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… the challenge of change …

environment E
goals G

capabilities I of the system x

…. to be aware of and monitor these 
sources of change

… the challenge of change …

    off-line  
software  
evolution

requirements analysis, 
design, implementation, 

redeployment …. 

run-time  
software  

adaptation

Off-line 
software 

evolution

… the challenge of change …

Run-time 
software 

adaptation

pre-planned change
(maintenance) unforeseen change

.. the challenge is to
automate and run on-line

 what is currently performed off-line!

Self-Managed Adaptive Systems

Adaptive full fat :  
self change in functionality and performance 
in response to unforeseen changes in the 
environment, goals and/or capabilities of the 
system

Adaptive light :  
self adjustment of runtime 
parameters in response to 
degraded performance or 
failure



Self-Managed Adaptive Systems

Disruptive  
change!

Self-Managed Adaptive Systems

…. the challenge of change …

to automate and run on-line what is 
currently off-line!

…being rigorous is essential!

Self-Managed Adaptive Systems

‘ ‘ ‘

change change changeadapt

E   - assumed environment behaviour
G  - requirements goals of system
I    - interface capabilities of the system x

… more formally …



Self-Managed Adaptive Systems

models @ runtime

… in an appropriate 
architecture 

 with a rich runtime 
environment

architecture is important

three layer architecture

ICSE FOSE ’07
a separation of concerns

1. Planning 
over abstract 
domain

2. Precomputed 
plans: 
component 
assembly and 
plan execution

3. Component 
execution and 
dynamic 
configuration

increasing latency and response time

CONIC and Darwin

  distributable, context-
independent components

 interaction via a well-
defined interface 

Component

Composite Component

dynamic change?

provided required

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996 

an explicit configuration 
description (ADL)

 third party instantiation 
and binding 



CONIC and Darwin

 on-line dynamic change

 once installed, the 
software could be 
dynamically modified 
without stopping the 
entire system

Composite Component

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996 

Composite Component

on-line dynamic change

How can we do this safely?

  load component type

  create/delete component instances

  bind/unbind component services

T 

a:T 

a 
b 

TSE 1985

How can we maintain configuration consistency 
and behaviour consistency 

during the change?

evolved structural 
  specification

change 
script

system

Compile, 
build and 

deploy

evolved system

change 
script

TSE 1985

structural 
  specification

configuration consistency

preserve    consistency

behaviour consistency

Separate the 
specification of 

configuration change 
from the component 
application behaviour.

The image 
cannot be 
displayed. PASSIVE ACTIVE 

bind 

unbind 

activate 
create 

delete 
passivate 

Component 
States 

Passive: the component services 
interactions, but does not initiate new 
ones i.e. acts to preserve consistency.

Quiescence : the component 
is passive and the environment 
is passive ie. no transactions 
will be initiated on it.

TSE 1990

General 
change model: 



safe configuration and 
reconfiguration of components

No components? use objects and dependency injection    

(inversion of control) for 3rd party instantiation and binding!

three layer architecture

1. Planning 
over abstract 
domain

2. Precomputed 
plans: 
component 
assembly and 
plan execution

3. Component 
execution and 
dynamic 
configuration

Safe operation, including during 
change (quiescence) 

ICSE FOSE ’07, SAVCBS 2007, SEAMS 2008

1. Planning 
over abstract 
domain

2. Precomputed 
plans: 
component 
assembly and 
plan execution

3. Component 
execution and 
dynamic 
configuration

ICSE FOSE ’07, SAVCBS 2007, SEAMS 2008

three layer architecture component assembly? 
plan execution? 



plan execution

... 
AT.loc1 && !LOADED  

 -> pickup 
AT.loc1 && LOADED   

 -> moveto.loc2 
AT.loc2 && LOADED   

 -> putdown 
AT.loc2 && !LOADED  

 -> moveto.loc1 
... 

condition-action rules 
over an alphabet of plan 
actions

Includes alternative paths to the 
goals if there are unpredicted 
environment changes

Reactive plans

plan execution

component assembly

Derive configurations by mapping plan actions 
to components : 

primitive plan actions (pickup, moveto,…) 
are associated with the provided 
services of components which the plan 
interpreter can call

elaborate and assemble components using 
dependencies (required services)

Mapping is a many to many relationship, providing alternatives

GoToTask

Motors Location

moveto

GoToTask

Motors Location

moveto(t)

Repository

Hardware

Motors

SkyCamera

Location

SLAM

Location

Camera
Already 

instantiated

Webcam
Camera

Unavailable, 
network failure

X

component assembly



adaptation demonstration

Adaptation 
may 
require 
component 
reselection 

or 
alternative 

plan 
selection

or
replanning

ICSE FOSE ’07, SEAMS 2008,  SEAMS 2011

Reactive plans with component selection and 
assembly by transitive closure on 

components satisfying plan actions

1. Planning 
over abstract 
domain

2. Precomputed 
plans: 
component 
assembly and 
plan execution

3. Component 
execution and 
dynamic 
configuration

three layer architecture

ICSE FOSE ’07, SEAMS 2008,  SEAMS 2011

1. Planning 
over abstract 
domain

2. Precomputed 
plans: 
component 
assembly and 
plan execution

3. Component 
execution and 
dynamic 
configuration

three layer architecture

model-based 
planning 

goal

build a model

synthesise a plan



…earlier modelling research… 

... model check properties using LTSA

 model component behaviour as LTS in FSP
 compose behaviours according to the 

software architecture configuration

ICSE ’96, TOSEM ’96, FSE ’97, ESEC/FSE ’99, book ’99/2006

plan (controller) synthesis

Consider a plan as a winning strategy in an infinite two player 
game between the environment E and the system x with 
interface I such that goal G is always satisfied no matter 
what the order of inputs from environment.

Goal G:  Linear Temporal Logic property

Environment 

|| composition 
of LTS 

E System 

synthesise x

xcontrols

inputs

interface I

Symbolic Controller Synthesis for Discrete and Timed Systems, Asarin, Maler & Pnueli, LNCS 999, 1995.

ltl_property SAFE4 =  
  [](closeGripper -> ALIGNED) 
ltl_property GETBALL =  
  [](alignBall -> X closeGripper) 
ltl_property PROGRESS =  
  [](openGripper -> X alignBall)

controller:- 
   !ALIGNED && !GRIPOPEN && !PICKEDUP  
   -> openGripper 

   !ALIGNED && GRIPOPEN && !PICKEDUP  
   -> alignBall 

   !ALIGNED && !GRIPOPEN && PICKEDUP  
   -> discardBall 

   ALIGNED && GRIPOPEN && !PICKEDUP  
   -> closeGripper

Environment model (as || LTS)

plan (controller) synthesis

Goal specification (as LTL properties)

Plan  
(as a controller)

plan (controller) synthesis



computing “winning” states

 By backward propagation of the error state -1 
for inputs from the environment:

input control control 
-1 -1 

By removal of the error state -1 
for controls from the controller:

input control control 
-1 -1 X

-1 
control 

-1 
input 

-1 
input 

-1 
control 

-1 
input 

-1 
input 

X

plan extraction

Reactive Plan computed from the control states S 
(with outgoing transition labelled with control)

input 

s 

s 
{fluents}

{fluents}

control

control

controller:- 
   !ALIGNED && !GRIPOPEN && !PICKEDUP  
   -> openGripper 

   !ALIGNED && GRIPOPEN && !PICKEDUP  
   -> alignBall 

   !ALIGNED && !GRIPOPEN && PICKEDUP  
   -> discardBall 

   ALIGNED && GRIPOPEN && !PICKEDUP  
   -> closeGripper

Label states with fluent values 
Fluents form the preconditions 

for the control actions.

ICSE FOSE ’07, SEAMS 2008,  SEAMS 2011

Plan synthesis based on an 
environment model and goals 
     

1. Planning 
over abstract 
domain

2. Precomputed 
plans: 
component 
assembly and 
plan execution

3. Component 
execution and 
dynamic 
configuration

three layer architecture three layer architecture realisation

ICSE FOSE ’07, SEAMS 2008,  SEAMS 2011

1. Planning 
over abstract 
domain

2. Precomputed 
plans: 
component 
assembly and 
plan execution

3. Component 
execution and 
dynamic 
configuration

assembler

plan interpreter

Backbone interpreter 
+ tranquility

domain model

goal planning
LTSA



three layer architecture realisation

ICSE FOSE ’07, SEAMS 2008,  SEAMS 2011

experience?

… mostly …

ICSE 2013 teaser demo

shortcomings provide the challenges 
for further research …  !



Multi-tier adaptation

realistic
weak assumptions  
and guarantees

idealised
strong assumptions  
and guarantees

Degraded  
Service

Enhanced 
Service

ICSE, 2014 : Hope for the best, plan for the worst…


0 0 0

j j j

n n n

ICSE FOSE ’07, SEAMS 2008,  SEAMS 2011

1. Planning 
over abstract 
domain

2. Precomputed 
plans: 
component 
assembly and 
plan execution

3. Component 
execution and 
dynamic 
configuration

three layer architecture

2. Precomputed 
plans: 

generating revised plans

ICSE 2013

domain model

goal planning

inference

log

execution 
traces

model 
updates

system 
designer

Plan revision 
through domain 
model revision 
using observations 
and probabilistic 
rule learning

Learning through 
experience!

Backbone interpreter 

Inference

log

Goal Model 
(System state + 
System Goals + 

Environment 
Assumptions)

Knowledge 
Repository

elaborating the three layer architecture

Goal Model 
(System state + 
System Goals + 

Environment 
Assumptions)



Rainbow

resolves the 
abstraction gap 

between system and 
architecture

Inference

log

Goal Model 
(System state + 
System Goals + 

Environment 
Assumptions)

Knowledge 
Repository

eventsstatus

Component 
Architecture

 commands

Strategy Enactor
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Logging Infrastructure

Effectors Probes

Ta
rg

et
 

Sy
st

em

Resource 
Discovery

elaborating the three layer architecture

Plasma

separate planners for 
application behaviour 
and  reconfiguration

Behaviour Problem Solver
Reconfiguration Problem 

Solver

Negotiation

eventsstatus

Component Architecture

reconfiguration
 commands

behaviour
commands

Behaviour 
Strategy Enactor

Reconfiguration 
Strategy Enactor

Strategy Strategy

Negotiation

Behaviour 
Problem Solver

Goal Model 
Manager

events

Inference

status

Component Architecture

reconfiguration
commands

Reconfiguration 
Problem Solver problem

strategy

strategy

problem

behaviour
commands

Behaviour 
Strategy Enactor

exception

Reconfiguration 
Strategy Enactor reconfigure

strategy strategyexception

log

Behaviour  
Strategy Manager

Reconfiguration 
Strategy Manager

strategies
exception

strategies
exception

configuration
negotiation

Goal Model 
(System state + 
System Goals + 

Environment 
Assumptions)
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Logging Infrastructure

K
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Effectors Probes

Ta
rg

et
  

Sy
st

em

Resource 
Discovery

MORPH 
architecture



Behaviour 
Problem Solver

Goal Model 
Manager

events

Inference

status

Component Architecture

reconfiguration
commands

Reconfiguration 
Problem Solver problem

strategy

strategy

problem

behaviour
commands

Behaviour 
Strategy Enactor

exception

Reconfiguration 
Strategy Enactor reconfigure

strategy strategyexception

log

Behaviour  
Strategy Manager

Reconfiguration 
Strategy Manager

strategies
exception

strategies
exception

configuration
negotiation

Goal Model 
(System state + 
System Goals + 

Environment 
Assumptions)
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Discovery

SEAMS’08

SEAMS’08

SEAMS’08

SEAMS’08 SEAMS’08SEAMS’08

SEAMS’11 TOSEM’13

ICSE’14

ICSE’14 ICSE’13b

ICSE’13 ICSE’13

ICSE’13

ICSE’13b

ICSE’13b

FM’12

ICSE’11

ICSE’14

MORPH 
architecture

our architectural vision

Provide a reference architecture 
which … 

accommodates specific 
research aspects more 
clearly

facilitates evaluation, 
validation and comparison 
of specific approaches

provides a pick-and-mix 
(plug-and-play) architecture

events 

Component Architecture 

commands 
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Enactor 
What if I need to change my controller at runtime?


Dynamic Controller Update

’ ’ ’ ’

Dynamic Controller Update

’ ’ ’ ’

G’ G 

E E’ I’I



Dynamic Controller Update

’ ’ ’ ’

G’ G 

E E’ 

Hot swap Reconfigure 
 

Stop Old Spec 
 

Start New Spec 
 

I’I

Error Handler 

I/O Handler 

G’ G T 

E E’ 

C 
C

Glossy 
painter 

Driller Dryer 

I

Driller 

I/O Handler 

G’ G T 

E E’ 

C 
C

Hot swap 

hotswap(Cu) 

Glossy 
painter 

Dryer 
Error Handler 

I

Driller 

I/O Handler 

G’ G T 

E E’ 

Hot swap 

Cu 

Glossy 
painter 

Dryer 
Error Handler 

I



Driller 

I/O Handler 

G’ G 

E E’ 

Hot swap 

Cu 

Glossy 
painter 

Dryer 

Production line empty 

Error Handler 

I

I/O Handler 

G’ G 

E E’ 

Hot swap 

Cu 

Stop Old Spec 
 

stopOldSpec 

Glossy 
painter 

Driller Dryer 

Production line empty 

Error Handler 

Safe state 
equivalent to 
quiescence!

I

G’ G 

E E’ 

Hot swap 

Cu 

Production line empty 

Reconfigure 
 

Stop Old 
Spec 

 

Stop Old Spec 
 

Matt 
painter 

Driller Dryer 
Varnisher 

Error Handler 

I/O Handler 

Safe state 
equivalent to 
quiescence!

I

G’ G 

E E’ 

Hot swap 

Cu 

Production line empty 

startNewSpec 

Reconfigure 
 

Stop Old Spec 
 

Matt 
painter 

Driller Dryer 
Varnisher 

Start New Spec 
 

Error Handler 

I/O Handler 

I



G’ G 

E E’ 

Hot swap 

Cu 

Reconfigure 
 

Stop Old Spec 
 

Production line empty 

Matt 
painter 

Driller Dryer 
Varnisher 

Start New Spec 
 

Error Handler 

I/O Handler 

I I’

Dynamic Controller Update

In general we 
need to tailor 
the transition 
properties T

G’ G 

E E’ 

 
Hot 

Swap 
 

Start 
New 
Spec 

 

Stop 
Old 

Spec 
 

Reconfigure 
 

I’I

In general we 
need to tailor 
the transition 
properties T

G’ G 

E E’ 

 
Hot 

Swap 
 

Start 
New 
Spec 

 

Stop 
Old 

Spec 
 

Reconfigure 
 

Dynamic Controller Update

I’I

G’ G 

E E’ 

 
Hot 

Swap 
 

Start 
New 
Spec 

 

Stop 
Old 

Spec 
 

Reconfigure 
 

Dynamic Controller Update

In general we 
need to tailor 
the transition 
properties T

I’I



In general we 
need to tailor 
the transition 
properties T

Dynamic Controller Update

T prescribes 
StopOldSpec 

StartNewSpec & 
Reconfigure

G’ G T  

E E’ 

Stop 
Old 

Spec 
 

 
Hot 

Swap 
 

Start 
New 
Spec 

 

Reconfigure 
 

I’I

Dynamic Controller Specification

• G holds until StopOldSpec 
• T holds 
• G’ holds after StartNewSpec  
•  If HotSwap then StartOldSpec, StartNewSpec and 

Reconfigure will occur 

G’ G T  

E E’ 

Stop 
Old 

Spec 
 

 
Hot 

Swap 
 

Start 
New 
Spec 

 

Reconfigure 
 

I’I

G’ G T  

E E’ 

Stop 
Old 

Spec 
 

 
Hot 

Swap 
 

Start 
New 
Spec 

 

Reconfigure 
 

Dynamic Controller Specification

I’I

Dynamic Controller Transition 

’ ’ ’ ’

Transition properties must be 
elicited



Dynamic Controller Hotswap

’ ’ ’ ’

xI

xI’ ’T

Enactor

xI

xI xI’ ’T
Enactor

xI

Dynamic Controller Hotswap

’ ’ ’ ’

•  General: Supports explicit transition 
requirements and reconfiguration 

•  Assured: System is guaranteed to reach an 
updatable state 

•  Correct: Transition requirements and new 
specification are guaranteed by construction 

•  Fully automated: We use controller synthesis 

Dynamic Controller Update in conclusion ...



collaborative teams

multidisciplinary

Daniel Sykes 

Alessandra Russo 

Will Heaven

Jeff Magee Sebastian Uchitel

Nicholas D’Ippolito

Victor Braberman

Katsumi Inoue
Andrew McVeigh

Dominico Corapi

Dalal  Alrajeh 

Axel van 
Lamsweerde

…. the challenges of change …

environment
goals

capabilities

…. to automate and run on-line what 
is currently off-line!

… need to use rigorous techniques and 
formal methods

Self-Managed Adaptive Systems

models @ 
runtime

and …

SEFM 

… an 
appropriate 
architecture 

a sound 
foundation 
and context 
for research.

Bliss


