SEFM 2017

... the challenge of change ...

Jeff Kramer

Imperial College London

... the challenge of change ...

Off-line Run-time
software software
evolution adaptation
pre-planned change

; unforeseen change
(maintenance) f g

.. the challenge is to
automate and run on-line
what is currently performed off-line!

... the challenge of change ...

environment E
goals G
capabilities | of the system x

....to be aware of and monitor these
sources of change

off-line run-time
software software
evolution adaptation

requirements analysis,
design, implementation,
redeployment

Self-Managed Adaptive Systems

Adaptive light :

self adjustment of runtime
parameters in response to
degraded performance or

failure)
Adaptive full fat: . p—
self change in functionality and performance g

t;%

-

in response to unforeseen changes in the
environment, goals and/or capabilities of the

- T
__,—/

Self-Managed =

Self-Managed Adaptive Systems

Disrvq:t'we
change!

... more formally ...

E - assumed environment behaviour
G - requirements goals of system
| - interface capabilities of the system x

change| adapt change

Self-Managed Adaptive Systems

models @ runtime

... in an appropriate
architecture
with a rich runtime
environment

three layer architecture

1. Planning
Goal over abstract

Management [] [&] domain
* Chang? Plans
I 2. P ted
Plan Request v pla;se::ompu -
Change P1 J P2 component
Management ; assembly and
* Ch angel Actions plan execution
I
Status *
ZomponoN! ‘ C1 H c2] i s
Control e

; < : configuration
increasing latency and response time

a separation of concerns
ICSE FOSE ‘07

architecture is important

CONIC and Darwin

B distributable, context-
independent components

Component O
provided O required
O

B interaction via a well-
defined interface

M an explicit configuration
description (ADL)

B third party instantiation
and binding

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996

CONIC and Darwin

B on-line dynamic change

Composite Component

B once installed, the
software could be
dynamically modified
without stopping the
entire system

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996

configuration consistency

structural evolved structural
specification specification

F
F

A

preserve @consistency

Compile, S
build and K- — ot
deploy

system evolved system

TSE 1985

on-line dynamic change

B load component type
B create/delete component instances

B bind/unbind component services

el
'—l

How can we do this safely?

How can we maintain configuration consistency
and behaviour consistency

during the change?
TSE 1985

behaviour consistency

- General
in Component change model:
States

activate

Separate the
specification of
configuration change
from the component
application behaviour.

Passive: the component services Quiescence : the component
interactions, but does not initiate new is passive and the environment
ones i.e. acts to preserve consistency. is passive ie. no transactions

will be initiated on it.
TSE 1990

safe configuration and

reconfiguration of components

three layer architecture

Goal
Management [| [& |
* Chang? Plans
' v
Plan Request
I\Cng::gzment P J P2
9 * Change Actions
|
I
Status *
Component
Control ‘ e =

ICSE FOSE ‘07, SAVCBS 2007, SEAMS 2008

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

Component
* Control

three layer architecture

1. Planning
Goal over abstract
Management [¢ | [& | domain
* Change Plans
|
| 2. Precomputed
Plan Request v plans: 5
Change P1 J P2 component
Management : assembly and
* Changti Actions 12 execution
|
Status +

3. Component
execution and
dynamic
configuration

Safe operation, including during
change (quiescence)

ICSE FOSE ‘07, SAVCBS 2007, SEAMS 2008

A

component assembly?
plan execution?

(IR
[11- Il li{” Mlé?mmr;l; IR

~

/L |
X e

plan execution

component assembly

Derive configurations by mapping plan actions
to components :

primitive plan actions (pickup, moveto,...) fHovota
are associated with the provided
services of components which the plan
interpreter can call O—0O

Motors Location
elaborate and assemble components using
dependencies (required services)

Mapping is a many to many relationship, providing alternatives

plan execution

Reactive plans

AT.locl && !LOADED

-> pickup condition-action rules
AT.locl && LOADED

-> moveto.loc2

over an alphabet of plan

AT.loc2 && LOADED actions
-> putdown

AT.loc2 && !'LOADED
-> moveto.locl

Includes alternative paths to the

goals if there are unpredicted \’.\.
: ./ /
environment changes o

component assembly

Location
Repository
Location
o ® @ Camera

Hardware Sk%era SLAM ﬁg/ﬂ Webcam
Camera

Already Unavailable,

instantiated network failure

adaptation demonstration

Adaptation
may
require
component
reselection

or

alternative
plan
selection

or

replanning

three layer architecture

=]
e | [& |
Change Plans
4 |

1. Planning
over abstract

domain

Goal
* Management

three layer architecture

Goal

Management [¢ | [& |
* Changcla Plans

Reactive plans with component selection and
* assembly by transitive closure on
components satisfying plan actions

' v
Status
Component
Control C1 C2

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

I
Plan Request

Change P1 J

P2

Management

v

Change Actions

Component
Control

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

2. Precomputed
plans:
component
assembly and
plan execution

synthesise a plan

model-based

3. Component
execution and
dynamic
configuration

planning

build a model

...earlier modelling research...

... model check properties using LTSA

ICSE '96, TOSEM '96, FSE '97, ESEC/FSE '99, book '99/2006

* model component behaviour as LTS in FSP

% compose behaviours according to the
software architecture configuration

plan (controller) synthesis

Environment model (as || LTS)

CONTROL openGripper opened alignBall aligned

closeGripper gripped discardPall

1tl_property SAFE4 =

[1 (closeGripper -> ALIGNED)
1tl property GETBALL =

[1 (alignBall -> X closeGripps

controller: -

'ALIGNED && !'GRIPOPEN && !PICKEDUP
-> openGripper

'ALIGNED && GRIPOPEN && !'PICKEDUP
-> alignBall

'ALIGNED && 'GRIPOPEN && PICKEDUP
-> discardBall

ALIGNED && GRIPOPEN && !PICKEDUP
-> closeGripper

1tl property PROGRESS =
[1 (openGripper -> X alignBall)

Plan

Goal specification (as LTL properties)

(as a controller)

plan (controller) synthesis

Consider a plan as a winning strategy in an infinite two player
game between the environment E and the system x with
interface | such that goal G is always satisfied no matter
what the order of inputs from environment.

interface |

; =
inputs ——
—

<—
<«—— controls X

PP T—

|| composition H '— synthesise x
i Fllx I & G y

Goal G: Linear Temporal Logic property

Symbolic Controller Synthesis for Discrete and Timed Systems, Asarin, Maler & Pnueli, LNCS 999, 1995.

plan (controller) synthesis

openGripper opened

alignBall

DOMAIN

{closeGripper, discardBall}

{alignBall, discardBall} closed
T~

computing “winning” states

[(AEFBIREG FES e SN RN P R N S I T S S N i A ST A e SR S S IR AR S NS R SR S N T A

By backward propagation of the error state -1
for inputs from the environment:

control
K 0 > control ﬂ

By removal of the error state -1
for controls from the controller:

three layer architecture

o R R G e s A G iR R R s S o G BN S B e B L p B 5 oo s SR # SO EE 7 P iSRRI AR

- Plan synthesis based on an 1. Planning
o0 environment model and goals ~ overabstract
Management domain
* Chang? Plans
I 2. Precomputed
Plan Request * plans: -
Change P1 J P2 component
Management ; assembly and
* Changel Actions plan execution
I
Status *
Component ‘] 3. Component
C1 Cc2 execution and
Control } { dvaania

configuration

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

plan extraction

B R R e A e R R I e G A s i S S S B B i i B G5 i e B R ST G S U RIEI

Reactive Plan computed from the control states S
(with outgoing transition labelled with control)

Label states with fluent values {fluents}
Fluents form the preconditions B

for the control actions. input

controller:- fl
uents —
'ALIGNED && !'GRIPOPEN && !PICKEDUP { } S

-> openGripper \

'ALIGNED && GRIPOPEN && !PICKEDUP
-> alignBall

'ALIGNED && !'GRIPOPEN && PICKEDUP
-> discardBall

ALIGNED && GRIPOPEN && !PICKEDUP
-> closeGripper

three layer architecture realisation

PR RS A it s o R e A AR B S, G B B e 8 S A B 5l i e B w DS GBI T LRI AR

domain model

1. Planning
Goal : LTSA over abstract
Management goal planning domain

Changle Plans

*

|
Plan Request *

2. Precomputed

Chan plans:
Sl plan interpreter component
Management assembly and
I
Status *
Component 3. Component
Control . execution and
Backbone interpreter dynamic

configuration

+ tranquility

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

three layer architecture realisation

S R R R B U B o T R S T R B R R B R e B B B i P A o B R R R R R e B

ICSE 2013 teaser demo

e — —

shortcomings provide the challenges
for further research ...

Multi-tier adaptation

: Enhanced
i . — strong assumptions .
idealised En I In = Gn i Service
g weak assumptions
P titic Eol l XT [0 ': GO and guarantees Degraded
Service
ICSE, 2014 : Hope for the best, plan for the worst...
generating revised plans S
}
system 1
designer
Plan revision domain model
through domain .
25 goal planning model
model revision updates

3 : Change Plans
using observations 4 |

S I
and probabilistic Plan Request v
rule learning P1 J P2

Change Actions

Learning through T i
experience! Status

execution
traces

Backbone interpreter

ICSE 2013

three layer architecture

Goal
Management [¢ | [& |
Change Plans
l
Change
Management
9 Change Actions
l
Component
Control c2

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

elaborating the three layer architecture

inference

Goal
Management [] [6]
* Changle Plans
' v
Plan Request
::n:zggzment P J P2
9 * Change Actions
|
|
Status +
Component
Control C1 C2

.
2l

Goal Model
(System state +
System Goals +

Environment

Assumptions)

Knowledge

Repository

Architecture layer

D

Rainbow

[
L

N Model
manager

= Types and
Tﬁgﬁﬂ-‘\moperﬁes

elaborating the three layer architecture

Strategies
and tactics
D Adaptation
executor
Operators
/
-

AN

Mappings

7 Translation infrastructure Z X

Resource
discovery

System layer

=E resolves the
abstraction gap
between system and
architecture

Executing system

Applcation Application Layer

Adaptation Layer

Plasma

Problem ADL Models ADL Tmeis
SRR [EelE Negotiation |
” - ADL Model Behaviour Problem Solver
& Parser
o
£5
| omain
g * Descrip separate pla ners for
= - . . 5
o Applicatidn PRHRERE Adaptation Planner appl icaticn B &lftaw lour
— uration
blem
Negotiatioh
onfig o Ana?ézer Action Behaviour
g o il) e Strategy Enactor
I NN A W
s O o)
2| v : T RERE T
g‘_ g i Collector :_Arch : Anzlyzer :_Action : Admin :
recmd&uratnor{ (sense) [state 7 (compute) 1 €9 4 behaviour
- I N AV clajeompuie) = 4 L__evel .
egmmands ;" T status T &/ commands
e e— @
B G . pommmm—m———— e
| | | Action 1
. Sensor | poman,| Executor ™ Req > _ Loader {control) _ 1
(sense) state 1 (compute) I;Aég’l"_.i Locker (control)

i
Goal 1
1] Goal Model 1
Management | G | | R | 1| (System state + |1
1 | System Goals +
* Changle Plans 1| Environment :
| Assumptions) |#
| * 1 '
Plan Request P '
Change :
P1 P2 .
Management : '
* Change Actions ;
1
I]
NI | '
> £ :]
8o 9 Strategy Enactor 1
$E :
[WIR]
s g commands\ status events d '
B C \ —/ ; e s ;
w \ Logging Infr: structﬂ(e ‘
: X Knowledge
(Effectcir:) (gesource H Probes ' Repository
» E iscovery
%9
L W
c 9
= U>)~ Component
Architecture
strategy problem
Se Reconfiguration Goal Model Behaviour
V) Problem Solver problem Manager strategy Problem Solver

Reconfiguration

Behaviour

Goal Model
(System state +

"

Component ArchiteeeaTe

? <+ <
2] Strategy Manager configuration Strategy Manager - System Goals +
“ s negotiation Environment
= 4 Assumptions) g’
exception strategy exception strategy r'y '§
a
2 <
2 4 P
3 § Reconfiguration | ¢ Behaviour §°
S Strategy Enactor reconfigure Strategy Enactor Inference 3
35 € « g
A ¥
reconfiguratio catus even ehaviour
commands commands
I}agglng Infrastruct})(e '_——> log
Effectors gesource Probes e
55 MORPH
oo O
s &
Ea),

architecture

strategy

our architectural vision

Reconfiguration
Problem Solver

Goal Model
Manager

Goal
Management

strategies

exception exceptiol

Provide a reference architecture

5 [CSET Goal Mode which ...
% E Reconfiguration Behaviour (System state +
§ ® Strategy Manager . Strategy Manager <+ System Goals + 2
a8 ‘;’225;;’;5;‘;” Environment accommodates specific
Assumptions) g‘
exception strategy exception strategy A E research as peCtS more
a
ﬂJ
53 : P clearly
g £ Reconfiguration | g ehaviour %“
23 Strategy Enactor - reconfi Strategy Enactor Inference 3
5 gure gy / 3
@ S " o .
& X P kS facilitates evaluation,
A
i even i
reconfiguratio s chaviour validation and comparison
commands commands

N —" A — o] of specific approaches
Y / ' :
B ‘3 B provides a pick-and-mix ’
Discoyag “
SEAMS'08 SEAMS08 SEAMS 08 M O RP H (plug-and-p|a)') architecture

> .
architecture

Target
System

Dynamic Controller Update

events

Dynamic Controller Update

EH.I[': (; E,H.”L"[’

8
Ii-
Stop Old Spec [Reconfigure } Start New Spec

painter
_ 1/0 Handler)

Hot swap

Hot swap

hotswap(C,)

Glossy
painter painter

_ 1/0 Handler J _ 1/0 Handler J

Production line empty
——

Production line empty
——

=
=

Hot swap Hot swap Stop Old Spec

Safe state
equivalent to
quiescence!

stopOldSpec

Glossy
painter

Glossy
painter

Hot swap Stop Old Spec | Reconfigure Hot swap Start New Spec

Safe state
equivalent to
quiescence!

Driller

Matt Varnisher Matt
painter

painter
_ 1/0 Handler) _ 1/0 Handler)

Varnisher

Production line empty
——

G)

Hot swap Start New Spec

Matt Varnisher
painter

_ 1/0 Handler)

Dynamic Controller Update

Dynamic Controller Update

1
Jeneral we
Hot Stop Start 'y yaitor
Swap Old New transition
Spec Spec perties T
G G’
[1 >
| | = >

Reconfigure

In general we
Hot Stop Start need tfo tailor
Swap Old New the transition
Spec Spec properties T
| b
I = >
Reconfigure
Dynamic Controller Update
In general we
Hot Start Stop need to tailor
S New Old the transition
P Spec Spec properties T
G * ¥
: — B
Reconfigure

Dynamic Controller Update Dynamic Controller Specification

In geesd St Start
Stop Start g wsb;:e F ol i
Hot Old N nea:t F : Swap Spec Spec
Swap EW | StaetNewSptio&
Spec Spec pRepanfigaseT : G B s e
I ; il 7 >
C | 1 G
l | - I > Reconfigure
[- | — >
* G holds until StopOldSpec
* T holds
Reconfigure - G’ holds after StartNewSpec
* If HotSwap then StartOldSpec, StartNewSpec and
Reconfigure will occur
Dynamic Controller Specification Dynamic Controller Transition
Stop Start
Hot old New
Swap Spec Spec
E & il Ly > Transition properties must be
' 7 B > elicited
Reconfigure

L]| []
| | 1] | 1] >
G W stopOldSpec

1. :
g g(startNewSpec = 0G’) E“-/I;[I: G E’“:E,[, = G
4.

O(hotSwap = (<OstopOldSpec A
Oreconfigure A\ OstartNewSpec))

Dynamic Controller Hotswap Dynamic Controller Hotswap

i il il > i il il >
Bler F G Plr e GO e ¢
Enactor ~ ~Enactor
X1 X/ Li\]/jj (X1
xi 7D X

Dynamic Controller Update in conclusion ...

General: Supports explicit transition
requirements and reconfiguration

Assured: System is guaranteed to reach an
updatable state

Correct: Transition requirements and new
specification are guaranteed by construction

Fully automated: \We use controller synthesis

Self-Managed Adaptive Systems

....the challenges of Ch&V\SE‘.

environment models @
goals time
capabilities Pl

....to automate and run on-line what
is currently off-line!

... need to use rigorous techniques and
formal methods

Bliss

L

... an
appropriate
architecture

a sound
foundation
and context

for research.

