is normally distributed with the
following posterior mean and variance functions [41]:

µt(x) = µ(x) + k(x)|(K + �2
I)�1(y � µ) (3)

�2
t (x) = k(x,x) + �2

I � k(x)|(K + �2
I)�1

k(x) (4)

where y := y1:t, k(x)
| = [k(x,x1) k(x,x2) . . . k(x,xt)],

µ := µ(x1:t), K := k(xi,xj) and I is identity matrix. The
shortcoming of BO4CO is that it cannot exploit the observa-
tions regarding other versions of the system and as therefore
cannot be applied in DevOps.

3.2 TL4CO: an extension to multi-tasks
TL4CO 1 uses MTGPs that exploit observations from other

previous versions of the system under test. Algorithm 1
defines the internal details of TL4CO. As Figure 4 shows,
TL4CO is an iterative algorithm that uses the learning from
other system versions. In a high-level overview, TL4CO: (i)
selects the most informative past observations (details in
Section 3.3); (ii) fits a model to existing data based on kernel
learning (details in Section 3.4), and (iii) selects the next
configuration based on the model (details in Section 3.5).

In the multi-task framework, we use historical data to fit a
better GP providing more accurate predictions. Before that,
we measure few sample points based on Latin Hypercube De-
sign (lhd) D = {x1, . . . , xn} (cf. step 1 in Algorithm 1). We
have chosen lhd because: (i) it ensures that the configuration
samples in D is representative of the configuration space X,
whereas traditional random sampling [26, 17] (called brute-
force) does not guarantee this [29]; (ii) another advantage is
that the lhd samples can be taken one at a time, making it e�-
cient in high dimensional spaces. We define a new notation for
1Code+Data will be released (due in July 2016), as this is
funded under the EU project DICE: https://github.com/
dice-project/DICE-Configuration-BO4CO

3

Table 1: Pearson (Spearman) correlation coe�cients.
v1 v2 v3 v4

v1 1 0.41 (0.49) -0.46 (-0.51) -0.50 (-0.51)
v2 7.36E-06 (5.5E-08) 1 -0.20 (-0.2793) -0.18 (-0.24)
v3 6.92E-07 (1.3E-08) 0.04 (0.003) 1 0.94 (0.88)
v4 2.54E-08 (1.4E-08) 0.07 (0.01) 1.16E-52 (8.3E-36) 1

Table 2: Signal to noise ratios for WordCount.

Top. µ � µci �ci
µ
�

wc(v1) 516.59 7.96 [515.27, 517.90] [7.13, 9.01] 64.88
wc(v2) 584.94 2.58 [584.51, 585.36] [2.32, 2.92] 226.32
wc(v3) 654.89 13.56 [652.65, 657.13] [12.15, 15.34] 48.30
wc(v4) 1125.81 16.92 [1123, 1128.6] [15.16, 19.14] 66.56

Figure 2 (a,b,c,d) shows the response surfaces for 4 di↵er-
ent versions of the WordCount when splitters and counters
are varied in [1, 6] and [1, 18]. WordCount v1, v2 (also v3, v4)
are identical in terms of source code, but the environment
in which they are deployed on is di↵erent (we have deployed
several other systems that compete for capacity in the same
cluster). WordCount v1, v3 (also v2, v4) are deployed on a sim-
ilar environment, but they have undergone multiple software
changes (we artificially injected delays in the source code
of its components). A number of interesting observations
can be made from the experimental results in Figure 2 and
Tables 1, 2 that we describe in the following subsections.

Correlation across di↵erent versions. We have measured
the correlation coe�cients between the four versions of Word-
Count in Table 1 (upper triangle shows the coe�cients while
lower triangle shows the p-values). The correlations be-
tween the response functions are significant (p-values are
less than 0.05). However, the correlation di↵ers between
versions to versions. Also, more interestingly, di↵erent ver-
sions of the system have di↵erent optimal configurations:
x⇤
v1 = (5, 1), x⇤

v2 = (6, 2), x⇤
v3 = (2, 13), x⇤

v4 = (2, 16). In
DevOps, di↵erent versions of a system will be delivered con-
tinuously on daily basis [3]. Current DevOps practices do
not systematically use the knowledge from previous versions
for performance tuning of the current version under test de-
spite such significant correlations [3]. There are two reasons
behind this: (i) the techniques that are used for performance
tuning cannot exploit the historical data belong to a di↵erent
version. (ii) they assume di↵erent versions have the same
optimum configuration. However, based on our experimental
observations above, this is not true. As a result, the existing
practice treat the experimental data as one-time-use.

Nonlinear interactions. The response functions f(·) in Fig-
ure 2 are strongly non-linear, non-convex and multi-modal.
The performance di↵erence between the best and worst set-
tings is substantial, e.g., 65% in v4, providing a case for
optimal tuning. Moreover, the non-linear relations among
the parameters imply that the optimal number of counters
depends on splitters, and vice-versa. In other words, if one
tries to minimize latency by acting just on one of these
parameters, this may not lead to a global optimum [21].
Measurement uncertainty. We have taken samples of the

latency for the same configuration (splitters=counters=1) of
the 4 versions of WordCount. The experiment were conducted
on Amazon EC2 (m3.large (2 CPU, 7.5 GB)). After filtering
the initial burn-in, we have computed average and variance of
the measurements. The results in Table 2 illustrate that the
variability of measurements across di↵erent versions can be
of di↵erent scales. In traditional techniques, such as design
of experiments, the variability is typically disregarded by
repeating experiments and obtaining the mean. However, we
here pursue an alternative approach that relies on MTGP
models that are able to explicitly take into account variability.

3. TL4CO: TRANSFER LEARNING FOR CON-
FIGURATION OPTIMIZATION

3.1 Single-task GP Bayesian optimization
Bayesian optimization [34] is a sequential design strategy

that allows us to perform global optimization of black-box
functions. Figure 3 illustrates the GP-based Bayesian Op-
timization approach using a 1-dimensional response. The
curve in blue is the unknown true response, whereas the
mean is shown in yellow and the 95% confidence interval at
each point in the shaded red area. The stars indicate ex-
perimental measurements (or observation interchangeably).
Some points x 2 X have a large confidence interval due to
lack of observations in their neighborhood, while others have
a narrow confidence. The main motivation behind the choice
of Bayesian Optimization here is that it o↵ers a framework
in which reasoning can be not only based on mean estimates
but also the variance, providing more informative decision
making. The other reason is that all the computations in
this framework are based on tractable linear algebra.
In our previous work [21], we proposed BO4CO that ex-

ploits single-task GPs (no transfer learning) for prediction of
posterior distribution of response functions. A GP model is
composed by its prior mean (µ(·) : X ! R) and a covariance
function (k(·, ·) : X⇥ X ! R) [41]:

y = f(x) ⇠ GP(µ(x), k(x,x0)), (2)

where covariance k(x,x0) defines the distance between x

and x

0. Let us assume S1:t = {(x1:t, y1:t)|yi := f(xi)} be
the collection of t experimental data (observations). In this
framework, we treat f(x) as a random variable, conditioned
on observations S1:t, which is normally distributed with the
following posterior mean and variance functions [41]:

µt(x) = µ(x) + k(x)|(K + �2
I)�1(y � µ) (3)

�2
t (x) = k(x,x) + �2

I � k(x)|(K + �2
I)�1

k(x) (4)

where y := y1:t, k(x)
| = [k(x,x1) k(x,x2) . . . k(x,xt)],

µ := µ(x1:t), K := k(xi,xj) and I is identity matrix. The
shortcoming of BO4CO is that it cannot exploit the observa-
tions regarding other versions of the system and as therefore
cannot be applied in DevOps.

3.2 TL4CO: an extension to multi-tasks
TL4CO 1 uses MTGPs that exploit observations from other

previous versions of the system under test. Algorithm 1
defines the internal details of TL4CO. As Figure 4 shows,
TL4CO is an iterative algorithm that uses the learning from
other system versions. In a high-level overview, TL4CO: (i)
selects the most informative past observations (details in
Section 3.3); (ii) fits a model to existing data based on kernel
learning (details in Section 3.4), and (iii) selects the next
configuration based on the model (details in Section 3.5).

In the multi-task framework, we use historical data to fit a
better GP providing more accurate predictions. Before that,
we measure few sample points based on Latin Hypercube De-
sign (lhd) D = {x1, . . . , xn} (cf. step 1 in Algorithm 1). We
have chosen lhd because: (i) it ensures that the configuration
samples in D is representative of the configuration space X,
whereas traditional random sampling [26, 17] (called brute-
force) does not guarantee this [29]; (ii) another advantage is
that the lhd samples can be taken one at a time, making it e�-
cient in high dimensional spaces. We define a new notation for
1Code+Data will be released (due in July 2016), as this is
funded under the EU project DICE: https://github.com/
dice-project/DICE-Configuration-BO4CO

3

Motivations:
1- mean estimates + variance
2- all computations are linear algebra

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

x1 x2 x3 x4

true function

GP surrogate
mean estimate

observation

Fig. 5: An example of 1D GP model: GPs provide mean esti-
mates as well as the uncertainty in estimations, i.e., variance.

Configuration
Optimisation Tool

performance
repository

Monitoring

Deployment Service

Data Preparation

configuration
parameters

values

configuration
parameters

values

Experimental Suite

Testbed

Doc

Data Broker

Tester

experiment time
polling interval

configuration
parameters

GP model

Kafka

System Under Test
Workload
Generator

Technology Interface

St
or

m

C
as

sa
nd

ra

Sp
ar

k

Fig. 6: BO4CO architecture: (i) optimization and (ii) exper-
imental suite are integrated via (iii) a data broker. The in-
tegrated solution is available: https://github.com/dice-project/
DICE-Configuration-BO4CO.

B. BO4CO algorithm

BO4CO’s high-level architecture is shown in Figure 6 and
the procedure that drives the optimization is described in Al-
gorithm. We start by bootstrapping the optimization following
Latin Hypercube Design (lhd) to produce an initial design
D = {x1, . . . ,xn

} (cf. step 1 in Algorithm 1). Although other
design approaches (e.g., random) could be used, we have cho-
sen lhd because: (i) it ensures that the configuration samples
in D is representative of the configuration space X, whereas
traditional random sampling [17], [9] (called brute-force) does
not guarantee this [20]; (ii) another advantage is that the lhd
samples can be taken one at a time, making it efficient in
high dimensional spaces. After obtaining the measurements
regarding the initial design, BO4CO then fits a GP model to
the design points D to form our belief about the underlying
response function (cf. step 3 in Algorithm 1). The while loop in
Algorithm 1 iteratively updates the belief until the budget runs
out: As we accumulate the data S1:t = {(x

i

, y
i

)}t
i=1, where

y
i

= f(x
i

)+ ✏
i

with ✏ ⇠ N (0,�2
), a prior distribution Pr(f)

and the likelihood function Pr(S1:t|f) form the posterior
distribution: Pr(f |S1:t) / Pr(S1:t|f) Pr(f).

A GP is a distribution over functions [31], specified by its
mean (see Section III-E2), and covariance (see Section III-E1):

y = f(x) ⇠ GP(µ(x), k(x,x0
)), (3)

Algorithm 1 : BO4CO
Input: Configuration space X, Maximum budget N

max

, Re-
sponse function f , Kernel function K

✓

, Hyper-parameters
✓, Design sample size n, learning cycle N

l

Output: Optimal configurations x

⇤ and learned model M
1: choose an initial sparse design (lhd) to find an initial

design samples D = {x1, . . . ,xn

}
2: obtain performance measurements of the initial design,

y
i

 f(x
i

) + ✏
i

, 8x
i

2 D
3: S1:n {(x

i

, y
i

)}n
i=1; t n+ 1

4: M(x|S1:n,✓) fit a GP model to the design . Eq.(3)
5: while t  N

max

do
6: if (t mod N

l

= 0) ✓ learn the kernel hyper-
parameters by maximizing the likelihood

7: find next configuration x

t

by optimizing the selection
criteria over the estimated response surface given the data,
x

t

 argmax
x

u(x|M, S1:t�1) . Eq.(9)
8: obtain performance for the new configuration x

t

, y
t

f(x

t

) + ✏
t

9: Augment the configuration S1:t = {S1:t�1, (xt

, y
t

)}
10: M(x|S1:t,✓) re-fit a new GP model . Eq.(7)
11: t t+ 1

12: end while
13: (x

⇤, y⇤) = min S1:N
max

14: M(x)

where k(x,x0
) defines the distance between x and x

0. Let us
assume S1:t = {(x1:t, y1:t)|yi := f(x

i

)} be the collection of
t observations. The function values are drawn from a multi-
variate Gaussian distribution N (µ,K), where µ := µ(x1:t),

K :=

2

64
k(x1,x1) . . . k(x1,xt

)

...
. . .

...
k(x

t

,x1) . . . k(x
t

,x
t

)

3

75 (4)

In the while loop in BO4CO, given the observations we
accumulated so far, we intend to fit a new GP model:


f1:t
f
t+1

�
⇠ N (µ,


K + �2

I k

k

| k(x
t+1,xt+1)

�
), (5)

where k(x)

|
= [k(x,x1) k(x,x2) . . . k(x,x

t

)] and I

is identity matrix. Given the Eq. (5), the new GP model can
be drawn from this new Gaussian distribution:

Pr(f
t+1|S1:t,xt+1) = N (µ

t

(x

t+1),�
2
t

(x

t+1)), (6)

where

µ
t

(x) = µ(x) + k(x)

|
(K + �2

I)

�1
(y � µ) (7)

�2
t

(x) = k(x,x) + �2
I � k(x)

|
(K + �2

I)

�1
k(x) (8)

These posterior functions are used to select the next point x
t+1

as detailed in Section III-C.

C. Configuration selection criteria
The selection criteria is defined as u : X ! R that selects

x

t+1 2 X, should f(·) be evaluated next (step 7):

x

t+1 = argmax

x2X
u(x|M, S1:t) (9)

Code:
https://github.com/pooyanjamshidi/BO4CO

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

x1 x2 x3 x4

true function

GP surrogate
mean estimate

observation

Fig. 5: An example of 1D GP model: GPs provide mean esti-
mates as well as the uncertainty in estimations, i.e., variance.

Configuration
Optimisation Tool

performance
repository

Monitoring

Deployment Service

Data Preparation

configuration
parameters

values

configuration
parameters

values

Experimental Suite

Testbed

Doc

Data Broker

Tester

experiment time
polling interval

configuration
parameters

GP model

Kafka

System Under Test
Workload
Generator

Technology Interface

St
or

m

C
as

sa
nd

ra

Sp
ar

k

Fig. 6: BO4CO architecture: (i) optimization and (ii) exper-
imental suite are integrated via (iii) a data broker. The in-
tegrated solution is available: https://github.com/dice-project/
DICE-Configuration-BO4CO.

B. BO4CO algorithm

BO4CO’s high-level architecture is shown in Figure 6 and
the procedure that drives the optimization is described in Al-
gorithm. We start by bootstrapping the optimization following
Latin Hypercube Design (lhd) to produce an initial design
D = {x1, . . . ,xn

} (cf. step 1 in Algorithm 1). Although other
design approaches (e.g., random) could be used, we have cho-
sen lhd because: (i) it ensures that the configuration samples
in D is representative of the configuration space X, whereas
traditional random sampling [17], [9] (called brute-force) does
not guarantee this [20]; (ii) another advantage is that the lhd
samples can be taken one at a time, making it efficient in
high dimensional spaces. After obtaining the measurements
regarding the initial design, BO4CO then fits a GP model to
the design points D to form our belief about the underlying
response function (cf. step 3 in Algorithm 1). The while loop in
Algorithm 1 iteratively updates the belief until the budget runs
out: As we accumulate the data S1:t = {(x

i

, y
i

)}t
i=1, where

y
i

= f(x
i

)+ ✏
i

with ✏ ⇠ N (0,�2
), a prior distribution Pr(f)

and the likelihood function Pr(S1:t|f) form the posterior
distribution: Pr(f |S1:t) / Pr(S1:t|f) Pr(f).

A GP is a distribution over functions [31], specified by its
mean (see Section III-E2), and covariance (see Section III-E1):

y = f(x) ⇠ GP(µ(x), k(x,x0
)), (3)

Algorithm 1 : BO4CO
Input: Configuration space X, Maximum budget N

max

, Re-
sponse function f , Kernel function K

✓

, Hyper-parameters
✓, Design sample size n, learning cycle N

l

Output: Optimal configurations x

⇤ and learned model M
1: choose an initial sparse design (lhd) to find an initial

design samples D = {x1, . . . ,xn

}
2: obtain performance measurements of the initial design,

y
i

 f(x
i

) + ✏
i

, 8x
i

2 D
3: S1:n {(x

i

, y
i

)}n
i=1; t n+ 1

4: M(x|S1:n,✓) fit a GP model to the design . Eq.(3)
5: while t  N

max

do
6: if (t mod N

l

= 0) ✓ learn the kernel hyper-
parameters by maximizing the likelihood

7: find next configuration x

t

by optimizing the selection
criteria over the estimated response surface given the data,
x

t

 argmax
x

u(x|M, S1:t�1) . Eq.(9)
8: obtain performance for the new configuration x

t

, y
t

f(x

t

) + ✏
t

9: Augment the configuration S1:t = {S1:t�1, (xt

, y
t

)}
10: M(x|S1:t,✓) re-fit a new GP model . Eq.(7)
11: t t+ 1

12: end while
13: (x

⇤, y⇤) = min S1:N
max

14: M(x)

where k(x,x0
) defines the distance between x and x

0. Let us
assume S1:t = {(x1:t, y1:t)|yi := f(x

i

)} be the collection of
t observations. The function values are drawn from a multi-
variate Gaussian distribution N (µ,K), where µ := µ(x1:t),

K :=

2

64
k(x1,x1) . . . k(x1,xt

)

...
. . .

...
k(x

t

,x1) . . . k(x
t

,x
t

)

3

75 (4)

In the while loop in BO4CO, given the observations we
accumulated so far, we intend to fit a new GP model:


f1:t
f
t+1

�
⇠ N (µ,


K + �2

I k

k

| k(x
t+1,xt+1)

�
), (5)

where k(x)

|
= [k(x,x1) k(x,x2) . . . k(x,x

t

)] and I

is identity matrix. Given the Eq. (5), the new GP model can
be drawn from this new Gaussian distribution:

Pr(f
t+1|S1:t,xt+1) = N (µ

t

(x

t+1),�
2
t

(x

t+1)), (6)

where

µ
t

(x) = µ(x) + k(x)

|
(K + �2

I)

�1
(y � µ) (7)

�2
t

(x) = k(x,x) + �2
I � k(x)

|
(K + �2

I)

�1
k(x) (8)

These posterior functions are used to select the next point x
t+1

as detailed in Section III-C.

C. Configuration selection criteria
The selection criteria is defined as u : X ! R that selects

x

t+1 2 X, should f(·) be evaluated next (step 7):

x

t+1 = argmax

x2X
u(x|M, S1:t) (9)

0 2000 4000 6000 8000 10000
Iteration

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

K
a

p
p

a

ϵ=1
ϵ=0.1
ϵ=0.01

Fig. 7: Change of  value over time: it begins with a small
value to exploit the mean estimates and it increases over time
in order to explore.

BO4CO uses Lower Confidence Bound (LCB) [25]. LCB
minimizes the distance to optimum by balancing exploitation
of mean and exploration via variance:

u
LCB

(x|M, S1:n) = argmin

x2X
µ
t

(x)� �
t

(x), (10)

where  can be set according to the objectives. For instance,
if we require to find a near optimal configuration quickly we
set a low value to  to take the most out of the initial design
knowledge. However, if we are looking for a globally optimum
configuration, we can set a high value in order to skip local
minima. Furthermore,  can be adapted over time to benefit
from the both [13]. For instance,  can start with a reasonably
small value to exploit the initial design and increase over time
to do more explorations (cf. Figure 7).

D. Illustration
The steps in Algorithm 1 are illustrated in Figure 8. Firstly,

an initial design based on lhd is produced (Figure 8(a)).
Secondly, a GP model is fit to the initial design (Figure 8(b)).
Then, the model is used to calculate the selection criteria
(Figure 8(c)). Finally, the configuration that maximizes the
selection criteria is used to run the next experiment and provide
data for refitting a more accurate model (Figure 8(d)).

E. Model fitting in BO4CO
In this section, we provide some practical considerations to

make GPs applicable for configuration optimization.
1) Kernel function: In BO4CO, as shown in Algorithm

1, the covariance function k : X ⇥ X ! R dictates the
structure of the response function we fit to the observed data.
For integer variables (cf. Section II-A), we implemented the
Matérn kernel [31]. The main reason behind this choice is that
along each dimension in the configuration response functions
different level of smoothness can be observed (cf. Figure 2).
Matérn kernels incorporate a smoothness parameter ⌫ > 0 that
permits greater flexibility in modeling such functions [31]. The
following is a variation of the Matérn kernel for ⌫ = 1/2:

k
⌫=1/2(xi

,x
j

) = ✓20 exp(�r), (11)

where r2(x
i

,x
j

) = (x

i

� x

j

)

|⇤(x

i

� x

j

) for some positive
semidefinite matrix ⇤. For categorical variables, we imple-
mented the following [12]:

k
✓

(x

i

,x
j

) = exp(⌃

d

`=1(�✓
`

�(x
i

6= x

j

))), (12)

where d is the number of dimensions (i.e., the number of con-
figuration parameters), ✓

`

adjust the scales along the function
dimensions and � is a function gives the distance between
two categorical variables using Kronecker delta [12], [25].
TL4CO uses different scales {✓

`

, ` = 1 . . . d} on different
dimensions as suggested in [31], [25], this technique is called
Automatic Relevance Determination (ARD). After learning the
hyper-parameters (step 6), if the `-th dimension turns out to
be irrelevant, then ✓

`

will be a small value, and therefore, will
be discarded. This is particularly helpful in high dimensional
spaces, where it is difficult to find the optimal configuration.

2) Prior mean function: While the kernel controls the
structure of the estimated function, the prior mean µ(x) :

X ! R provides a possible offset for our estimation. By
default, this function is set to a constant µ(x) := µ, which is
inferred from the observations [25]. However, the prior mean
function is a way of incorporating the expert knowledge, if
it is available, then we can use this knowledge. Fortunately,
we have collected extensive experimental measurements and
based on our datasets (cf. Table I), we observed that typically,
for Big Data systems, there is a significant distance between
the minimum and the maximum of each function (cf. Figure
2). Therefore, a linear mean function µ(x) := ax+ b, allows
for more flexible structures, and provides a better fit for the
data than a constant mean. We only need to learn the slope
for each dimension and an offset (denoted by µ

`

= (a, b)).
3) Learning parameters: marginal likelihood: This section

describe the step 7 in Algorithm 1. Due to the heavy compu-
tation of the learning, this process is computed only every N

l

iterations. For learning the hyper-parameters of the kernel and
also the prior mean functions (cf. Sections III-E1 and III-E2),
we maximize the marginal likelihood [25] of the observations
S1:t. To do that, we train GP model (7) with S1:t. We optimize
the marginal likelihood using multi-started quasi-Newton hill-
climbers [23]. For this purpose, we use the off-the-shelf gpml
library presented in [23]. Using the kernel defined in (12), we
learn ✓ := (✓0:d, µ0:d,�

2
) that comprises the hyper-parameters

of the kernel and mean functions. The learning is performed
iteratively resulting in a sequence of ✓

i

for i = 1 . . . bN

max

N

`

c.
4) Observation noise: The primary way for determining the

noise variance � in BO4CO is to use historical data: In Section
II-B4, we have shown that such noise can be measured with a
high confidence and the signal-to-noise ratios shows that such
noise is stationary. The secondary alternative is to learn the
noise variance sequentially as we collect new data. We treat
them just as any other hyper-parameters, see Section III-E3.

IV. EXPERIMENTAL RESULTS

A. Implementation

From an implementation perspective, BO4CO consists of
three major components: (i) an optimization component (cf.
left part of Figure 6), (ii) an experimental suite (cf. right part
of Figure 6) integrated via a (iii) data broker. The optimization
component implements the model (re-)fitting (7) and criteria
optimization (9) steps in Algorithm 1 and is developed in Mat-
lab 2015b. The experimental suite component implements the
facilities for automated deployment of topologies, performance
measurements and data preparation and is developed in Java.

0 2000 4000 6000 8000 10000
Iteration

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

K
a
p
p
a

ϵ=1
ϵ=0.1
ϵ=0.01

Fig. 7: Change of  value over time: it begins with a small
value to exploit the mean estimates and it increases over time
in order to explore.

BO4CO uses Lower Confidence Bound (LCB) [25]. LCB
minimizes the distance to optimum by balancing exploitation
of mean and exploration via variance:

u
LCB

(x|M, S1:n) = argmin

x2X
µ
t

(x)� �
t

(x), (10)

where  can be set according to the objectives. For instance,
if we require to find a near optimal configuration quickly we
set a low value to  to take the most out of the initial design
knowledge. However, if we are looking for a globally optimum
configuration, we can set a high value in order to skip local
minima. Furthermore,  can be adapted over time to benefit
from the both [13]. For instance,  can start with a reasonably
small value to exploit the initial design and increase over time
to do more explorations (cf. Figure 7).

D. Illustration
The steps in Algorithm 1 are illustrated in Figure 8. Firstly,

an initial design based on lhd is produced (Figure 8(a)).
Secondly, a GP model is fit to the initial design (Figure 8(b)).
Then, the model is used to calculate the selection criteria
(Figure 8(c)). Finally, the configuration that maximizes the
selection criteria is used to run the next experiment and provide
data for refitting a more accurate model (Figure 8(d)).

E. Model fitting in BO4CO
In this section, we provide some practical considerations to

make GPs applicable for configuration optimization.
1) Kernel function: In BO4CO, as shown in Algorithm

1, the covariance function k : X ⇥ X ! R dictates the
structure of the response function we fit to the observed data.
For integer variables (cf. Section II-A), we implemented the
Matérn kernel [31]. The main reason behind this choice is that
along each dimension in the configuration response functions
different level of smoothness can be observed (cf. Figure 2).
Matérn kernels incorporate a smoothness parameter ⌫ > 0 that
permits greater flexibility in modeling such functions [31]. The
following is a variation of the Matérn kernel for ⌫ = 1/2:

k
⌫=1/2(xi

,x
j

) = ✓20 exp(�r), (11)

where r2(x
i

,x
j

) = (x

i

� x

j

)

|⇤(x

i

� x

j

) for some positive
semidefinite matrix ⇤. For categorical variables, we imple-
mented the following [12]:

k
✓

(x

i

,x
j

) = exp(⌃

d

`=1(�✓
`

�(x
i

6= x

j

))), (12)

where d is the number of dimensions (i.e., the number of con-
figuration parameters), ✓

`

adjust the scales along the function
dimensions and � is a function gives the distance between
two categorical variables using Kronecker delta [12], [25].
TL4CO uses different scales {✓

`

, ` = 1 . . . d} on different
dimensions as suggested in [31], [25], this technique is called
Automatic Relevance Determination (ARD). After learning the
hyper-parameters (step 6), if the `-th dimension turns out to
be irrelevant, then ✓

`

will be a small value, and therefore, will
be discarded. This is particularly helpful in high dimensional
spaces, where it is difficult to find the optimal configuration.

2) Prior mean function: While the kernel controls the
structure of the estimated function, the prior mean µ(x) :

X ! R provides a possible offset for our estimation. By
default, this function is set to a constant µ(x) := µ, which is
inferred from the observations [25]. However, the prior mean
function is a way of incorporating the expert knowledge, if
it is available, then we can use this knowledge. Fortunately,
we have collected extensive experimental measurements and
based on our datasets (cf. Table I), we observed that typically,
for Big Data systems, there is a significant distance between
the minimum and the maximum of each function (cf. Figure
2). Therefore, a linear mean function µ(x) := ax+ b, allows
for more flexible structures, and provides a better fit for the
data than a constant mean. We only need to learn the slope
for each dimension and an offset (denoted by µ

`

= (a, b)).
3) Learning parameters: marginal likelihood: This section

describe the step 7 in Algorithm 1. Due to the heavy compu-
tation of the learning, this process is computed only every N

l

iterations. For learning the hyper-parameters of the kernel and
also the prior mean functions (cf. Sections III-E1 and III-E2),
we maximize the marginal likelihood [25] of the observations
S1:t. To do that, we train GP model (7) with S1:t. We optimize
the marginal likelihood using multi-started quasi-Newton hill-
climbers [23]. For this purpose, we use the off-the-shelf gpml
library presented in [23]. Using the kernel defined in (12), we
learn ✓ := (✓0:d, µ0:d,�

2
) that comprises the hyper-parameters

of the kernel and mean functions. The learning is performed
iteratively resulting in a sequence of ✓

i

for i = 1 . . . bN

max

N

`

c.
4) Observation noise: The primary way for determining the

noise variance � in BO4CO is to use historical data: In Section
II-B4, we have shown that such noise can be measured with a
high confidence and the signal-to-noise ratios shows that such
noise is stationary. The secondary alternative is to learn the
noise variance sequentially as we collect new data. We treat
them just as any other hyper-parameters, see Section III-E3.

IV. EXPERIMENTAL RESULTS

A. Implementation

From an implementation perspective, BO4CO consists of
three major components: (i) an optimization component (cf.
left part of Figure 6), (ii) an experimental suite (cf. right part
of Figure 6) integrated via a (iii) data broker. The optimization
component implements the model (re-)fitting (7) and criteria
optimization (9) steps in Algorithm 1 and is developed in Mat-
lab 2015b. The experimental suite component implements the
facilities for automated deployment of topologies, performance
measurements and data preparation and is developed in Java.

Acquisition function:

Kernel function:

-1.5 -1 -0.5 0 0.5 1 1.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

configuration domain

re
sp

on
se

 v
al

ue

-1.5 -1 -0.5 0 0.5 1 1.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 true response function
GP fit

-1.5 -1 -0.5 0 0.5 1 1.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

criteria evaluation

new selected point

-1.5 -1 -0.5 0 0.5 1 1.5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

new GP fit

100

150

1

200

250

La
te

nc
y

(m
s)

300

2 5
3 104

5 15
6

14

16

18

20

1

22

24

26

La
te

nc
y

(m
s)

28

30

32

2 53 104
5 156 number of countersnumber of splitters number of countersnumber of splitters

2.8

2.9

1

3

3.1

3.2

3.3

2

La
te

nc
y

(m
s)

3.4

3.5

3.6

3 5
4 10

5 15
6

1.2

1.3

1.4

1

1.5

1.6

1.7

La
te

nc
y

(m
s)

1.8

1.9

2 53
104

5 156

(a) WordCount v1

(b) WordCount v2

(c) WordCount v3 (d) WordCount v4

(e) Pearson correlation coefficients

(g) Measurement noise across WordCount versions

(f) Spearman correlation coefficients

correlation coefficient

p-
va

lu
e

v1 v2 v3 v4

500

600

700

800

900

1000

1100

1200

L
a
te

n
c
y
 (

m
s
)

hardware change

so
ftw

ar
e

ch
an

ge

Table 1: My caption

v1 v2 v3 v4

v1 1 0.41 -0.46 -0.50

v2 7.36E-06 1 -0.20 -0.18

v3 6.92E-07 0.04 1 0.94

v4 2.54E-08 0.07 1.16E-52 1

Table 2: My caption

v1 v2 v3 v4

v1 1 0.49 -0.51 -0.51

v2 5.50E-08 1 -0.2793 -0.24

v3 1.30E-08 0.003 1 0.88

v4 1.40E-08 0.01 8.30E-36 1

Table 3: My caption

ver. µ � µ
�

v1 516.59 7.96 64.88

v2 584.94 2.58 226.32

v3 654.89 13.56 48.30

v4 1125.81 16.92 66.56

1

Table 1: My caption

v1 v2 v3 v4

v1 1 0.41 -0.46 -0.50

v2 7.36E-06 1 -0.20 -0.18

v3 6.92E-07 0.04 1 0.94

v4 2.54E-08 0.07 1.16E-52 1

Table 2: My caption

v1 v2 v3 v4

v1 1 0.49 -0.51 -0.51

v2 5.50E-08 1 -0.2793 -0.24

v3 1.30E-08 0.003 1 0.88

v4 1.40E-08 0.01 8.30E-36 1

Table 3: My caption

ver. µ � µ
�

v1 516.59 7.96 64.88

v2 584.94 2.58 226.32

v3 654.89 13.56 48.30

v4 1125.81 16.92 66.56

1

- Different correlations
- Different optimum
Configurations
- Different noise level

Configuration Optimization
(version j=M)

performance
measurements

Initial Design

Model Fit

Next Experiment

Model Update

Budget Finished

performance
repository

Configuration Optimization
(version j=N)

Initial Design

Model Fit

Next Experiment

Model Update

Budget Finished

select data
for training

GP model hyper-parameters

store filter

Transfer	Learning	for	Configuration	
Optimization	(TL4CO)
Code:	https://github.com/dice-project/DICE-Configuration-TL4CO

100

150

1

200

250

L
a
te

n
cy

 (
m

s)

300

2 5
3 104

5 15
6

14

16

18

20

1

22

24

26

L
a
te

n
cy

 (
m

s)

28

30

32

2 53 104
5 156

2.8

2.9

1

3

3.1

3.2

3.3

2

L
a
te

n
cy

 (
m

s)

3.4

3.5

3.6

3 5
4 10

5 15
6

1.2

1.3

1.4

1

1.5

1.6

1.7

L
a
te

n
cy

 (
m

s)

1.8

1.9

2 53
104

5 156 number of countersnumber of splitters number of counters
number of splitters number of countersnumber of splitters number of countersnumber of splitters

(a) WordCount v1 (b) WordCount v2 (c) WordCount v3 (d) WordCount v4

Figure 2: The response functions corresponding to the four versions of WordCount.

true function

GP mean

GP variance

observation

selected point

true
minimumX

f(x)

Figure 3: An example of 1-dimensional GP model.

Configuration Optimization
(version j=M)

performance
measurements

Initial Design

Model Fit

Next Experiment

Model Update

Budget Finished

performance
repository

Configuration Optimization
(version j=N)

Initial Design

Model Fit

Next Experiment

Model Update

Budget Finished

select data
for training

GP model hyper-parameters

store filter

Figure 4: Transfer learning for configuration optimization.

observations, S1
1:t = {(xj

i , y
j
i)|j = 1, . . . , T, i = 1, . . . , tj}ti=1

(cf. S1:t), where x

j
i are the configurations of di↵erent ver-

sions for which we observed response yj
i . The version of

the system (task) is defined as j that contains tj observa-
tions. Without loss of generality, we always assume j = 1
is the current version under test. In order to associate the
observations (xj

i , y
j
i) to task j a label lj = j is used. To

transfer the learning from previous tasks to the current one,
the MTPG framework allows us to use the multiplication of
two independent kernels [5]:

kTL4CO(l, l
0,x,x0) = kt(l, l

0)⇥ kxx(x,x
0), (5)

where the kernels kt and kxx represent the correlation be-
tween di↵erent versions and covariance functions for a partic-
ular version, respectively. Note that kt depends only on the
labels l pointing to the versions for which we have some obser-
vations, and kxx depends only on the configuration x. This

Algorithm 1 : TL4CO

Input: Configuration space X, Number of historical con-
figuration optimization datasets T , Maximum budget
Nmax, Response function f , Kernel function K, Hyper-
parameters ✓

j , The current dataset Sj=1, Datasets be-
longing to other versions Sj=2:T , Diagonal noise matrix
⌃, Design sample size n, Learning cycle Nl

Output: Optimal configurations x⇤ and learned model M
1: D = {x1, . . . ,xn} create an initial sparse design (lhd)
2: Obtain the performance 8xi 2 D, yi f(xi) + ✏i
3: Sj=2:T select m points from other versions (j = 2 : T)

that reduce entropy . Eq.(8)
4: S1

1:n Sj=2:T [{(xi, yi)}ni=1; t n+ 1
5: M(x|S1

1:n,✓
j) fit a multi-task GP to D . Eq. (6)

6: while t  Nmax do
7: If (t mod Nl = 0) then [✓ learn the kernel hyper-

parameters by maximizing the likelihood]
8: Determine the next configuration, xt, by optimizing

LCB over M, xt argmax
x

u(x|M, S1
1:t�1) . Eq.(11)

9: Obtain the performance of xt, yt f(xt) + ✏t
10: Augment the configuration S1

1:t = S1
1:t�1

S
{(xt, yt)}

11: M(x|S1
1:t,✓) re-fit a new GP model . Eq.(6)

12: t t+ 1
13: end while
14: (x⇤, y⇤) = min[S1

1:N
max

� Sj=2:T] locating the optimum
configuration by discarding data for other system versions

15: M(x) storing the learned model

method has several benefits over the ordinary GP models:
(i) we can plug di↵erent observations regarding di↵erent ver-
sions; (ii) automatic learning of the correlation between the
system versions; (iii) fast learning of the hyper-parameters by
exploiting the similarity between measurements. Similarly
to (3), (4), the mean and variance of MTGP are [34]:

µt(x) = µ(x) + k

|(K(X,X) + ⌃)�1(y � µ) (6)

�2
t (x) = k(x,x) + �2 � k

|(K(X,X) + ⌃)�1
k, (7)

where y := [f1, . . . ,fT]
| is the measured performance re-

garding all tasks, X = [X1, . . . , XT] are the corresponding
configuration and ⌃ = diag[�2

1 , . . . ,�
2
T] is a diagonal noise

matrix where each noise term is repeated as many times as the
number of historical observations represented by t1, . . . , tT

and k := k(X,x). This is a conditional estimate at a de-
sired configuration given the historical datasets for previous
system versions and their respective GP hyper-parameters.

An illustration of a multi-task GP versus a single-task GP
and its e↵ect on providing a more accurate model is given in

4

Code:
https://github.com/pooyanjamshidi/TL4CO

100

150

1

200

250

L
a
te

n
cy

 (
m

s)

300

2 5
3 104

5 15
6

14

16

18

20

1

22

24

26

L
a
te

n
cy

 (
m

s)

28

30

32

2 53 104
5 156

2.8

2.9

1

3

3.1

3.2

3.3

2

L
a
te

n
cy

 (
m

s)

3.4

3.5

3.6

3 5
4 10

5 15
6

1.2

1.3

1.4

1

1.5

1.6

1.7

L
a
te

n
cy

 (
m

s)

1.8

1.9

2 53
104

5 156 number of countersnumber of splitters number of counters
number of splitters number of countersnumber of splitters number of countersnumber of splitters

(a) WordCount v1 (b) WordCount v2 (c) WordCount v3 (d) WordCount v4

Figure 2: The response functions corresponding to the four versions of WordCount.

true function

GP mean

GP variance

observation

selected point

true
minimumX

f(x)

Figure 3: An example of 1-dimensional GP model.

Configuration Optimization
(version j=M)

performance
measurements

Initial Design

Model Fit

Next Experiment

Model Update

Budget Finished

performance
repository

Configuration Optimization
(version j=N)

Initial Design

Model Fit

Next Experiment

Model Update

Budget Finished

select data
for training

GP model hyper-parameters

store filter

Figure 4: Transfer learning for configuration optimization.

observations, S1
1:t = {(xj

i , y
j
i)|j = 1, . . . , T, i = 1, . . . , tj}ti=1

(cf. S1:t), where x

j
i are the configurations of di↵erent ver-

sions for which we observed response yj
i . The version of

the system (task) is defined as j that contains tj observa-
tions. Without loss of generality, we always assume j = 1
is the current version under test. In order to associate the
observations (xj

i , y
j
i) to task j a label lj = j is used. To

transfer the learning from previous tasks to the current one,
the MTPG framework allows us to use the multiplication of
two independent kernels [5]:

kTL4CO(l, l
0,x,x0) = kt(l, l

0)⇥ kxx(x,x
0), (5)

where the kernels kt and kxx represent the correlation be-
tween di↵erent versions and covariance functions for a partic-
ular version, respectively. Note that kt depends only on the
labels l pointing to the versions for which we have some obser-
vations, and kxx depends only on the configuration x. This

Algorithm 1 : TL4CO

Input: Configuration space X, Number of historical con-
figuration optimization datasets T , Maximum budget
Nmax, Response function f , Kernel function K, Hyper-
parameters ✓

j , The current dataset Sj=1, Datasets be-
longing to other versions Sj=2:T , Diagonal noise matrix
⌃, Design sample size n, Learning cycle Nl

Output: Optimal configurations x⇤ and learned model M
1: D = {x1, . . . ,xn} create an initial sparse design (lhd)
2: Obtain the performance 8xi 2 D, yi f(xi) + ✏i
3: Sj=2:T select m points from other versions (j = 2 : T)

that reduce entropy . Eq.(8)
4: S1

1:n Sj=2:T [{(xi, yi)}ni=1; t n+ 1
5: M(x|S1

1:n,✓
j) fit a multi-task GP to D . Eq. (6)

6: while t  Nmax do
7: If (t mod Nl = 0) then [✓ learn the kernel hyper-

parameters by maximizing the likelihood]
8: Determine the next configuration, xt, by optimizing

LCB over M, xt argmax
x

u(x|M, S1
1:t�1) . Eq.(11)

9: Obtain the performance of xt, yt f(xt) + ✏t
10: Augment the configuration S1

1:t = S1
1:t�1

S
{(xt, yt)}

11: M(x|S1
1:t,✓) re-fit a new GP model . Eq.(6)

12: t t+ 1
13: end while
14: (x⇤, y⇤) = min[S1

1:N
max

� Sj=2:T] locating the optimum
configuration by discarding data for other system versions

15: M(x) storing the learned model

method has several benefits over the ordinary GP models:
(i) we can plug di↵erent observations regarding di↵erent ver-
sions; (ii) automatic learning of the correlation between the
system versions; (iii) fast learning of the hyper-parameters by
exploiting the similarity between measurements. Similarly
to (3), (4), the mean and variance of MTGP are [34]:

µt(x) = µ(x) + k

|(K(X,X) + ⌃)�1(y � µ) (6)

�2
t (x) = k(x,x) + �2 � k

|(K(X,X) + ⌃)�1
k, (7)

where y := [f1, . . . ,fT]
| is the measured performance re-

garding all tasks, X = [X1, . . . , XT] are the corresponding
configuration and ⌃ = diag[�2

1 , . . . ,�
2
T] is a diagonal noise

matrix where each noise term is repeated as many times as the
number of historical observations represented by t1, . . . , tT

and k := k(X,x). This is a conditional estimate at a de-
sired configuration given the historical datasets for previous
system versions and their respective GP hyper-parameters.

An illustration of a multi-task GP versus a single-task GP
and its e↵ect on providing a more accurate model is given in

4

100

150

1

200

250

L
a
te

n
cy

 (
m

s)

300

2 5
3 104

5 15
6

14

16

18

20

1

22

24

26

L
a
te

n
cy

 (
m

s)

28

30

32

2 53 104
5 156

2.8

2.9

1

3

3.1

3.2

3.3

2

L
a
te

n
cy

 (
m

s)

3.4

3.5

3.6

3 5
4 10

5 15
6

1.2

1.3

1.4

1

1.5

1.6

1.7

L
a
te

n
cy

 (
m

s)

1.8

1.9

2 53
104

5 156 number of countersnumber of splitters number of counters
number of splitters number of countersnumber of splitters number of countersnumber of splitters

(a) WordCount v1 (b) WordCount v2 (c) WordCount v3 (d) WordCount v4

Figure 2: The response functions corresponding to the four versions of WordCount.

true function

GP mean

GP variance

observation

selected point

true
minimumX

f(x)

Figure 3: An example of 1-dimensional GP model.

Configuration Optimization
(version j=M)

performance
measurements

Initial Design

Model Fit

Next Experiment

Model Update

Budget Finished

performance
repository

Configuration Optimization
(version j=N)

Initial Design

Model Fit

Next Experiment

Model Update

Budget Finished

select data
for training

GP model hyper-parameters

store filter

Figure 4: Transfer learning for configuration optimization.

observations, S1
1:t = {(xj

i , y
j
i)|j = 1, . . . , T, i = 1, . . . , tj}ti=1

(cf. S1:t), where x

j
i are the configurations of di↵erent ver-

sions for which we observed response yj
i . The version of

the system (task) is defined as j that contains tj observa-
tions. Without loss of generality, we always assume j = 1
is the current version under test. In order to associate the
observations (xj

i , y
j
i) to task j a label lj = j is used. To

transfer the learning from previous tasks to the current one,
the MTPG framework allows us to use the multiplication of
two independent kernels [5]:

kTL4CO(l, l
0,x,x0) = kt(l, l

0)⇥ kxx(x,x
0), (5)

where the kernels kt and kxx represent the correlation be-
tween di↵erent versions and covariance functions for a partic-
ular version, respectively. Note that kt depends only on the
labels l pointing to the versions for which we have some obser-
vations, and kxx depends only on the configuration x. This

Algorithm 1 : TL4CO

Input: Configuration space X, Number of historical con-
figuration optimization datasets T , Maximum budget
Nmax, Response function f , Kernel function K, Hyper-
parameters ✓

j , The current dataset Sj=1, Datasets be-
longing to other versions Sj=2:T , Diagonal noise matrix
⌃, Design sample size n, Learning cycle Nl

Output: Optimal configurations x⇤ and learned model M
1: D = {x1, . . . ,xn} create an initial sparse design (lhd)
2: Obtain the performance 8xi 2 D, yi f(xi) + ✏i
3: Sj=2:T select m points from other versions (j = 2 : T)

that reduce entropy . Eq.(8)
4: S1

1:n Sj=2:T [{(xi, yi)}ni=1; t n+ 1
5: M(x|S1

1:n,✓
j) fit a multi-task GP to D . Eq. (6)

6: while t  Nmax do
7: If (t mod Nl = 0) then [✓ learn the kernel hyper-

parameters by maximizing the likelihood]
8: Determine the next configuration, xt, by optimizing

LCB over M, xt argmax
x

u(x|M, S1
1:t�1) . Eq.(11)

9: Obtain the performance of xt, yt f(xt) + ✏t
10: Augment the configuration S1

1:t = S1
1:t�1

S
{(xt, yt)}

11: M(x|S1
1:t,✓) re-fit a new GP model . Eq.(6)

12: t t+ 1
13: end while
14: (x⇤, y⇤) = min[S1

1:N
max

� Sj=2:T] locating the optimum
configuration by discarding data for other system versions

15: M(x) storing the learned model

method has several benefits over the ordinary GP models:
(i) we can plug di↵erent observations regarding di↵erent ver-
sions; (ii) automatic learning of the correlation between the
system versions; (iii) fast learning of the hyper-parameters by
exploiting the similarity between measurements. Similarly
to (3), (4), the mean and variance of MTGP are [34]:

µt(x) = µ(x) + k

|(K(X,X) + ⌃)�1(y � µ) (6)

�2
t (x) = k(x,x) + �2 � k

|(K(X,X) + ⌃)�1
k, (7)

where y := [f1, . . . ,fT]
| is the measured performance re-

garding all tasks, X = [X1, . . . , XT] are the corresponding
configuration and ⌃ = diag[�2

1 , . . . ,�
2
T] is a diagonal noise

matrix where each noise term is repeated as many times as the
number of historical observations represented by t1, . . . , tT

and k := k(X,x). This is a conditional estimate at a de-
sired configuration given the historical datasets for previous
system versions and their respective GP hyper-parameters.

An illustration of a multi-task GP versus a single-task GP
and its e↵ect on providing a more accurate model is given in

4

correlation between
different versions

covariance functions

-1.5 -1 -0.5 0 0.5 1 1.5
-4

-3

-2

-1

0

1

2

3

(a) 3 sample response functions

configuration domain

re
sp

on
se

 v
al

ue

(1)

(2)

(3)

observations

(b) GP fit for (1) ignoring observations for (2),(3)

LCB

not informative

(c) multi-task GP fit for (1) by transfer learning from (2),(3)

highly informative

GP prediction mean
GP prediction variance

probability distribution
of the minimizers

0 2000 4000 6000 8000 10000
Iteration

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

κ

κ
TL4CO

[ϵ=1]

κ
BO4CO

[ϵ=1]

κ
TL4CO

[ϵ=0.1]

κ
BO4CO

[ϵ=0.1]

κ
TL4CO

[ϵ=0.01]

κ
BO4CO

[ϵ=0.01]

Figure 5. Three di↵erent 1D (1-dimensional) response func-
tions are to be minimized. Further samples are available all
over two of them, whereas function (1) that is under test has
only few sparse observations. Merely using these few samples
would result in poor (uninformative) predictions of the func-
tion especially in the areas where there is no observations.
Using the correlation with the other two functions enables
the MTGP model to provide more accurate predictions and
as a result locating the optimum more quickly.

3.3 Filtering out irrelevant data
Here is described how the selection of the points in the

previous system is made. The number of historical observa-
tions taken in consideration is important because a↵ect the
computational requirements, due to the matrix inversion in
(6) incurs a cubic cost (shown in Section 4.6). TL4CO selects
(step 3 in Algorithm 1) points with the lowest entropy value.
Entropy reduction is computed as the log of the ratio of the
posterior uncertainty given an observation xi,j belonging to
version j, to its uncertainty without it:

Iij = log
⇣v(x|X,xi,j)

v(x|X)

⌘
, (8)

where v(x|X) is the posterior uncertainty of the prediction
from MTGP model of query point x obtained in (7).

3.4 Model fitting in TL4CO
In this section, we provide some practical considerations

and the extensions we made to the MTGP framework to
make it applicable for configuration optimization.

3.4.1 Kernel function
We implemented the following kernel function to support

integer and categorical variables (cf. Section 2.1):

kxx(xi,xj) = exp(⌃d
`=1(�✓`�(xi 6= xj))), (9)

where d is the number of dimensions (i.e., the number of
configuration parameters), ✓` adjust the scales along the
function dimensions and � is a function gives the distance
between two categorical variables using Kronecker delta [20,
34]. TL4CO uses di↵erent scales {✓`, ` = 1 . . . d} on di↵erent
dimensions as suggested in [41, 34], this technique is called
Automatic Relevance Determination (ARD). After learning
the hyper-parameters (step 7 in Algorithm 1), if the `-th
dimension (parameter) turns out be irrelevant, so the ✓`
will be a small value, and therefore, will be automatically
discarded. This is particularly helpful in high dimensional
spaces, where it is di�cult to find the optimal configuration.

3.4.2 Prior mean function
While the kernel controls the structure of the estimated

function, the prior mean µ(x) : X ! R provides a possible
o↵set for our estimation. By default, this function is set to a
constant µ(x) := µ, which is inferred from the observations
[34]. However, the prior mean function is a way of incorpo-
rating the expert knowledge, if it is available, then we can
use this knowledge. Fortunately, we have collected extensive
experimental measurements and based on our datasets (cf.
Table 3), we observed that typically, for Big Data systems,
there is a significant distance between the minimum and the
maximum of each function (cf. Figure 2). Therefore, a linear
mean function µ(x) := ax+ b, allows for more flexible struc-
tures, and provides a better fit for the data than a constant
mean. We only need to learn the slope for each dimension
and an o↵set (denoted by µ` = (a, b), see next).

3.4.3 Learning hyper-parameters
This section describe the step 7 in Algorithm 1. Due to the

heavy computation of the learning, this process is computed
only every Nl iterations. For learning the hyper-parameters
of the kernel and also the prior mean functions (cf. Sections
3.4.1 and 3.4.2), we maximize the marginal likelihood [34,
5] of the observations S1

1:t. To do that, we train our GP
model (6) with S1

1:t . We optimize the marginal likelihood
using multi-started quasi-Newton hill-climbers [32]. For this
purpose, we use the o↵-the-shelf gpml library presented in
[32]. Using the multi-task kernel defined in (5), we learn
✓ := (✓t, ✓xx, µ`) that comprises the hyper-parameters of kt,
kxx (cf. (5)) and the mean function µ(·) (cf. Section 3.4.2).
The learning is performed iteratively resulting in a sequence
of priors with parameters ✓i for i = 1 . . . bN

max

N
`

c.

3.4.4 Observation noise
In Section 2.4, we have shown that such noise level can

be measured with a high confidence and the signal-to-noise
ratios shows that such noise is stationary. In (7), � represents
the noise of the selected point x. Typically this noise value
is not known. In TL4CO, we estimate the noise level by an
approximation. The query points can be assumed to be as
noisy as the observed data. In other words, we treat � as a
random variable and we calculate its expected value as:

� =
⌃T

j=1Ni�
2
i

⌃T
i=1Ni

(10)

where Ni are the number of observations from the ith dataset
and �2

i is the noise variance of the individual datasets.

3.5 Configuration selection criteria
TL4CO requires a selection criterion (step 8 in Algorithm

1) to decide the next configuration to measure. Intuitively,
we want to select the minimum response. This is done using
a utility function u : X ! R that determines xt+1 2 X,
should f(·) be evaluated next as:

xt+1 = argmax
x2X

u(x|M, S1
1:t) (11)

The selection criterion depends on the MTGP model M
solely through its predictive mean µt(xt) and variance �2

t (xt)
conditioned on observations S1

1:t. TL4CO uses the Lower
Confidence Bound (LCB) [24]:

uLCB(x|M, S1
1:t) = argmin

x2X
µt(x)� �t(x), (12)

where  is a exploitation-exploration parameter. For instance,
if we require to find a near optimal configuration we set a
low value to  to take the most out of the predictive mean.
However, if we are looking for a globally optimum one, we can
set a high value in order to skip local minima. Furthermore,
 can be adapted over time [22] to perform more explorations.
Figure 6 shows that in TL4CO,  can start with a relatively
higher value at the early iterations comparing to BO4CO
since the former provides a better estimate of mean and
therefore contains more information at the early stages.

TL4CO output. Once the Nmax di↵erent configurations of
the system under test are measured, the TL4CO algorithm
terminates. Finally, TL4CO produces the outputs including
the optimal configuration (step 14 in Algorithm 1) as well
as the learned MTGP model (step 15 in Algorithm 1). All
these information are versioned and stored in a performance
repository (cf. Figure 7) to be used in the future versions of
the system.

5

Figure 5. Three di↵erent 1D (1-dimensional) response func-
tions are to be minimized. Further samples are available all
over two of them, whereas function (1) that is under test has
only few sparse observations. Merely using these few samples
would result in poor (uninformative) predictions of the func-
tion especially in the areas where there is no observations.
Using the correlation with the other two functions enables
the MTGP model to provide more accurate predictions and
as a result locating the optimum more quickly.

3.3 Filtering out irrelevant data
Here is described how the selection of the points in the

previous system is made. The number of historical observa-
tions taken in consideration is important because a↵ect the
computational requirements, due to the matrix inversion in
(6) incurs a cubic cost (shown in Section 4.6). TL4CO selects
(step 3 in Algorithm 1) points with the lowest entropy value.
Entropy reduction is computed as the log of the ratio of the
posterior uncertainty given an observation xi,j belonging to
version j, to its uncertainty without it:

Iij = log
⇣v(x|X,xi,j)

v(x|X)

⌘
, (8)

where v(x|X) is the posterior uncertainty of the prediction
from MTGP model of query point x obtained in (7).

3.4 Model fitting in TL4CO
In this section, we provide some practical considerations

and the extensions we made to the MTGP framework to
make it applicable for configuration optimization.

3.4.1 Kernel function
We implemented the following kernel function to support

integer and categorical variables (cf. Section 2.1):

kxx(xi,xj) = exp(⌃d
`=1(�✓`�(xi 6= xj))), (9)

where d is the number of dimensions (i.e., the number of
configuration parameters), ✓` adjust the scales along the
function dimensions and � is a function gives the distance
between two categorical variables using Kronecker delta [20,
34]. TL4CO uses di↵erent scales {✓`, ` = 1 . . . d} on di↵erent
dimensions as suggested in [41, 34], this technique is called
Automatic Relevance Determination (ARD). After learning
the hyper-parameters (step 7 in Algorithm 1), if the `-th
dimension (parameter) turns out be irrelevant, so the ✓`
will be a small value, and therefore, will be automatically
discarded. This is particularly helpful in high dimensional
spaces, where it is di�cult to find the optimal configuration.

3.4.2 Prior mean function
While the kernel controls the structure of the estimated

function, the prior mean µ(x) : X ! R provides a possible
o↵set for our estimation. By default, this function is set to a
constant µ(x) := µ, which is inferred from the observations
[34]. However, the prior mean function is a way of incorpo-
rating the expert knowledge, if it is available, then we can
use this knowledge. Fortunately, we have collected extensive
experimental measurements and based on our datasets (cf.
Table 3), we observed that typically, for Big Data systems,
there is a significant distance between the minimum and the
maximum of each function (cf. Figure 2). Therefore, a linear
mean function µ(x) := ax+ b, allows for more flexible struc-
tures, and provides a better fit for the data than a constant
mean. We only need to learn the slope for each dimension
and an o↵set (denoted by µ` = (a, b), see next).

3.4.3 Learning hyper-parameters
This section describe the step 7 in Algorithm 1. Due to the

heavy computation of the learning, this process is computed
only every Nl iterations. For learning the hyper-parameters
of the kernel and also the prior mean functions (cf. Sections
3.4.1 and 3.4.2), we maximize the marginal likelihood [34,
5] of the observations S1

1:t. To do that, we train our GP
model (6) with S1

1:t . We optimize the marginal likelihood
using multi-started quasi-Newton hill-climbers [32]. For this
purpose, we use the o↵-the-shelf gpml library presented in
[32]. Using the multi-task kernel defined in (5), we learn
✓ := (✓t, ✓xx, µ`) that comprises the hyper-parameters of kt,
kxx (cf. (5)) and the mean function µ(·) (cf. Section 3.4.2).
The learning is performed iteratively resulting in a sequence
of priors with parameters ✓i for i = 1 . . . bN

max

N
`

c.

3.4.4 Observation noise
In Section 2.4, we have shown that such noise level can

be measured with a high confidence and the signal-to-noise
ratios shows that such noise is stationary. In (7), � represents
the noise of the selected point x. Typically this noise value
is not known. In TL4CO, we estimate the noise level by an
approximation. The query points can be assumed to be as
noisy as the observed data. In other words, we treat � as a
random variable and we calculate its expected value as:

� =
⌃T

j=1Ni�
2
i

⌃T
i=1Ni

(10)

where Ni are the number of observations from the ith dataset
and �2

i is the noise variance of the individual datasets.

3.5 Configuration selection criteria
TL4CO requires a selection criterion (step 8 in Algorithm

1) to decide the next configuration to measure. Intuitively,
we want to select the minimum response. This is done using
a utility function u : X ! R that determines xt+1 2 X,
should f(·) be evaluated next as:

xt+1 = argmax
x2X

u(x|M, S1
1:t) (11)

The selection criterion depends on the MTGP model M
solely through its predictive mean µt(xt) and variance �2

t (xt)
conditioned on observations S1

1:t. TL4CO uses the Lower
Confidence Bound (LCB) [24]:

uLCB(x|M, S1
1:t) = argmin

x2X
µt(x)� �t(x), (12)

where  is a exploitation-exploration parameter. For instance,
if we require to find a near optimal configuration we set a
low value to  to take the most out of the predictive mean.
However, if we are looking for a globally optimum one, we can
set a high value in order to skip local minima. Furthermore,
 can be adapted over time [22] to perform more explorations.
Figure 6 shows that in TL4CO,  can start with a relatively
higher value at the early iterations comparing to BO4CO
since the former provides a better estimate of mean and
therefore contains more information at the early stages.

TL4CO output. Once the Nmax di↵erent configurations of
the system under test are measured, the TL4CO algorithm
terminates. Finally, TL4CO produces the outputs including
the optimal configuration (step 14 in Algorithm 1) as well
as the learned MTGP model (step 15 in Algorithm 1). All
these information are versioned and stored in a performance
repository (cf. Figure 7) to be used in the future versions of
the system.

5

Configuration
Optimisation Tool

(TL4CO)

performance
repository

Monitoring

Deployment Service

Data Preparation

configuration
parameters

values

configuration
parameters

values

Experimental Suite

Testbed

Doc

Data Broker

Tester

experiment time
polling interval
previous versions

configuration
parameters

GP model

Kafka

Vn

V1 V2

System Under Test

historical
data

Workload
Generator

Technology Interface

St
or

m

C
as

sa
nd

ra

Sp
ar

k

0 20 40 60 80 100

Iteration

10
-6

10
-4

10
-2

10
0

10
2

10
4

A
b
s
o
lu

te
 E

rr
o
r

TL4CO

BO4CO

SA

GA

HILL

PS

Drift

(b) WC(3D)

(8 minutes each)
0 20 40 60 80 100

Iteration

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

A
b

s
o

lu
te

 E
rr

o
r

TL4CO

BO4CO

SA

GA

HILL

PS

Drift (a) WC(5D)

(8 minutes each)

- 30 runs, report average performance
- Yes, we did full factorial
measurements and we know where
global min is… J

0 50 100 150 200

Iteration

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

A
b
s
o
lu

te
 E

rr
o
r

TL4CO

BO4CO

SA

GA

HILL

PS

Drift

(b) WC(6D)

(8 minutes each)

0 50 100 150 200

Iteration

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

A
b

s
o

lu
te

 E
rr

o
r

TL4CO

BO4CO

SA

GA

HILL

PS

Drift

0 50 100 150 200

Iteration

10
-4

10
-2

10
0

10
2

10
4

A
b

s
o

lu
te

 E
rr

o
r

TL4CO

BO4CO

SA

GA

HILL

PS

Drift

(a) SOL(6D) (b) RS(6D)

(8 minutes each)(8 minutes each)

0 500 1000 1500
Throughput (ops/sec)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
g

e
 r

e
a

d
 la

te
n

cy
 (
µ

s)

×104

TL4CO
BO4CO

BO4CO after
20 iterations TL4CO after

20 iterations

TL4CO after
100 iterations

0 500 1000 1500
Throughput (ops/sec)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
g

e
 w

ri
te

 la
te

n
cy

 (
µ

s)

TL4CO
BO4CO

Default configuration

Configuration
recommended

 by expert
TL4CO after

100 iterations

BO4CO after
100 iterations

Default configuration

Configuration
recommended

 by expert

TL4CO polyfit1 polyfit2 polyfit3 polyfit4 polyfit5

10-12

10-10

10-8

10-6

10-4

10-2

100

102

A
b

so
lu

te
 P

e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

TL4CO BO4CO M5Tree R-Tree M5Rules MARS PRIM

10-2

10-1

100

101

102

A
b

so
lu

te
 P

e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

Ab
so

lu
te

 P
er

ce
nt

ag
e

Er
ro

r [
%

]

0 20 40 60 80 100
Iteration

10-4

10-3

10-2

10-1

100

101

P
re

d
ic

tio
n

 E
rr

o
r

(R
M

S
E

)

T=2,m=100
T=2,m=200
T=2,m=300
T=3,m=100

0 20 40 60 80 100
Iteration

10-4

10-3

10-2

10-1

100

101

P
re

d
ic

tio
n
 E

rr
o
r

(R
M

S
E

)

TL4CO
polyfit1
polyfit2
polyfit4
polyfit5
M5Tree
M5Rules
PRIM (a) (b)

0 20 40 60 80 100
Iteration

0

1

2

3

4

5

6

7

8

9

10

E
n
tr

o
p
y

T=1(BO4CO)
T=2,m=100
T=2,m=200
T=2,m=300
T=2,m=400
T=3,m=100

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

E
n
tr

o
p
y

BO4CO
TL4CO

En
tro

py

Iteration

Branin Hartmann WC(3D) SOL(6D) WC(5D)Dixon WC(6D) RS(6D) cass-20

0 20 40 60 80 100
Iteration (10 minutes each)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

A
b
so

lu
te

 E
rr

o
r

(m
s)

TL4CO(ARD on)
TL4CO(ARD off)

0 20 40 60 80 100
Iteration (10 minutes each)

10-3

10-2

10-1

100

101

A
b
so

lu
te

 E
rr

o
r

(m
s)

TL4CO(ARD on)
TL4CO(ARD off)

Iteration Iteration
(a) (b)

Figure 5. Three di↵erent 1D (1-dimensional) response func-
tions are to be minimized. Further samples are available all
over two of them, whereas function (1) that is under test has
only few sparse observations. Merely using these few samples
would result in poor (uninformative) predictions of the func-
tion especially in the areas where there is no observations.
Using the correlation with the other two functions enables
the MTGP model to provide more accurate predictions and
as a result locating the optimum more quickly.

3.3 Filtering out irrelevant data
Here is described how the selection of the points in the

previous system is made. The number of historical observa-
tions taken in consideration is important because a↵ect the
computational requirements, due to the matrix inversion in
(6) incurs a cubic cost (shown in Section 4.6). TL4CO selects
(step 3 in Algorithm 1) points with the lowest entropy value.
Entropy reduction is computed as the log of the ratio of the
posterior uncertainty given an observation xi,j belonging to
version j, to its uncertainty without it:

Iij = log
⇣v(x|X,xi,j)

v(x|X)

⌘
, (8)

where v(x|X) is the posterior uncertainty of the prediction
from MTGP model of query point x obtained in (7).

3.4 Model fitting in TL4CO
In this section, we provide some practical considerations

and the extensions we made to the MTGP framework to
make it applicable for configuration optimization.

3.4.1 Kernel function
We implemented the following kernel function to support

integer and categorical variables (cf. Section 2.1):

kxx(xi,xj) = exp(⌃d
`=1(�✓`�(xi 6= xj))), (9)

where d is the number of dimensions (i.e., the number of
configuration parameters), ✓` adjust the scales along the
function dimensions and � is a function gives the distance
between two categorical variables using Kronecker delta [20,
34]. TL4CO uses di↵erent scales {✓`, ` = 1 . . . d} on di↵erent
dimensions as suggested in [41, 34], this technique is called
Automatic Relevance Determination (ARD). After learning
the hyper-parameters (step 7 in Algorithm 1), if the `-th
dimension (parameter) turns out be irrelevant, so the ✓`
will be a small value, and therefore, will be automatically
discarded. This is particularly helpful in high dimensional
spaces, where it is di�cult to find the optimal configuration.

3.4.2 Prior mean function
While the kernel controls the structure of the estimated

function, the prior mean µ(x) : X ! R provides a possible
o↵set for our estimation. By default, this function is set to a
constant µ(x) := µ, which is inferred from the observations
[34]. However, the prior mean function is a way of incorpo-
rating the expert knowledge, if it is available, then we can
use this knowledge. Fortunately, we have collected extensive
experimental measurements and based on our datasets (cf.
Table 3), we observed that typically, for Big Data systems,
there is a significant distance between the minimum and the
maximum of each function (cf. Figure 2). Therefore, a linear
mean function µ(x) := ax+ b, allows for more flexible struc-
tures, and provides a better fit for the data than a constant
mean. We only need to learn the slope for each dimension
and an o↵set (denoted by µ` = (a, b), see next).

3.4.3 Learning hyper-parameters
This section describe the step 7 in Algorithm 1. Due to the

heavy computation of the learning, this process is computed
only every Nl iterations. For learning the hyper-parameters
of the kernel and also the prior mean functions (cf. Sections
3.4.1 and 3.4.2), we maximize the marginal likelihood [34,
5] of the observations S1

1:t. To do that, we train our GP
model (6) with S1

1:t . We optimize the marginal likelihood
using multi-started quasi-Newton hill-climbers [32]. For this
purpose, we use the o↵-the-shelf gpml library presented in
[32]. Using the multi-task kernel defined in (5), we learn
✓ := (✓t, ✓xx, µ`) that comprises the hyper-parameters of kt,
kxx (cf. (5)) and the mean function µ(·) (cf. Section 3.4.2).
The learning is performed iteratively resulting in a sequence
of priors with parameters ✓i for i = 1 . . . bN

max

N
`

c.

3.4.4 Observation noise
In Section 2.4, we have shown that such noise level can

be measured with a high confidence and the signal-to-noise
ratios shows that such noise is stationary. In (7), � represents
the noise of the selected point x. Typically this noise value
is not known. In TL4CO, we estimate the noise level by an
approximation. The query points can be assumed to be as
noisy as the observed data. In other words, we treat � as a
random variable and we calculate its expected value as:

� =
⌃T

j=1Ni�
2
i

⌃T
i=1Ni

(10)

where Ni are the number of observations from the ith dataset
and �2

i is the noise variance of the individual datasets.

3.5 Configuration selection criteria
TL4CO requires a selection criterion (step 8 in Algorithm

1) to decide the next configuration to measure. Intuitively,
we want to select the minimum response. This is done using
a utility function u : X ! R that determines xt+1 2 X,
should f(·) be evaluated next as:

xt+1 = argmax
x2X

u(x|M, S1
1:t) (11)

The selection criterion depends on the MTGP model M
solely through its predictive mean µt(xt) and variance �2

t (xt)
conditioned on observations S1

1:t. TL4CO uses the Lower
Confidence Bound (LCB) [24]:

uLCB(x|M, S1
1:t) = argmin

x2X
µt(x)� �t(x), (12)

where  is a exploitation-exploration parameter. For instance,
if we require to find a near optimal configuration we set a
low value to  to take the most out of the predictive mean.
However, if we are looking for a globally optimum one, we can
set a high value in order to skip local minima. Furthermore,
 can be adapted over time [22] to perform more explorations.
Figure 6 shows that in TL4CO,  can start with a relatively
higher value at the early iterations comparing to BO4CO
since the former provides a better estimate of mean and
therefore contains more information at the early stages.

TL4CO output. Once the Nmax di↵erent configurations of
the system under test are measured, the TL4CO algorithm
terminates. Finally, TL4CO produces the outputs including
the optimal configuration (step 14 in Algorithm 1) as well
as the learned MTGP model (step 15 in Algorithm 1). All
these information are versioned and stored in a performance
repository (cf. Figure 7) to be used in the future versions of
the system.

5

0 20 40 60 80 100
Iteration

10-6

10-5

10-4

10-3

10-2

10-1

100

101

A
b
so

lu
te

 E
rr

o
r

TL4CO [f(x)+randn×f(x)]
TL4CO [f(x)+2randn×f(x)]
BO4CO

0 20 40 60 80 100
Iteration

0.15

0.2

0.25

0.3

0.35

0.4

E
la

p
se

d
 T

im
e

 (
s)

WordCount (3D)
WordCount (6D)
SOL (6D)
RollingSort (6D)
WordCount (5D)

T=2,m=100 T=2,m=200 T=2,m=400 T=3,m=100 T=3,m=200

0.5

1

1.5

2

2.5

3

3.5

4

E
la

p
se

d
 T

im
e

 (
s)

(a) TL4CO runtime for different datasets (b) TL4CO runtime for different size of observations

Acknowledgement: BO4CO and TL4CO are now integrated with
other DevOps tools in the delivery pipeline for Big Data in H2020
DICE project (http://www.dice-h2020.eu/)

Big	Data	Technologies

Cloud	(Priv/Pub)
`

DICE	IDE

Profile

Plugins

Sim Ver Opt

DPIM

DTSM

DDSM																			TOSCAMethodology

Deploy Config Test

M
o
n

Anomaly
Trace

Iter.	Enh.

Data	Intensive	Application	(DIA)

Cont.Int. Fault	Inj.

WP4

WP3

WP2

WP5

WP1 WP6	- Demonstrators

Tool Demo: http://www.slideshare.net/pooyanjamshidi/configuration-optimization-tool

