
Jeff Kramer

Imperial College London

SEFM 2017

… the challenge of change …

environment E
goals G

capabilities I of the system x

…. to be aware of and monitor these
sources of change

… the challenge of change …

 off-line
software
evolution

requirements analysis,
design, implementation,

redeployment ….

run-time
software

adaptation

Off-line
software

evolution

… the challenge of change …

Run-time
software

adaptation

pre-planned change
(maintenance) unforeseen change

.. the challenge is to
automate and run on-line

 what is currently performed off-line!

Self-Managed Adaptive Systems

Adaptive full fat :
self change in functionality and performance
in response to unforeseen changes in the
environment, goals and/or capabilities of the
system

Adaptive light :
self adjustment of runtime
parameters in response to
degraded performance or
failure

Self-Managed Adaptive Systems

Disruptive
change!

Self-Managed Adaptive Systems

…. the challenge of change …

to automate and run on-line what is
currently off-line!

…being rigorous is essential!

Self-Managed Adaptive Systems

‘ ‘ ‘

change change changeadapt

E - assumed environment behaviour
G - requirements goals of system
I - interface capabilities of the system x

… more formally …

Self-Managed Adaptive Systems

models @ runtime

… in an appropriate
architecture

 with a rich runtime
environment

architecture is important

three layer architecture

ICSE FOSE ’07
a separation of concerns

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

increasing latency and response time

CONIC and Darwin

 distributable, context-
independent components

 interaction via a well-
defined interface

Component

Composite Component

dynamic change?

provided required

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996

an explicit configuration
description (ADL)

 third party instantiation
and binding

CONIC and Darwin

 on-line dynamic change

 once installed, the
software could be
dynamically modified
without stopping the
entire system

Composite Component

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996

Composite Component

on-line dynamic change

How can we do this safely?

 load component type

 create/delete component instances

 bind/unbind component services

T

a:T

a
b

TSE 1985

How can we maintain configuration consistency
and behaviour consistency

during the change?

evolved structural
 specification

change
script

system

Compile,
build and

deploy

evolved system

change
script

TSE 1985

structural
 specification

configuration consistency

preserve consistency

behaviour consistency

Separate the
specification of

configuration change
from the component
application behaviour.

The image
cannot be
displayed. PASSIVE ACTIVE

bind

unbind

activate
create

delete
passivate

Component
States

Passive: the component services
interactions, but does not initiate new
ones i.e. acts to preserve consistency.

Quiescence : the component
is passive and the environment
is passive ie. no transactions
will be initiated on it.

TSE 1990

General
change model:

safe configuration and
reconfiguration of components

No components? use objects and dependency injection

(inversion of control) for 3rd party instantiation and binding!

three layer architecture

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

Safe operation, including during
change (quiescence)

ICSE FOSE ’07, SAVCBS 2007, SEAMS 2008

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

ICSE FOSE ’07, SAVCBS 2007, SEAMS 2008

three layer architecture component assembly?
plan execution?

plan execution

...
AT.loc1 && !LOADED

 -> pickup
AT.loc1 && LOADED

 -> moveto.loc2
AT.loc2 && LOADED

 -> putdown
AT.loc2 && !LOADED

 -> moveto.loc1
...

condition-action rules
over an alphabet of plan
actions

Includes alternative paths to the
goals if there are unpredicted
environment changes

Reactive plans

plan execution

component assembly

Derive configurations by mapping plan actions
to components :

primitive plan actions (pickup, moveto,…)
are associated with the provided
services of components which the plan
interpreter can call

elaborate and assemble components using
dependencies (required services)

Mapping is a many to many relationship, providing alternatives

GoToTask

Motors Location

moveto

GoToTask

Motors Location

moveto(t)

Repository

Hardware

Motors

SkyCamera

Location

SLAM

Location

Camera
Already

instantiated

Webcam
Camera

Unavailable,
network failure

X

component assembly

adaptation demonstration

Adaptation
may
require
component
reselection

or
alternative

plan
selection

or
replanning

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

Reactive plans with component selection and
assembly by transitive closure on

components satisfying plan actions

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

three layer architecture

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

three layer architecture

model-based
planning

goal

build a model

synthesise a plan

…earlier modelling research…

... model check properties using LTSA

 model component behaviour as LTS in FSP
 compose behaviours according to the

software architecture configuration

ICSE ’96, TOSEM ’96, FSE ’97, ESEC/FSE ’99, book ’99/2006

plan (controller) synthesis

Consider a plan as a winning strategy in an infinite two player
game between the environment E and the system x with
interface I such that goal G is always satisfied no matter
what the order of inputs from environment.

Goal G: Linear Temporal Logic property

Environment

|| composition
of LTS

E System

synthesise x

xcontrols

inputs

interface I

Symbolic Controller Synthesis for Discrete and Timed Systems, Asarin, Maler & Pnueli, LNCS 999, 1995.

ltl_property SAFE4 =
 [](closeGripper -> ALIGNED)
ltl_property GETBALL =
 [](alignBall -> X closeGripper)
ltl_property PROGRESS =
 [](openGripper -> X alignBall)

controller:-
 !ALIGNED && !GRIPOPEN && !PICKEDUP
 -> openGripper

 !ALIGNED && GRIPOPEN && !PICKEDUP
 -> alignBall

 !ALIGNED && !GRIPOPEN && PICKEDUP
 -> discardBall

 ALIGNED && GRIPOPEN && !PICKEDUP
 -> closeGripper

Environment model (as || LTS)

plan (controller) synthesis

Goal specification (as LTL properties)

Plan
(as a controller)

plan (controller) synthesis

computing “winning” states

 By backward propagation of the error state -1
for inputs from the environment:

input control control
-1 -1

By removal of the error state -1
for controls from the controller:

input control control
-1 -1 X

-1
control

-1
input

-1
input

-1
control

-1
input

-1
input

X

plan extraction

Reactive Plan computed from the control states S
(with outgoing transition labelled with control)

input

s

s
{fluents}

{fluents}

control

control

controller:-
 !ALIGNED && !GRIPOPEN && !PICKEDUP
 -> openGripper

 !ALIGNED && GRIPOPEN && !PICKEDUP
 -> alignBall

 !ALIGNED && !GRIPOPEN && PICKEDUP
 -> discardBall

 ALIGNED && GRIPOPEN && !PICKEDUP
 -> closeGripper

Label states with fluent values
Fluents form the preconditions

for the control actions.

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

Plan synthesis based on an
environment model and goals

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

three layer architecture three layer architecture realisation

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

assembler

plan interpreter

Backbone interpreter
+ tranquility

domain model

goal planning
LTSA

three layer architecture realisation

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

experience?

… mostly …

ICSE 2013 teaser demo

shortcomings provide the challenges
for further research … !

Multi-tier adaptation

realistic
weak assumptions  
and guarantees

idealised
strong assumptions  
and guarantees

Degraded
Service

Enhanced
Service

ICSE, 2014 : Hope for the best, plan for the worst…

0 0 0

j j j

n n n

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

three layer architecture

2. Precomputed
plans:

generating revised plans

ICSE 2013

domain model

goal planning

inference

log

execution
traces

model
updates

system
designer

Plan revision
through domain
model revision
using observations
and probabilistic
rule learning

Learning through
experience!

Backbone interpreter

Inference

log

Goal Model
(System state +
System Goals +

Environment
Assumptions)

Knowledge
Repository

elaborating the three layer architecture

Goal Model
(System state +
System Goals +

Environment
Assumptions)

Rainbow

resolves the
abstraction gap

between system and
architecture

Inference

log

Goal Model
(System state +
System Goals +

Environment
Assumptions)

Knowledge
Repository

eventsstatus

Component
Architecture

 commands

Strategy Enactor

St
ra

te
gy

 E
na

ct
m

en
t

Logging Infrastructure

Effectors Probes

Ta
rg

et

Sy
st

em

Resource
Discovery

elaborating the three layer architecture

Plasma

separate planners for
application behaviour
and reconfiguration

Behaviour Problem Solver
Reconfiguration Problem

Solver

Negotiation

eventsstatus

Component Architecture

reconfiguration
 commands

behaviour
commands

Behaviour
Strategy Enactor

Reconfiguration 
Strategy Enactor

Strategy Strategy

Negotiation

Behaviour
Problem Solver

Goal Model
Manager

events

Inference

status

Component Architecture

reconfiguration
commands

Reconfiguration
Problem Solver problem

strategy

strategy

problem

behaviour
commands

Behaviour
Strategy Enactor

exception

Reconfiguration 
Strategy Enactor reconfigure

strategy strategyexception

log

Behaviour  
Strategy Manager

Reconfiguration
Strategy Manager

strategies
exception

strategies
exception

configuration
negotiation

Goal Model
(System state +
System Goals +

Environment
Assumptions)

G
oa

l
M

an
ag

em
en

t
St

ra
te

gy

M
an

ag
em

en
t

St
ra

te
gy

 E

na
ct

m
en

t

Logging Infrastructure

K
no

w
le

dg
e

R
ep

os
ito

ry

Effectors Probes

Ta
rg

et

Sy
st

em

Resource
Discovery

MORPH
architecture

Behaviour
Problem Solver

Goal Model
Manager

events

Inference

status

Component Architecture

reconfiguration
commands

Reconfiguration
Problem Solver problem

strategy

strategy

problem

behaviour
commands

Behaviour
Strategy Enactor

exception

Reconfiguration 
Strategy Enactor reconfigure

strategy strategyexception

log

Behaviour  
Strategy Manager

Reconfiguration
Strategy Manager

strategies
exception

strategies
exception

configuration
negotiation

Goal Model
(System state +
System Goals +

Environment
Assumptions)

G
oa

l
M

an
ag

em
en

t
St

ra
te

gy

M
an

ag
em

en
t

St
ra

te
gy

 E

na
ct

m
en

t

Logging Infrastructure

K
no

w
le

dg
e

R
ep

os
ito

ry

Effectors Probes

Ta
rg

et

Sy
st

em

Resource
Discovery

SEAMS’08

SEAMS’08

SEAMS’08

SEAMS’08 SEAMS’08SEAMS’08

SEAMS’11 TOSEM’13

ICSE’14

ICSE’14 ICSE’13b

ICSE’13 ICSE’13

ICSE’13

ICSE’13b

ICSE’13b

FM’12

ICSE’11

ICSE’14

MORPH
architecture

our architectural vision

Provide a reference architecture
which …

accommodates specific
research aspects more
clearly

facilitates evaluation,
validation and comparison
of specific approaches

provides a pick-and-mix
(plug-and-play) architecture

events

Component Architecture

commands

Ta
rg

et

S
ys

te
m

Enactor
What if I need to change my controller at runtime?

Dynamic Controller Update

’ ’ ’ ’

Dynamic Controller Update

’ ’ ’ ’

G’ G

E E’ I’I

Dynamic Controller Update

’ ’ ’ ’

G’ G

E E’

Hot swap Reconfigure

Stop Old Spec

Start New Spec

I’I

Error Handler

I/O Handler

G’ G T

E E’

C
C

Glossy
painter

Driller Dryer

I

Driller

I/O Handler

G’ G T

E E’

C
C

Hot swap

hotswap(Cu)

Glossy
painter

Dryer
Error Handler

I

Driller

I/O Handler

G’ G T

E E’

Hot swap

Cu

Glossy
painter

Dryer
Error Handler

I

Driller

I/O Handler

G’ G

E E’

Hot swap

Cu

Glossy
painter

Dryer

Production line empty

Error Handler

I

I/O Handler

G’ G

E E’

Hot swap

Cu

Stop Old Spec

stopOldSpec

Glossy
painter

Driller Dryer

Production line empty

Error Handler

Safe state
equivalent to
quiescence!

I

G’ G

E E’

Hot swap

Cu

Production line empty

Reconfigure

Stop Old
Spec

Stop Old Spec

Matt
painter

Driller Dryer
Varnisher

Error Handler

I/O Handler

Safe state
equivalent to
quiescence!

I

G’ G

E E’

Hot swap

Cu

Production line empty

startNewSpec

Reconfigure

Stop Old Spec

Matt
painter

Driller Dryer
Varnisher

Start New Spec

Error Handler

I/O Handler

I

G’ G

E E’

Hot swap

Cu

Reconfigure

Stop Old Spec

Production line empty

Matt
painter

Driller Dryer
Varnisher

Start New Spec

Error Handler

I/O Handler

I I’

Dynamic Controller Update

In general we
need to tailor
the transition
properties T

G’ G

E E’

Hot

Swap

Start
New
Spec

Stop
Old

Spec

Reconfigure

I’I

In general we
need to tailor
the transition
properties T

G’ G

E E’

Hot

Swap

Start
New
Spec

Stop
Old

Spec

Reconfigure

Dynamic Controller Update

I’I

G’ G

E E’

Hot

Swap

Start
New
Spec

Stop
Old

Spec

Reconfigure

Dynamic Controller Update

In general we
need to tailor
the transition
properties T

I’I

In general we
need to tailor
the transition
properties T

Dynamic Controller Update

T prescribes
StopOldSpec

StartNewSpec &
Reconfigure

G’ G T

E E’

Stop
Old

Spec

Hot

Swap

Start
New
Spec

Reconfigure

I’I

Dynamic Controller Specification

• G holds until StopOldSpec
• T holds
• G’ holds after StartNewSpec
•  If HotSwap then StartOldSpec, StartNewSpec and

Reconfigure will occur

G’ G T

E E’

Stop
Old

Spec

Hot

Swap

Start
New
Spec

Reconfigure

I’I

G’ G T

E E’

Stop
Old

Spec

Hot

Swap

Start
New
Spec

Reconfigure

Dynamic Controller Specification

I’I

Dynamic Controller Transition

’ ’ ’ ’

Transition properties must be
elicited

Dynamic Controller Hotswap

’ ’ ’ ’

xI

xI’ ’T

Enactor

xI

xI xI’ ’T
Enactor

xI

Dynamic Controller Hotswap

’ ’ ’ ’

•  General: Supports explicit transition
requirements and reconfiguration

•  Assured: System is guaranteed to reach an
updatable state

•  Correct: Transition requirements and new
specification are guaranteed by construction

•  Fully automated: We use controller synthesis

Dynamic Controller Update in conclusion ...

collaborative teams

multidisciplinary

Daniel Sykes

Alessandra Russo

Will Heaven

Jeff Magee Sebastian Uchitel

Nicholas D’Ippolito

Victor Braberman

Katsumi Inoue
Andrew McVeigh

Dominico Corapi

Dalal Alrajeh

Axel van
Lamsweerde

…. the challenges of change …

environment
goals

capabilities

…. to automate and run on-line what
is currently off-line!

… need to use rigorous techniques and
formal methods

Self-Managed Adaptive Systems

models @
runtime

and …

SEFM

… an
appropriate
architecture

a sound
foundation
and context
for research.

Bliss

