
Advanced Engineering of Microservices and Serverless Applications:
The RADON approach

2

RADON Consortium

• ICT-16-2018: Software
Technologies

• 30 months project (Jan
2019 - Jun 2021) –
8 organizations

3

• FaaS: function calls served from the cloud, event-driven paradigm
• Quick prototyping and demonstration without infrastructure management issues

• A way to reduce costs
• Fine-grained billing
• Automated deallocation

• Natural to combine with microservices-based architectures
• Fine-grained software architecture
• Automated autoscaling
• Flexibility and responsiveness
• High-degree of reuse of platform services

Serverless Function-as-a-Service

4

Some challenges

• How to deploy and update in continuous, DevOps
fashion, hybrid serverless-based applications?

• How to choose an optimal deployment configuration
respecting QoS?

• How to debug infrastructure code?
• How to best do testing and monitor outcomes? Stream

(data pipeline)

Legacy REST ServiceDocker
microservice

FaaS
function

Storage

5

Value proposition:

Offer an open source DevOps
framework to help the EU software
industry adopting serverless FaaS
without vendor lock-in

Tools at advanced state.

Open source releases.

RADON framework overview

6

RADON framework overview

Constraints Definition

Graphical Modelling

Verification Tool

Decomposition Tool

Defect Prediction

Continuous Testing Tool

TOSCA
Blueprint

Template Library

Orchestrator

CI/CD

Data-driven serverless
computing

Function Hub

Monitoring

Data Pipelines

RADON
IDE

7Graphical Modeling Tool

8

RADON: modelling for serverless FaaS

• Easy-to-use composition of functions, microservices, storage, VMs, …
• Reuse modular element to assemble complex applications

Graphical
Modeling Tool

(+ Blueprint Generation)

2

RADON
Models

1

Constraint
Definition Language

(+ Verification Tool)

3

9

tosca_definitions_version: tosca_simple_yaml_1_3
topology_template:
node_templates:
platform:
type: radon.nodes.aws.AwsPlatform
properties:

omitted for brevity
resize:
type: radon.nodes.aws.LambdaFunction
properties:
handler: index.handler
memory: 512

...
artifacts:
deployment_package:
file: thumbnail.zip
type: radon.artifacts.archive.Zip

requirements:
- host: platform

bucket:
type: radon.nodes.aws.S3Bucket
requirements:
- host: platform
- invoker:

node: resize
relationship: trigger

RADON Models

Handler: index.handler
Memory: 512 MB
[…]

resize
(LambdaFunction)

bucket
(S3Buckt)

F

S3:ObjectCreated:*E

Handler: index.handler
Memory: 512 MB
[…]

platform
(AwsPlatform)

Models automatically deployable
using the RADON orchestrator.

10

Commerce Slides

Quality Guardrails in RADON

Application Source Code

Infrastructure Code... ...

e.g., GDPR constraints

Presenter
Presentation Notes
3-4 slides; Why the tool is there and why it exists and how it flows methodologically;
ADD MORE ON THE RESULTS

11Continuous Testing

QoS
Engineer

11

CONTACT US

twitter.com/RADON_2020

linkedin.com/company/radon-2020/
https://github.com/radon-h2020/http://radon-h2020.eu/

13Demo 13

https://www.youtube.com/watch?v=xEjarBWcdK0

14Demo 14

https://www.youtube.com/watch?v=ZHD0t8HK7K0

15Demo 15

https://www.youtube.com/watch?v=35VN2edyvsc

16

RADON: optimization & decomposition trade -offs

• What is the optimal size for a service taking into account for constraints?
• How do we converge through development cycles towards an optimal architecture?
• How to model and predict QoS?

17Decomposition & Optimization

● LQN for the thumbnail
generation example
(simplified)

clients
(open workload)

create_thumbnail
(Lambda function)

thumbnails
(S3 bucket)

uploads
(S3 bucket)

● Optimization problem:
■ type: non-linear integer

programming (NLIP);
■ variables: memory and concurrency;
■ constraints: average response time

less than 2.5 sec
● Performance modeling:

■ benchmarking: service demand
estimation

■ formalism: layered queueing
networks (LQNs)

17

18T3.3: Continuous Testing

Results after Y1

●Design of continuous testing workflow, tool architecture, and integration;
● Support for modeling and executing selected test types (focus: performance tests)

● Initial research contributions on:
○ Tailored testing (MASCOTS 19);
○ Regression testing of microservices (accepted for ICPE 20);

●Application to RADON examples (SockShop and Thumbnail);
● Started interaction with use cases (ATC, PRQ) and tools (monitoring, CI/CD);

●Prototypes being made available as open-source:
● CTT server: https://github.com/radon-h2020/radon-ctt
● CTT agent: https://github.com/radon-h2020/radon-ctt-agent
● https://hub.docker.com/r/ustctt/

Presenter
Presentation Notes
3-4 slides; Why the tool is there and why it exists and how it flows methodologically;

https://github.com/radon-h2020/radon-ctt
https://github.com/radon-h2020/radon-ctt-agent
https://hub.docker.com/r/ustctt/

19

Commerce Slides

T3.4: Defect Prediction Tool
Why?

“Infrastructure-as-code (IaC) ⇒managing and provisioning
compute datacenters through machine-readable definition files”

Cit. TOSCA Simple Profile Yaml v1.3, CSD2

● As any other source code artifact , IaC files may contain defects that can preclude their correct functioning
and operations;

● The tool is intended for detecting defect -prone IaC blueprints at the end of a release cycle;

● Defect-Prediction SoTA from Dev. source-code is well-established in the use of Machine-Learning
techniques:
○ Scripts prone to contain imperfections or deficiencies cause themnot to meet their requirements or

specifications ;
○ Metrics identify such qualities , so that smells or bug-proneness can be detected and possibly repaired;

Application Source Code Infrastructure Code

... ...

DEV OPS

Presenter
Presentation Notes
3-4 slides; Why the tool is there and why it exists and how it flows methodologically;

20Continuous Testing Tool (CTT)

● Functionalities grouped into 3 usage scenarios:
i. Test case definition
ii. Test execution
iii.Test maintenance

● CTT modules
i. Microservices/FaaS
ii. Data pipelines

● Usage:
i. Standalone tool (open-source)
ii. Invocation via the RADON IDE or CI/CD

Continuous delivery/deployment

Continuous feedback

µ µ

µ

λ λ

Operational monitoring data

Production environment

Testing environments

µ

λ

TOSCA models
and tests

µ µ

µ

λ λ

µ

µ

Production workload

20

Presenter
Presentation Notes
Workflow spans development and runtime
Scenarios:
Test case definition: CTT provides RADON modelling capabilities for defining test-related information and outputs executable test artefacts from them.
Test execution: CTT provides the infrastructure to execute the tests and to create a report of the results.
Test maintenance: CTT enables the update of existing test case definitions based on operational data.
ADD MORE ON THE RESULTS

	Advanced Engineering of Microservices and Serverless Applications:
The RADON approach
�
	RADON Consortium
	Serverless Function-as-a-Service
	Some challenges
	�Offer an open source DevOps framework to help the EU software industry adopting serverless FaaS without vendor lock-in��Tools at advanced state. ��Open source releases.
	RADON framework overview
	Slide Number 7
	RADON: modelling for serverless FaaS
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	RADON: optimization & decomposition trade-offs
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

