
Jeff Kramer
Imperial College London

Whither
Software Architecture?

�件架�之何去何从 software architecture

“A software system’s architecture is the set
of principal design decisions made during its
development and any subsequent
evolution.” (Taylor,Medvidovic,Dashofy 2010)

“The software architecture of a system is the
set of structures needed to reason about the
system, which comprise software elements,
relations among them, and properties of
both.” (SEI 2010)

Image: Tina Phillips / FreeDigitalPhotos.net

“... software architecture is a set of
architectural (or, if you will, design) elements
that have a particular form.” (Perry,Wolf 1992)

lots and lots and lots of
definitions

lots and lots and lots of
publications and books

almost 30 years of
research and ...

how did we get here?

impact?

where are we going?

Whither software architecture

a “soap opera” based on
my personal research

experience

unintentional stepping on toes

my formative project

CONIC -
“configuration
programming”

the CONIC project

Computer Control & Monitoring
of underground systems in coal mining.

The investigators:

Guess Who and Morris Sloman

The research assistant:

Jeff Magee

coal mines

Underground, coal mines consist of a number of interacting
subsystems:
✦ coal cutting
✦ transport
✦ ventilation
✦ drainage
✦ …

 ... changes
as the mine
topography
changes.

requirements elicitation
➡ complex

large number of interconnected devices, sensors,
actuators, controllers, ...

➡ highly distributed
over the mine site, both
above and below ground

➡ evolving
new coal faces open,
old faces close

➡ robust
against failures

Software structure should
mirror the physical mine

engineering distributed software

 Information Hiding
! Encapsulation of design behind an interface

David Parnas, CACM, 1972

 Abstraction
! Programming-in-the-small Vs

Programming-in-the-large
deRemer and Kron, TSE 1975

 Composition
! “Having divided to conquer,

we must reunite to rule”
! ! Michael Jackson, CompEuro 1990

1. distributable components

methane
level

cmd

enable

PUMP_CONTROL

Key property of context independence
 communication via a well-defined interface.
 supports third party instantiation and binding
 reuse

• input and output ports
(indirection)

• parameterised
component types

2. interaction

unidirectional

asynchronous

bidirectional

rendezvous

sender receiver

transparent
local/remote
communication.

3. configuration (static)

Separate explicit description of the structure of the
system in terms of the composition of component instances
and connections (ie. third party instantiation and binding).

Hierarchical
composition
helps to

hide
complexity.methane

level
cmd

enable
PUMP_CONTROL

cmd

PUMP

level

WATER

OPERATOR
enable

methane

SENSOR

log

PUMPSTATION

evolved structural
 description

change
script

system

Compile,
build and

deploy

evolved system

change
script

TSE 1985

structural
 description

“configuration programming”

3. configuration (... & dynamic) CONIC

 Reusable components
The control software for a particular coal mine
could be assembled from a set of components.

 On-line change
Once installed, the software could be dynamically
modified without stopping the entire system to
deal with new coalfaces.

Research team:

Naranker DulayKevin Twidle Keng Ng

The Iron Lady effect!

TSE 1989

CONICCONIC

However

Wider application than coal mining.

Distributed worldwide to academic
and industrial research institutions.

Exciting and a lot of fun

CONIC was not general

 was programming language
dependent (Pascal)

 had fixed communications
primitives

 had simple single message
interfaces for bindings

 Structural view provides a
useful level of abstraction.

 Component types have one or more
interfaces. An interface is simply a set
of names provided or required by the
component, referring to actions in a
specification or services in an
implementation.

Darwin - a general purpose ADL

Component

Composite Component

ESEC/FSE 1995, FSE 1996

 Systems / composite component
types are composed hierarchically
by component instantiation and
interface binding.

Too
l su

ppo
rt

grap
hical

 design and softw
are

 sys
tem

generat
ion, deployment, a

s w
ell as

 ...

... associated Modelling support

... compositional reasoning using
model checking

model component behaviour
 compose behaviours using the

same structural information as
the software architecture

Process Calculus - FSP

PUMP = STOPPED,
STOPPED = (cmd.start -> STARTED),
STARTED = (pump -> STARTED
 | cmd.stop -> STOPPED
).

||PUMP_CONTROL =(c:CONTROL || p:PUMP)
 /{c.cmd/p.cmd,

 level/c.level,
 pump/p.pump}.

component
behaviour

model
architecture

level cmd
CONTROL

cmd
PUMP

pump

Analysis - LTSA

fluent RUNNING = <start,stop>
fluent METHANE = <methane.high, methane.low>

assert SAFE = [](tick->(METHANE -> !RUNNING))

ESEC/FSE 2005

... in collaboration as always …

Shing-Chi Cheung
- LTS, CRA & Safety

ICSE 1996, FSE 1999, ICSE 2000, ESEC/FSE
2003, ESEC/FSE 2005, and Wiley 1999 & 2006

Nat Pryce
 - Animation

Dimitra Giannakopoulou
- Liveness & Fluent LTL

Jeff Magee Emmanuel Letier
- AFLTL

Sebastian Uchitel
- Synthesis

connector wars

pragmatists Vs purists?

Component Component
Connector

connector wars

Component
as a

“Connector”

pragm
atists

Component Component
Vs purists

connector wars

pragmatists Vs purists?

impact?

Image: Salvatore Vuono / FreeDigitalPhotos.net

Koala

In the ARES project
Rob van Ommering saw potential of

Darwin in specifying television
product architectures and

developed Koala, based on Darwin,
for Philips.

Computer 2000

First large-scale industrial application of an ADL.

Koala - example Success?

... and is still
in use.

But ...

Koala

Not more widely adopted, even in Philips!

• ... despite right level of abstraction
• ... despite compiler + code generation
• ... despite support for diversity

WHY???

not invented elsewhere!“not invented elsewhere”

Is Koala the only ADL in use?

ROOM
MetaH
AADL
UNICON
WRIGHT
ACME
Rapide
C2
xADL
ArchJava
SADL
UML2?
...

ROOM
MetaH
AADL
UNICON
WRIGHT
ACME
Rapide
C2
xADL
ArchJava
SADL
UML2?
...

ADLs have not been widely adopted!

“ All hat and no cattle! ”

ADL

Disappointed
but not
downhearted
...

Architecture research is a success

• qualitative aspects
• reviews/style guides
• architectural patterns
• provides and requires
• UML2
• modelling and analysis

The abstractions pioneered in software
architecture research have actually been
very influential.

Garlan and Shaw
(ESEC/FSE 2011)

Why were ADLs not widely adopted?

Object-Oriented Programming
became mainstream!

• focus on class hierarchy
• implicit program structure
• implicit requires interfaces
• objects rather than components

ADL

components vs objects

benefits of a
component oriented
view are recognised

we can gain the
benefits even with
objects.

1998

2006

components from objects

provided
methods/services

required
methods/services

 component type as an OO class

 dependency injection (or inversion of control):
 “new” and connections are no longer in the

 component code
 supports 3rd party instantiation and binding

components from objects

public class Leaf
{
public int attribute = 5;
private Interface port1 =

 new Interface();
 {...Interface methods ...};
public Interface getPort1()
{ return port1(); }

private Interface port2;
public void setPort2(Interface i)
{ port2 = i; }

}

requires

provides

composite components

public class Composite
{
private Leaf a = new Leaf();
private Leaf b = new Leaf();
public Composite()
{ a.setPort2(b.getPort1()); }

public Interface getPortA()
{ return a.getPort1(); }

public void setPortB(Interface i)
{ b.setPort2(i); }

}

 a:Leaf b:Leaf

“connector”
provides
requires

instantiation

Permits separation of configuration from use

dependency injection

current EJB (CDI) - “... server-side component
architecture for Java”

Spring - ”... application development
framework for enterprise Java”

Guice - ...”lightweight dependency injection
framework for Java 5 and above”

Autofac - ... “IOC container for .NET
classes by treating them as components.

rays of hope for ADLs

 some current practice
in programming languages
and some application
domains

 research on change:

1. software maintenance
and evolution

2. adaptive software

1. ADLs for software evolution

add three basic constructs to a
Darwin-like ADL (Backbone) to
support arbitrary extension:
resemblance, replacement, strata

Evolve Tool uses UML2 graphical
notation

Andrew McVeigh

Jeff Magee

Change is intrinsic in the architecture definition

SAVCBS 2006, ICSE 2011

resemblance

A" newA"

add##
replace#######with#
delete#

delta&

resembles'

define new components as a delta from the structure of
one or more existing components (ie. reuse)

Shape
denotes
UUID

replacement

A’ globally
replaces A in

the
architecture.

A" A’"
replaces

evolution

add##
replace#######with#
delete#

delta&

combines resemblance and replacement

A" A’"
evolves&

stratum

 packages the definitions
 unit of ownership
 controls visibility

extension(

base(
depends&

include both strata
to give extended

system

include base stratum
to give original

system

decentralised development

Base’”'+''''''''''

Base'

Base”'+'Base’'+'

Developed'by'D'

Used'by'U'

Extended'by'X' Extended'by'Y'

+ conflict
detection

incremental extension properties

ALTER
Allows any possible extension even if unplanned

NO IMPACT
Others are not impacted by extensions they don’t want

DECENTRALIZED
Supports a fully decentralized environment

COMBINE
Extensions / upgrades can be combined, problems rectified

NO SOURCE
Works even without source code!

Evolve
design
tool

Backbone
ADL

ICSE demo 2011

Evolve demo

http://www.intrinsarc.com/evolve

conformance

“What are the prospects for showing
conformance between architecture and code?”

question posed by Garlan and Shaw
(ESEC/FSE 2011)

Generate it!
... and store it in the code
(“exoskeletal software”)

2. ADLs for adaptive software

from change in the form of

maintenance and
evolution

to

self-managed software
adaptation

MAPE cycle

a single feedback loop?

response times?

complexity?

Monitor

Analyse Plan

Execute

three layer architecture model

(planning)

(assembly)

(execution)

a separation of timescales and concerns
ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

Plan synthesis based on a
domain model and goals

Safe operation, including
during change (tranquility)

Decentralised component selection and
assembly by transitive closure on
components satisfying plan actions

generating the architecture

GoToTask

Motors Location

moveto(t)

Repository

Hardware

Motors

SkyCamera

Location

SLAM

Location

Camera
Unavailable,
network failure

Already instantiated

Webcam
Camera

generating revised plans

Plan revision
through model
revision using
observations
and
probabilistic
rule learning

Learning through
experience!

ICSE 2013

In conclusion... What does it all mean?
engineering distributed software

 Information Hiding
! Encapsulation of design behind an interface

David Parnas, CACM, 1972

 Abstraction
! Programming-in-the-small Vs

Programming-in-the-large
deRemer and Kron, TSE 1975

 Composition
! “Having divided to conquer,

we must reunite to rule”
! ! Michael Jackson, CompEuro 1990

CONIC research elements

1) distributable components

2) transparent local/remote communication

3) separate configuration description
(architecture)

4) construction and modification/evolution
(“configuration programming”)

Darwin - a general purpose ADL
 Component types have one or more

interfaces. An interface is simply a
set of names referring to actions in a
specification or services in an
implementation, provided or required
by the component.

 Systems / composite component
types are composed hierarchically by
component instantiation and interface
binding.

interfaces
Component

Composite Component

ESEC/FSE 1995, FSE 1996

Koala - example
ADLs have not been widely adopted!

“ All hat and no cattle! ”

ADL

dependency injection

public class Composite
{
private Leaf a = new Leaf();
private Leaf b = new Leaf();
public Composite()
{ a.setPort2(b.getPort1()); }
public Interface getPortA()
{ return a.getPort1(); }
public void setPortB(Interface i)
{ b.setPort2(i); }
}

Evolve
design tool

Backbone
ADL

ICSE demo 2011

Evolve demo
three layer architecture model

1. Planning
over abstract
domain

2. Assembly of
software
components
to execute
plans

3. Component
execution and
dynamic
configuration

a clear separation of concerns
ICSE FOSE ‘07

Previously on “Whither Software Architecture”

Architecture as an Abstraction

… the same architectural description can be used as the
structural framework to hang requirements, to compose

behaviours for analysis, to compose component
implementations for systems, ….

... there’s plenty of life left in this conceptual
body of research!

continuing research…

 partial component model synthesis from goals
and scenarios for architectural fragments,
➡ merge overlapping models,
➡ compose component models according to

the system architecture Sebastian
Uchitel

Dalal
Alrajeh

Alessandra
Russo

Axel van
LamsweerdeFSE 2004, ICSE 2009, ICSE 2012

 requirements elaboration
and revision using a
combination of model checking
and machine learning

a life of research
colleagues

serendipity

int
er

es
tin

g challenging

re
wa

rd
ing

fun

a life of collaborative research

ac
kn

ow
led

ge
me

nt

Jeff Kramer
Imperial College London

Whither
Software Architecture?

