THE STABLE MODEL SEMANTICS
FOR LOGIC PROGRAMMING

Michael Gelfond
University of Texas at El Paso
El Paso, Texas, U.S.A.

Vladimir Lifschitz
Stanford University
Stanford, California, U.S.A.

Abstract

We propose a new declarative semantics for logic programs with nega-
tion. Its formulation is quite simple; at the same time, it is more gen-
eral than the iterated fixed point semantics for stratified programs,
and is applicable to some useful programs that are not stratified.

1. Introduction

This paper belongs to the direction of research which attempts to de-
fine the declarative meaning of logic programs by means of “canonical
models”. The programs under consideration are sets of rules of the
form

A%Ll,...,Lm (1)

where A is an atom, and Ly, ..., L,, are literals (i.e., atoms or negated
atoms), m > 0. Rule (1) is a notational variant of the formula

(Ly A...ANL,,) DA,
so that any program can be viewed as a set of first-order formulas.
Accordingly, we can talk about models of a logic program. Every

program has many different models. For instance, a model of the
program

q(2), (2)



consists of (i) a nonempty set — the universe of the model, (ii) two
elements of the universe — the interpretations of the constants 1 and
2, and (iii) two subsets of the universe — the interpretations (extents)
of the predicates p and ¢q. The only restriction on the choice of the
interpretations is that it should make all rules of the program true:
The object representing 1 must belong to the extent of p, the object
representing 2 must belong to the extent of ¢, and the extent of p
must be a subset of the extent of q.

The idea of the canonical model approach is that a declarative se-
mantics for a class of logic programs can be defined by selecting, for
each program II in this class, one of its models as the “canonical”
model CM(II). This model determines which answer to a given query
is considered correct. For instance, a query without variables should
be answered yes if it is true in CM(II), and no otherwise.

The canonical model is usually selected among the Herbrand models of
II, i.e., among the models whose universe is the set of ground terms
of the language of II, and whose object and function constants are
interpreted in such a way that every ground term denotes itself. An
Herbrand model is completely determined by the ground atoms that
are true in it, and it can be identified with the set of these atoms. For
instance, (2) has two Herbrand models:

{p(1), q(1), q(2)} (3)

and

{p(1), p(2), 4(1), q(2)}. (4)

A reasonable semantics would designate the first of them as canonical.

An Herbrand model M of II is minimal, if no proper subset of M is
an Herbrand model of II. For instance, (3) is a minimal model of (2),
and (4) is not. A program that does not contain negation, such as (2),
has exactly one minimal Herbrand model, and the usual semantics for
negation-free programs [4] selects that model as its canonical model
CM(II). Programs with negation may have several minimal Herbrand
models. There has been much recent work on defining canonical mod-
els for programs with negation. An important class of “stratified” pro-
grams was introduced, and canonical models were defined for strat-
ified programs using an “iterated fixed point” construction [2], [1],
[14]. Further generalizations were proposed in [12] (“perfect models”)



and in [15] (“well-founded models”). Each of these definitions im-
poses some restrictions on the use of negation; researchers seem to
agree that there can be no useful definition of canonical models for
arbitrary programs (see Remark 4 below).

This theoretical work is closely related to some practical issues in the
design of logical query languages for databases. The uses of negation
that are disallowed by the accepted declarative semantics must be
recognized as “semantic errors” in queries. For example, the NAIL!
system [11] prohibits all nonstratified programs.

There is also a close connection between this work and some of the ex-
isting approaches to the theory of nonmonotonic reasoning, including
circumscription [9] and autoepistemic logic [10]. In particular, the it-
erated fixed pont semantics for stratified programs can be equivalently
formulated in terms of these two concepts [7], [5].

The definition proposed in [5] is particularly simple. It uses the trans-
formation of rules (1) into formulas of autoepistemic logic which in-
serts the “belief” operator L after each negation, so that each nega-
tive literal =B in the body of (1) becomes —LB. This mapping can
be thought of as a representation of “negation as failure” in the sym-
bolism of autoepistemic logic: —B in the body of a rule expresses
that the program gives no grounds for believing in B. The canonical
model assigned to a stratified program II by the iterated fixed point
semantics can be easily described in terms of the autoepistemic theory
obtained from II by applying this transformation to each of its rules.

In this paper we discuss another implementation of the same idea,
which does not use autoepistemic logic and is, in this sense, even
simpler than the approach of [5]. The definition of the new semantics
is given in Section 2. Then we consider a few examples; we will see
that our semantics is applicable to some useful programs that are
not stratified (Section 3). Familiarity with autoepistemic logic is not
required for understanding these parts of the paper. In Section 4, we
study the relation between the new semantics and some of the other
canonical model approaches.

2. Stable Models

Let II be a logic program, i.e., a set of rules of form (1). We assume
that each rule containing variables is replaced by all its ground in-
stances, so that all atoms in IT are ground. (Since II is not required



to be finite, the variables can be eliminated in this way even when the
program uses function symbols, and its Herbrand universe is infinite.)

For any set M of atoms from II, let II5; be the program obtained
from II by deleting

(i) each rule that has a negative literal =B in its body with B € M,
and

(ii) all negative literals in the bodies of the remaining rules.

Clearly, 11, is negation-free, so that IIp; has a unique minimal Her-
brand model. If this model coincides with M, then we say that M is
a stable set of II. Such sets can be also described as the fixed points
of the operator Sy defined by the condition: for any set M of atoms
from II, S (M) is the minimal Herbrand model of IIj;.

Theorem 1. Any stable set of Il is a minimal Herbrand model of 1I.

In view of this fact, stable sets can be also called stable models. The
proof of Theorem 1 is given at the end of this section.

The intuitive meaning of stable sets can be described in the same way
as the intuition behind “stable expansions” in autoepistemic logic:
they are “possible sets of beliefs that a rational agent might hold”
[10] given II as his premises. If M is the set of ground atoms that
I consider true, then any rule that has a subgoal —-B with B € M
is, from my point of view, useless; furthermore, any subgoal =B with
B ¢ M is, from my point of view, trivial. Then I can simplify the
premises II and replace them by ITy,. If M happens to be precisely the
set of atoms that logically follow from the simplified set of premises
ITps, then I am “rational”.

The stable model semantics is defined for a logic program II, if II
has exactly one stable model, and it declares that model to be the
canonical model of II.

Proof of Theorem 1. Consider a stable set M. First we want to
show that M is a model of II. Let R be a rule from II. If the body
of R contains a literal =B such that B € M, then R is true in M.
If not, consider the rule R’ obtained from R by deleting all negative



literals from its body. Since R’ is one of the rules of IT,;, and M is the
minimal model of II,s, it is clear that R’ is true in M. On the other
hand, R logically follows from R’; consequently, R is true in M. To
show that M is minimal, assume that a subset M; of M is a model of
IT. We will show that M is also a model of IT;. Consider any rule R’
of II,;; it is obtained from some rule R of I by deleting all negative
literals from its body, and, in every such literal =B, B ¢ M. To show
that R’ is true in M, observe that R is true in M; (because M is a
model of II), that every negative literal =B in the body of R is true
in My (because B ¢ M and M; C M), and that R’ can be obtained
by resolving R against these literals. Since M is the minimal model
of s, My = M.

3. Examples

If II is negation-free, then, for every M, II;; coincides with II, and
St(M) is the minimal Herbrand model of IT. Consequently, this model
is the only fixed point of S;;. We see that the minimal Herbrand model
of a negation-free program is its only stable model.

Consider the program

p(1,2),
q(z) + p(=,y), ~q(y).

(5)

Let II be (5) with the second rule replaced by its ground instances:

q(1) + p(1,1),~q(1),
q(1) < p(1,2),q(2),
q(2) < p(2,1),q(1),
q(2) + p(2,2),q(2).

q(1) < p(1,1),
Q(2) <~ p(27 1)'

The minimal Herbrand model of this program is {p(1,2)}. It is differ-
ent from M, so that M is not stable. (This could have been predicted



on the basis of Theorem 1, because M is not a model of I1.) Now let
us try M = {p(1,2),q(1)}. In this case IIj; is

p(172)7
q(1) < p(1,2),
q(2) « p(2,2).

The minimal Herbrand model of this program is {p(1,2),q(1)}, i.e.,
M. Hence {p(1,2),q(1)} is stable. Are there any other stable models
among the 25 possible sets of ground atoms? First of all, it is clear
that every value of Sy includes p(1,2) but does not include any of
the atoms p(1,1), p(2,1), p(2,2). Consequently, every fixed point of
St has the same properties. Besides the fixed point we have found,
there are 3 other sets satisfying this condition. The examination of
each of them shows that it is not a fixed point of Sy. So II has only
one stable model.

Remark 1. Program (5) is not stratified, so that the iterated fixed
point semantics cannot be applied to it. The perfect model semantics
[12] is not applicable to it either. The method of [15] selects the same
canonical model as our approach.

Remark 2. The query evaluation procedure of PROLOG handles
program (5) correctly relative to the stable model semantics: For
every query without variables, it produces the answer yes if the query
belongs to the stable model of (5), and no otherwise.

Remark 3. Some programs similar to (5) can play two-person games
3], [15]. A position z is winning for White if there is a legal move
from = to a position y that is not winning for Black. If legal moves
are the same for both players, then this principle is expressed by the
second rule of (5).

Here is another nonstratified program with a unique stable model:

p < g,

q < 7r,7p, (6)
r < p,q.

The only minimal Herbrand model of (6) is (), and it is obviously
stable. This example illustrates the following general fact: If the



body of each rule of a program II contains a positive literal, then ()
is the only stable model of II. To prove this, notice that, for such II,
the bodies of all rules in any II; are nonempty, and consequently the
minimal Herbrand model of any Il is 0.

There are two kinds of programs to which the stable model semantics
is not applicable: the programs that have no stable models, and the
programs that have several stable models. The program consisting
of just one rule p <— —p has no stable models. (For this program,
Sn(0) = {p} and Su({p}) = 0.) The program consisting of two rules,
p < —q and q < —p, has two stable models: {p} and {¢}. Similarly,
the program obtained from (5) by adding the rule p(2,1) has two
stable models:

{r(1,2),p(2,1),4(1)}

and
{r(1,2),p(2,1),4q(2)}.

Remark 4. The symmetry of each of the last two examples suggests
that it is hardly possible to select a single canonical model for any of
them in a reasonable way.

Remark 5. The interpretation of the second rule of (5) given in
Remark 3 above implicitly assumes that the graph p of the game
is loop-free. The fact that adding p(2,1) to (5) makes the program
meaningless reflects this limitation.

4. Relation to Other Approaches

The relation between the stable model semantics and the well-founded
semantics is investigated in [15], and the former is found to be more
general:

Theorem 2 ([15], Corollary 6.2). If II has a well-founded model,
then that model is its unique stable model.

Moreover, Examples 6.1 and 6.2 from [15] show that the stable model
semantics is strictly more general that the well-founded semantics.

Since the well-founded semantics coincides with the perfect model
semantics on locally stratified programs ([15], Theorem 6.3), we con-
clude:



Corollary 1. If 1I is locally stratified, then it has a unique stable
model, which is identical to its perfect model.

As to the programs that are not locally stratified, we can only say that
the areas of applicability of our definition and of the perfect model
semantics partially overlap [13]. We have seen that the latter is not
applicable to program (5) which has a unique stable model (Remark
1). On the other hand, the only Herbrand model of p <— —p is perfect,
but not stable.

Since the perfect model semantics, restricted to stratified programs,
coincides with the iterated fixed point semantics [12], we also con-
clude:

Corollary 2. If II is stratified, then its unique stable model is iden-
tical to its iterated fixed point model.

Finally, we will relate stable models to the translation of logic pro-
grams into autoepistemic theories defined in [5].

Recall that the language of autoepistemic logic [10] contains the sym-
bols of propositional logic and the modal operator L. The formulas
not containing L. are called objective. Let A be a set of formulas. A
set of formulas F is a stable expansion of A if

E=th(AU{LF :F € E}U{-LF:F ¢ E}).

Here F' ranges over arbitrary formulas, and th(X) denotes the set of
propositional consequences of X. If all formulas in A are objective,
then (i) A has exactly one stable expansion E, and (ii) an objective
formula belongs to E iff it follows from A in propositional logic ([8],

[6])-

For any logic program II (without variables), I (II) stands for the set of
formulas of autoepistemic logic obtained from II by inserting L after
every negation [5]. By At we denote the set of atoms occurring in II.

Theorem 3. If a logic program 11 has a unique stable model M, then
I(IT) has a unique stable expansion E, and M = E N At.

The following simple proof of Theorem 3 belongs to Halina Przy-
musinska.



Lemma. FE is a stable expansion of I(II) iff E is a stable expansion
of Ilgn s

Proof. It is sufficient to show that
I(IU{LF:F e E}yU{-LF: F ¢ E}
is equivalent to
Mgnat U{LF: Fe€ E}U{-LF:F ¢ E}.

The set {LF : F € E} U{-LF : F ¢ E} contains LF for each
F € EN At and —LF for each atom F ¢ E N At. In the presence of
these literals, I(II) is equivalent to IIgn as.

Proof of Theorem 3. Let M be the only stable model of II. Since
[Ty is a set of objective formulas, it has exactly one stable expansion
E, and

EnNnAt = th(HM) N At = SH(M) =M.

Hence E is a stable expansion of IIgn4:. By the lemma, it follows
that E is a stable expansion of I(II). It remains to show that I(II)
has no other stable expansions. Let E’ be a stable expansion of I(II).
By the lemma, E’ is a stable expansion of IIg/n4¢. Since the latter is
a set of objective formulas, an objective formula belongs to E’ iff it is
a propositional consequence of IIg/~4:. Consequently,

E'N At = th(llgina) N At = Sp(E' N At),

so that E' N At is a stable model of II. Since the only stable model of
IT is M, it follows that E' N At = M. Hence Ilg:na: = Iy, and E’ is
a stable expansion of II;. Consequently F' = E.

Acknowledgements

We are grateful to Krzysztof Apt, Matthew Ginsberg, Kurt Kono-
lige, Katherine Morris, Teodor Przymusinski, Kenneth Ross, Yoav
Shoham, Jeffrey Ullman and Allen Van Gelder for useful discussions.
We would especially like to thank Halina Przymusinska for her com-
ments and for permission to include her proof of Theorem 3. This
research was partially supported by DARPA under Contract N0039-
82-C-0250.



References

1]

[10]

K. R. Apt, H. Blair and A. Walker, Towards a theory of declar-
ative knowledge, in: J. Minker (ed.), Foundations of Deductive
Databases and Logic Programming, Morgan Kaufmann Publish-
ers, Los Altos, CA, 1988, 89-148.

A. Chandra and D. Harel, Horn clause queries and generaliza-
tions, The Journal of Logic Programming 1, 1985, 1-15.

M. H. van Emden and K. L. Clark, The logic of two-person
games, in: K. L. Clark and F. G. McCabe, Micro-PROLOG:
Programming in Logic, Prentice-Hall, 1984, 320-340.

M. H. van Emden and R. A. Kowalski, The semantics of pred-
icate logic as a programming language, Journal ACM, 23(4),
1976, 733-742.

M. Gelfond, On stratified autoepistemic theories, Proc. AAAI-
87, 1, 1987, 207-211.

K. Konolige, On the relation between default and autoepistemic
logic, in: M. Ginsberg (ed.), Readings in Nonmonotonic Reason-
ing, Morgan Kaufmann Publishers, Los Altos, CA, 1987, 195—
217.

V. Lifschitz, On the declarative semantics of logic programs
with negation, in: J. Minker (ed.), Foundations of Deductive
Databases and Logic Programming, Morgan Kaufmann Publish-
ers, Los Altos, CA, 1988, 177-192.

W. Marek, Stable Theories in Autoepistemic Logic, Unpublished
Note, Department of Computer Science, University of Kentucky,
1986.

J. McCarthy, Applications of circumscription to formalizing
commonsense knowledge, Artificial Intelligence 28 (1), 1986, 89—
118.

R. Moore, Semantical considerations on nonmonotonic logic, Ar-
tificial Intelligence 25 (1), 1985, 75-94.



[11]

[12]

[15]

K. Morris, J. D. Ullman and A. Van Gelder, Design overview of
the NAIL! system, in: G. Goos and J. Hartmanis (eds.), Third
International Conference on Logic Programming (Lecture Notes
in Computer Science 225), Springer-Verlag, 1986, 554-568.

T. Przymusinski, On the declarative semantics of stratified de-
ductive databases and logic programs, in: J. Minker (ed.), Foun-
dations of Deductive Databases and Logic Programming, Mor-
gan Kaufmann Publishers, Los Altos, CA, 1988, 193-216.

T. Przymusinski, personal communication, October 1987.

A. Van Gelder, Negation as failure using tight derivations for
general logic programs, in: J. Minker (ed.), Foundations of De-
ductive Databases and Logic Programming, Morgan Kaufmann
Publishers, Los Altos, CA, 1988, 149-176.

A. Van Gelder, K. Ross and J. S. Schlipf, Unfounded sets and
well-founded semantics for general logic programs, Proc. Sev-
enth Symp. on Principles of Database Systems, 1988, 221-230.



