Adaptive and Self-Managed Systems

Adventures in Adaptation:

a software engineering playground!the challenge of change ...

to automate and run on-line what is
currently off-line!

Jeff Kramer

Imperial College London

Adaptive and Self-Managed Systems Adaptive and Self-Managed Systems

Adaptive light :
adjustment of runtime
parameters in response to
degraded performance or
failure

B inr &
Faa

Adaptive full fat:

changes in functionality and
performance in response to
changes in the environment
and/or goals

Adaptive and Self-Managed Systems

Goal
Management [G [¢ |
* Chang? Plans
' v
Plan Request
Ic\:n:z:g?ament P J &
9 * Change Actions
|
|
Status *
Component
Control c1 c2

ICSE FOSE ‘07

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

a software engineers’ playground

why this architecture?

how did we get here?

where are we going!?

MAPE cycle inspiration from robotics

1970’
|—> Analyse =9 Plan j
Monitor <@ Execute
1998 (Gat)
1. Planning
sensors ; effectors
a single feedback loop? el
response times? 3. component feedback control
complexity?
layering according to response times
three layer architecture ... some earlier research adventures ...

TD : decreasing statefullness and strategic planning

1. Planning
Goal over abstract

Management Fe] [e] domain
* Change Plans
|
I 2. Precomputed
Plan Request v e P
Change P1 J P2 component
Management - assembly and
* Ch angel Actions plan execution
|
Status *
Component 3. Component
Control C1 Cc2 execution and
dynamic
configuration

BU :increasing response time

a separation of concerns

ICSE FOSE ‘07

CONIC and Darwin

B distributable, context-
independent components

Component O
provided O required
O

B interaction via a well-
defined interface

M an explicit configuration
description (ADL)

B third party instantiation
and binding

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996
on-line dynamic change

B load component type
B create/delete component instances

B bind/unbind component services

How can we do this safely?

How can we maintain configuration consistency
and behaviour consistency

during the change!?
TSE 1985

CONIC and Darwin

Composite Component

B on-line dynamic change

B once installed, the
software could be
dynamically modified
without stopping the
entire system

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996

configuration consistency

structural evolved structural
specification specification

FFF chan

preserve @consistency

Complle S
build and — et
deploy

evolved system

system

TSE 1985

behaviour consistency

bind

activate

Component
States

Passive component services
interactions, but does not initiate
new ones i.e. acts to preserve
consistency.

General

change model:
Separate the
specification of
structural change
from the
component
application
behaviour.

Quiescent : passive and

no transactions will be
initiated on it (ie.

environment is passive)

TSE 1990
three layer architecture
1. Planning
Goal over abstract
Management Fe] [e] domain
* Chang? Plans
| 2. P ted
Plan Request v planrse:compu ;
e P1 J P2 component
Management - assembly and
* Changel Actions plan execution
|
Status *
Component Saf . including duri 3. Component
Control are operatlon, Including during execution and

change (quiescence)

ICSE FOSE ‘07, SAVCBS 2007, SEAMS 2008

dynamic
configuration

safe configuration and

reconfiguration of components

three layer architecture

Goal
Management g | | & |
* Changtl-) Plans
' v
Plan Request
* f\:n:?l:gzment P J P2
9 * Change Actions
|
|
Status *
Component
Control c1 c2

ICSE FOSE ‘07, SAVCBS 2007, SEAMS 2008

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

2

component assembly?
plan execution!?

plan execution

o Reactive plans
AT.locl && !'LOADED
-> pickup condition-action rules

AT.locl && LOADED
s moveto loa over an alphabet of plan

AT.loc2 && LOADED actions
-> putdown

AT.loc2 && !'LOADED
-> moveto.locl

Includes alternative paths to the
goa!s if there are unpredicted o—"
environment changes ./

plan execution

component assembly

Derive configurations by mapping plan
actions to components :

primitive plan actions (pickup, moveto,...)
are associated with the provided services

9f components which the plan GoToTask
interpreter can call ——e

Motors Location

moveto

elaborate and assemble components using
dependencies (required services)

Mapping is 2 many to many relationship, providing alternatives

component assembly

moveto(t) —— GoToTask
O O

Location
Repository
i Location
® ® Camera

Hardware Sk%era SLAM (%/'\A Webcam
Camera

Already Unavailable,

instantiated network failure

... other assembly adventures ...

Flashmob - distributed adaptive self-assembly

gossip algorithm

Exploiting NF preferences in architectural
adaptation for self-managed systems

component annotations and utility function
optimisation

SEAMS 2011, SAC 2010

adaptation demonstration

Adaptation
may require
component
reselection
or

alternative
plan selection
or

replanning

1. Planning
Goal over abstract

Management Fe] [e] domain
* Change Plans
|
. o 2. Precomputed
Decentralised component selection and plans:
iti component
* assembly by transitive closure'on PR
components satisfying plan actions plan execution
i M
Status *
Component 3. Component
dynamic
configuration

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

three layer architecture

Goal
Management [G [¢ |
* Changtl-) Plans
' v
Plan Request
:\::n:?lggzment P J P2
9 * Change Actions
|
|
Status *
Component
Control C1 c2

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract

domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

...earlier modelling adventures...

% compose behaviours according to the
software architecture configuration

... model check properties using LTSA

ICSE '96, TOSEM '96, FSE '97, ESEC/FSE '99, book '99/2006

* model component behaviour as LTS in FSP

%

/:/i(’ ". P

synthesise a plan

model-based

planning

.o build 2 model

plan (controller) synthesis

Consider a plan as a winning strategy in an infinite two player game
between the environment E and the system x with interface |
such that goal G is always satisfied no matter what the order of
inputs from environment.

interface |

; i
inputs ———
—_—

I
<«— controls X
PP S—

E ' l €T] ': G synthesise x

Goal G: Linear Temporal Logic property

|| composition
of LTS

Symbolic Controller Synthesis for Discrete and Timed Systems, Asarin, Maler & Pnueli, LNCS 999, 1995.

plan (controller) synthesis

Environment model (as || LTS)

CONTROL openGripper opened alignBall aligned

closeGripper gripped discardPall

discarded|

controller: -

1tl_property SAFE4 =
[1 (closeGripper -> ALIGNE
1tl_property GETBALL =

[1 (alignBall -> X closeGr|

'ALIGNED && !'GRIPOPEN && !PICKEDUP
-> openGripper

'ALIGNED && GRIPOPEN && !'PICKEDUP
-> alignBall

'ALIGNED && !'GRIPOPEN && PICKEDUP
-> discardBall

ALIGNED && GRIPOPEN && !PICKEDUP
-> closeGripper

1tl_property PROGRESS =

[1 (openGripper -> X alignBall)

Plan (as a controller)

Goal specification (as LTL properties)

plan extraction

Reactive Plan computed from set of control states S
(has outgoing transition labelled with control)

Label states with fluent values
Fluents form the preconditions
for the control actions.

{fluents}
) —>

input

controller:-

-> openGripper

-> alignBall

'ALIGNED && !'GRIPOPEN && !PICKEDUP

'ALIGNED && GRIPOPEN && !PICKEDUP

{fluents} s —

Y

Goal
* Management

computing “winning”’ states

By backward propagation of error state

for inputs:

... for controls:

. capal Q - _‘

N
corﬂ(Q control
-.. —

three layer architecture

Plan synthesis based on an

*

environment model and goals

Change Plans
|

|
Plan Request

v

Change 1 J P2
Management :
* Change Actions
l
|
Status *
Component
Control c1 c2

'ALIGNED && !'GRIPOPEN && PICKEDUP
-> discardBall

ALIGNED && GRIPOPEN && !PICKEDUP
-> closeGripper

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract

domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

three layer architecture realisation three layer architecture realisation

domain model 1. Planning
Goal LTSA over abstract

Management goal planning domain
* Changle Plans
| * 2. Precomputed
Plan Request plans:
Change plan interpreter SORpEHEIE
Management . assembly and
|
Status +
Component 3. Com_ponent
Control . execution and
211 Backbone interpreter dynamic
+ tranquility configuration
ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011 ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

T e W 3

R IRRSHES 0
ICSE 2013 teaser demo

Multi-tier adaptation

_ Enhanced
Sy " L strong assumptions A
idealised En T = Gn s Service
n
provided basis for further research ...
e weak assumptions
Pl EO fI;[O |: GO and guarantees Degraded
Service

ICSE, 2014 : Hope for the best, plan for the worst...

three layer architecture

\' : “V = 1. Planning
V " Goal over abstract
Management g | | & | domain
* Change Plans
|
| 2. Precomputed
Plan RE€quest v T P
Change P1 J P2 component
Management - assembly and
* Ch angel Actions plan execution
|
Status *
Component 3. Component
Control C1 C2 execution and
dynamic

configuration

ICSE FOSE ‘07, SEAMS 2008, SEAMS 2011

. . v
generating revised plans G
N
system s B
. designer
Plan revision domain model
through domain .
2 goal planning model
model revision updates
: 3 Change Plans
using observations T |
and probabilistic Plan Request v ,
rule learning P1 J P2
Change Actions
Learning through T | execution
e v traces
experience! Status

Backbone interpreter

ICSE 2013

our current vision

Provide a reference architecture which ...
accommodates specific research aspects more clearly
facilitates comparison of specific approaches

provides a pick-and-mix (plug-and-play) architecture

... an adventure playground
for software engineers!

elaborate the three layer architecture

:

Goal 1| GoalModel |,
S

Management [g | [& | : (Syysst:eenT e E

4 Chang<|a Plans E :::J::::::st) :

I 1

Plan Request *)

1

Change P1 J P2 '

Management - :

4 Change Actions !

| 1

I 1

Status * :

Component :

1

Control

Knowledge
Repository

Architecture layer

D

Strategies
and tactics

Rainbow

m Rules
1
v

D Adaptation
executor

oL Model <]
"7 manager

Operators

Types and
] %rope rties

Gl

Translation infrastructure Z &

i I
! Resource '
' | Effectors System API . Probes /
Q . \eovey] "

System layer

~< .-~ resolves the
Executing system abstraction gap
between system and
architecture

elaborating the three layer architecture

T
Goal 1 '
Goal Model 1
Management [| [& | 1| (System state +| 1
4 Change Plans Coreoa :
I | : Assumptions) |1
Plan Request * ! |
Change :
g P1 | | P2 :
Management : :
* Change Actions :
' :
E ;
8o g Strategy Enactor ”:"- 1
gt | e [
g g commands\ status \ events / : :
(%] IE 1 Loggi 1 -—/ """""" y
\ gging Infr. structb\e
: Knowledge
‘ Effectors) ‘ DRFsource H Probes) Repository
e E iIscovery
%g
£y
= U>)~ Component
Architecture
gl oy "|::m Plasma
Reconfig on Proble Negotiation
° - ADL iodei Behaviour Problem Solver
2 Parser
o
s
= g q omain
Cw© Descrip .
s separate appll ation and
o Applicatidn PISHREEE Strate
reconfiguration planners

OtlatIO
Ana?

d (compute y [Reg
Eessiste—

Behaviour

Strategy Enactor

5. ©
R I s : ITERRRREE! AT T AT :
H I S | ion | -
S8 i i Collector | acn Anzlyzer | Action | Admin :
n'dg dotiord (sensu) ™ state ™ Req g ! behavi
recgnfiguration 1 | (compute) |) ehaviour
(<] nd commands
c
=]
e et e
© FTTTTTTTTTTY Action TS T T T TTToo
. Sensor ! pomain X Executor T Req . _ Loader (control) |
Action r=-—-—"—-—-"———=——=—— 1
(sense) ! state : (compute) L Req _>,L Locker (control) |

Application Application Layer

Adaptation Layer

Plasma

Reconfiguration
Problem Solver

Goal
Management

problem

Goal Model
Manager

Problem ADL Models ADL Models
A
ADL Model ADL Model
Parser Parser
g .
c 2 omain
c : / Descrip! Description . .
g - separate appllcatlon and
< Application Planner Adaptation Planner .
reconfiguration planners
LMA n
'oblem
Collector Arch Analyzer | Action Admin
(sense) State” 7] (compute) Req (control)
c { e} O
23| W : |~ Adapiation CECPETT T
I 5 i Collector | arcn Analyzer |__Action__i Admin !
I | (sense) I state ye ™ Req (control) !
g - | sz L _(compute) 1 e
o S SRS
L =JE S N S
'% R . © . e ©
H | | Action !
% E' il Sensor :_DomainJ Executor T Req >, _ Loader (control) .
; Action (f——————-—-———-—---
g7 L b el M) Reg L Loker conro) |
strategy problem

Behaviour
Problem Solver

Goal Model

o
<
&E i
& §° Reconfiguration | o Behaviour _ (System state +
< >
g g Strategy Manager configuration Strategy Manager <« System Goals +
“ S negotiation Environment
b3 Assumptions) IS
2
exception l J strategy exception l lstrategy A 2
aQ
- U
3 4
8% 8 P
“’é g Reconfiguration < Behaviour %n
&] Strategy Enactor reconfigure Strategy Enactor / Inference E
[}
S
A X
reconfiguratiol atus even ehaviour
commands commands
Logglng Infrastructure ‘——) log

Target
_System

(Effectors) (Resource) (Probes)
Discovery

w

Component Ar:

in conclusion ...

the challenge of change

model revision in response to updates and change in the
environment

online Requirements Engineering in response to updates
and changes in goals (RE@runtime)

B automated support for diagnosis and
repair using a combination of model
checking and machine learning

B automated support for requirements
elaboration and obstacle analysis

ASE 2008, ICSE 2009, ICSE 2012, CACM 2015

Adaptive and Self-Managed Systems

.... the challenge of th&hge

to automate and run on-line what is
currently off-line!

Vision: architectural reference model

identify and accommodate specific research concerns,

facilitate comparisons between approaches, and

provide a framework for potential implementations
(plug-and-play)

2
]

... an adventure
playground for
software engineers!

.
- i strategy problem h h II
S [l SEAMS’11 ICSE™14 TOSEM’13 FM12 § C a en ’n case
3 i ; Reconfiguration Goal Model Behaviour : g
O g Problem Solver } problem Manager strategy \ Problem E,“ : stud’es
P SEAMS'08 |
. AV
strategies . strategies
exception exception B § A
E \ Goal Model
? £ Reconfiguration | ‘ Behaviour : (System state +
‘.E_. :éo .\ Strategy Manager |~ configuration "\ Strategy Manager | ¢ SyEste.m Goals +
§ =t negotiation i nvironment .
h 4 : Assumptions) g
exception strategy exception strategy 2 '§ .
| } H evaluation
- &
%9 P
g g Reconfiguration | o ehaviour | %"
S
5SS Strategy Enactor reconfigure Strategy Enactor H Inference 3 - A
ol s « g validation
i \ A
reconfiguratio catus even ehaviour
commands commands .
Logging Infrastructyte -————PIE CO m P ar I so n
Y N\ / I S

. ICSE'13 ;
ICSE"13 Resource |
N Probes
Discoyag H
SEAMS'08 SEAMS'08 SEAMS'08 ; M O R P H

architectu re

Target
System

Katsumi

xel van

msweerde

international cooperation and ...

a software
engineering
adventure
playground!

