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Real-time data processing

Deep neural networks (DNNs) increasingly used to deliver instant insights

G. Casale – Slide 2/31

         Industrial IoTAI traffic monitoring

Real-time sport analytics

Augmented reality for hospitality

AI-enabled financial trading



Quality-of-Service (QoS) in DNN-based Data Processing G. Casale – Slide 3/31

S. Bianco, et al. Benchmark Analysis of Representative Deep Neural Network Architectures, IEEE Access

Real-time 

• QoS tradeoffs: Performance-Accuracy-Reliability 

Loss

Periodic inference: DNN latency < time to next arrival

Event-driven inference: buffer losses!

Device RAM is full
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• DNN model tuning

– Weight pruning

– Quantization

– Knowledge distillation

– Lossy compression

– Neural Architecture Search (NAS)

• Adaptive DNN models

– How shall we leverage these capabilities for DNN inference serving?

D Liu, H Kong, X Luo, W Liu, R Subramaniam. Bringing AI To Edge: From Deep Learning’s Perspective. Neurocomputing.

Eshratifar, A. E., et al. BottleNet: A Deep Learning Architecture for Intelligent Mobile Cloud Computing Services, IEEE/ACM ISLPED.



2.   Extension: QoS tradeoffs in collaborative DNN inference

o     Predicting QoS in distributed DNN deployments 

  Scheduling early exits in distributed DNN deployments   

1. Controlling QoS tradeoffs in DNN-based data processing

 Early exits and their scheduling policies

Roadmap G. Casale – Slide 5/31
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Early exit DNN job scheduling

Joint work with:

Manuel Roveri

(Politecnico di 
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• Intermediate Classifiers (IC) produce an early classification avoiding "overthinking"

• Early exit is controlled by a confidence threshold for each EC      

Early exit in CNNs G. Casale – Slide 7/31

• Example – forcing exit at layer l:

IC disabled IC disabled

Early exit condition:

IC Threshold

IC IC IC

• IC thresholds trained with the CNN or decided post-training.

IC

Output classification

Confidence score



• How to schedule early exit online to control data loss?

Scheduling early exits for QoS G. Casale – Slide 8/31

Waiting bufferLoss

Casale, G., & Roveri, M. (2023). Scheduling Inputs in Early Exit Neural Networks. IEEE Transactions on Computers.

• Issue: difficult to predict accuracy and processing time for arbitrary threshold 

combinations

• Early exit scheduling problem: choose IC thresholds for each incoming job i

• QoS metrics: latency, accuracy, loss ratio (i.e., fraction of lost jobs).

Accuracy Al

Processing time pl



• Single-exit schedulers: restrict feasible threshold values to {0,1}

Accuracy in adaptive DNNs G. Casale – Slide 9/31

1.0 1.0 1.0
Accuracy: 84.3%

Latency: 138 × 106 MACs

0.9 1.0 1.0

Accuracy: 82.2%

     Latency: 56 × 106 MACs

Accuracy: 77.9%

Latency: 167 × 106 MACs

• Accuracy and latency change with the data distribution!

1.0 0.0

A2 (now profilable offline)

(25-layer CNN + CIFAR10)



• Knapsack-based policy:

– Similar to discrete scheduling with compressible resources (NP-hard)

Single-exit scheduling G. Casale – Slide 10/31

knapsack problem

Fit time budget

Schedule at most k jobs

Maximize accuracy

Num. jobs to exit at layer l

Time budget

k jobs in buffer

Accuracy A1, Processing time p1

A2, p2

A3, p3

A4, p4

0     1     2     ...

0-0.5

0.5-1
...

... ... ... ...

... ... ... ...

... ... ... ...

On-device lookup table
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• Queueing model based policy:

– DNN latency from steady-state M/GI/1/K queue

– Service seen as a mixture distribution (GI) based 

on exit layer probabilities

Loss ratio approximation

GI

Capacity K

• Optimal schedule obtained via a Linear Program (LP) 

– Maximize accuracy

– Constraint maximum loss ratio



• 6 CNNs (28-56 processing layers; 8-24 exit points; CIFAR10/100 data)

Simulation of real technological scenarios G. Casale – Slide 12/31
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• How to generalize the approach when offline profiling is not viable?

• AdaEE: multi-armed bandit (MAB) to schedule early exits

– Reward metric: Confidence gain - Performance overhead

• Driving early-exits with confidence gains

– Single-exit: <1s to update the policies

– Data-driven: Bayes optimization based

Extension: dealing with out-of-distribution data G. Casale – Slide 13/31

Upper Confidence Bound (UCB):

Exploitation Exploration

R. G. Pacheco et al. AdaEE: Adaptive Early-Exit DNN Inference Through Multi-Armed Bandits. ICC 2023.

Confidence gain

exit-last

exit-first

data-driven

knapsack

Loss ratio

A
c
cu

ra
cy

RPi 4B; 8 exit points; Poisson arrivals

ada-ee

queueing model
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1. Early-exit ICs a new control knob to dynamically tune QoS trade-offs

2. Knapsack based policy are highly robust

3. Queueing based policy highly effective to reduce latency (but under 

assumptions)

4. Confidence gain can help dealing with out-of-distribution data



Distributed early-exit optimization

Joint works with:

Zifeng Niu

(Imperial College

London, UK)

Yichong Chen

(Imperial College

London, UK)
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• Many DNN deployment models

– Fog, MEC, 3G/4G/5G/Wi-Fi/..., 

private vs public, Cloud-to-Edge, ...

• Common challenges and themes:

– Processing data closer to 

where it is generated

– QoS vs. resource constraints

DNNs & Resource Constraints

Data transfer latency vs. Local processing

Y. Kang et al. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge, Proceedings of ASPLOS.

G. Casale – Slide 16/31



State-of-the-art: DNN layer-wise partitioning G. Casale – Slide 17/31

• Ideal split point determined from layer characteristics

– Convolutional: large output data, Pooling: smaller output data; FC layers: high latency

– Prediction on processing time on target hardware obtained via regression

Y. Kang et al. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge, Proceedings of ASPLOS.

H. Liang et al. DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning, IEEE TCC 2023.

AlexNet

High transmission cost High processing cost

Ideal split point

• Many popular DNNs have a linear topology (chain)



• DNN placement is critical, e.g. IoT devices without on-air update

• State-of-the-art mainly relies on integer-linear programming (ILP)

– Binary variables map layers to edge & IoT nodes

– Constraints on memory, processing time, DNN layer dependencies, network range, ...

Designing a DNN-based data processing system G. Casale – Slide 18/31

S. Disabato, M. Roveri, C. Alippi. Distributed Deep Convolutional Neural Networks for the Internet of Things. IEEE TC, 2021.

No shared DNN layers Shared DNN layers

Edge node

Edge node

Edge node

Edge node

IoT deviceIoT device



• ILP models are appropriate for periodic workloads

• The same approach cannot easily capture stochastic arrivals 

Modelling data loss ratio Slide 19/31

Arv. rate 1

Arv. rate 2

700Mhz/4GB

1.5Ghz/8GB

Arv. rate 3

900Mhz/2GB

1.5GHz/2GB4GHz/16GB
Data Loss

Throughput 

QoS tradeoff prediction much 

harder than on a single device

Data Loss



Execution steps

DNN-based collaborative inference system as a graph Slide 20/31

• We focus on linear DNN pipelines (referred to as a service chain)

i-th service chain

service chain

fragment

device

placement

workflow



Example: a shared deployment with two DNN-based services G. Casale – Slide 21/31

Device3Device1

Device2

• DNN deployment described by heterogeneous graph

1xDNN layer

2xDNN layers2xDNN layers



Graph neural networks for QoS trade-off prediction G. Casale – Slide 22/31
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• GNN surrogates can address the problem

– Input features: system and workload parameters: arrival rates, RAM size, CPU GHz, …

– Output features performance metrics: throughputs, latencies, loss ratio, …

Embedding
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Update Update

Graph Isomorphism Network (GIN)
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• Modelling throughput in ChainNet

ChainNet GNN: predicting QoS in collaborative inference G. Casale – Slide 23/31
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• GNN surrogate trained on simulation and/or system data

– Input features: arrival rates, RAM size, CPU GHz, …

– Output features performance metrics: throughputs, latencies, loss ratio, …



ChainNet: results G. Casale – Slide 24/31

• 71% loss ratio reduction in real-world technological scenario

– 2×OrangePi Zero, 2×Raspberry Pi A+, and 1×Raspberry Pi 3A+

• Systematic reduction also visible in generalization tests via simulation

50000 training models 

10000 test models
Optimization-based search with GNNs
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• How can we generalize early-exit scheduling to the distributed setting?

• Jobs assigned upon arrival to a given path (chain) and coupled with (arbitrary) IC 

thresholds

Extending ChainNet for early-exit scheduling Slide 25/31

τ1

Early-exit

τ2

Early-Exit

Controller

(e.g., Gateway)

How to assign chains and IC 

thresholds to incoming jobs?



CEEN distributed early-exit scheduler G. Casale – Slide 26/31

• Maximize the accuracy of the early-exit DNN while minimizing the data loss

• Control policy:

- IC threshold configuration

- chain assignment probability

• EENN Predictor

- Decoder-only transformer

- Characterizes IC dependencies 

using empirical data

- Input: EENN thresholds

- Output: confidence scores 

and early exit frequencies

EENN Predictor

(Transformer)

CEED

Optimizer
Loss Ratio Predictor  

(GNN)

EENN Performance predictor



Loss Ratio Predictor with Early Exit G. Casale – Slide 27/31

• GNN that predicts throughput

and loss ratio 

– Extended version of ChainNet

• System seen as a queueing network

– Early-exit modelled as chain

– Considers blocking and CPU 

contention

• Memory constraints as limits on

queue buffer capacity

– Fixed-point use of ChainNet

FCR = Finite Capacity Region 

(modelling DRAM limits)



Evaluation G. Casale – Slide 28/31

• Multiple ReNet50 deployments, e.g., gateway only, near edge (NE) + far edge (FE)

• Baselines: AdaEE, Knapsack, Exit last

• Load factor = theoretical device utilization (1=100%) without job loss

• Similar results when results are considered for other EENNs (e.g., ResNet101)



Conclusion



Summary G. Casale – Slide 30/31

• We can recast early-exits as a mechanism to tune performance and reliability

• We can tailor GNNs to performance prediction tasks:

https://github.com/imperial-qore/ChainNet

• Early-exit scheduling in DNN-based distributed data processing

https://github.com/imperial-qore/ChainNet


Open challenges G. Casale – Slide 31/31

• Generalize early-exit approach to job priorities

• Generalize early-exit approach to cope with non-i.i.d. data and bursts

• Generalize scheduling for QoS to other types of adaptive DNNs

• Early-exit aware DNN topology adaptation and placement reconfiguration


	Default Section
	Slide 1
	Slide 2: Real-time data processing
	Slide 3: Quality-of-Service (QoS) in DNN-based Data Processing
	Slide 4: Model tuning and adaptive architectures
	Slide 5: Roadmap
	Slide 6: Early exit DNN job scheduling
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Distributed early-exit optimization
	Slide 16: DNNs & Resource Constraints
	Slide 17: State-of-the-art: DNN layer-wise partitioning
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Conclusion
	Slide 30
	Slide 31


