
TopLog: ILP Using a Logic Program Declarative
Bias

Stephen H. Muggleton, José C. A. Santos, and Alireza Tamaddoni-Nezhad

Department of Computing, Imperial College, London
{shm,jcs06,atn}@doc.ic.ac.uk

Abstract. This paper introduces a new Inductive Logic Programming
(ILP) framework called Top Directed Hypothesis Derivation (TDHD).
In this framework each hypothesised clause must be derivable from a
given logic program called top theory (⊤). The top theory can be viewed
as a declarative bias which defines the hypothesis space. This replaces
the metalogical mode statements which are used in many ILP systems.
Firstly we present a theoretical framework for TDHD and show that
standard SLD derivation can be used to efficiently derive hypotheses from
⊤. Secondly, we present a prototype implementation of TDHD within a
new ILP system called TopLog. Thirdly, we show that the accuracy and
efficiency of TopLog, on several benchmark datasets, is competitive with
a state of the art ILP system like Aleph.

1 Introduction

In this paper we introduce a new approach to providing declarative bias called
Top-Directed Hypothesis Derivation (TDHD). The approach extends the use
of the ⊥ clause in Mode-Directed Inverse Entailment (MDIE) [1]. In Inverse
Entailment ⊥ is constructed for a single, arbitrarily chosen training example.
Refinement graph search is then constrained by the requirement that all hy-
pothesised clauses considered must subsume ⊥. In TDHD we further restrict the
search associated with each training example by requiring that each hypothesised
clause must also be entailed by a given logic program, ⊤.

The ⊤ theory can be viewed as a form of first-order declarative bias which
defines the hypothesis space, since each hypothesised clause must be derivable
from ⊤. The use of the ⊤ theory in TopLog is also comparable to grammar-based
declarative biases [2]. However, compared with a grammar-based declarative
bias, ⊤ has all the expressive power of a logic program, and can be efficiently
reasoned with using standard logic programming techniques.

The SPECTRE system [3] employs an approach related to the use of ⊤.
SPECTRE also relies on an overly general logic program as a starting point.
However, unlike the TopLog system described in this paper, SPECTRE proceeds
by successively unfolding clauses in the initial theory. TDHD is also related to
Explanation-Based Generalisation (EBG) [4]. However, like SPECTRE, EBG
does not make the key MDHD distinction between the ⊤ theory and background
knowledge. Moreover, EBG is viewed as a form of deductive learning, while the
clauses generated by TDHD represent inductive hypotheses.

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 687–692, 2008.
c⃝ Springer-Verlag Berlin Heidelberg 2008

688 S.H. Muggleton, J.C.A. Santos, and A. Tamaddoni-Nezhad

2 Theoretical Framework

MDIE was introduced in [1] as the basis for Progol. The input to an MDIE system
is the vector SMDIE = ⟨M, B, E⟩ where M is a set of mode statements, B is a
logic program representing the background knowledge and E is set of examples.
M can be viewed as a set of metalogical statements used to define the hypothesis
language LM . The aim of the system is to find consistent hypothesised clauses
H such that for each clause h ∈ H there is at least one positive example e ∈ E
such that B, h |= e.

The input to an TDHD system is the vector STDHD = ⟨NT, ⊤, B, E⟩ where
NT is a set of “non-terminal” predicate symbols, ⊤ is a logic program rep-
resenting the declarative bias over the hypothesis space, B is a logic program
representing the background knowledge and E is a set of examples.

The following three conditions hold for clauses in ⊤: (a) each clause in ⊤
must contain at least one occurrence of an element of NT while clauses in B
and E must not contain any occurrences of elements of NT , (b) any predicate
appearing in the head of some clause in ⊤ must not occur in the body of any
clause in B and (c) the head of the first clause in ⊤ is the target predicate and
the head predicates for other clauses in ⊤ must be in NT .

The aim of a TDHD system is to find a set of consistent hypothesised clauses
H , containing no occurrence of NT , such that for each clause h ∈ H there is at
least one positive example e ∈ E such that the following two conditions hold:
(1) ⊤ |= h and (2) B, h |= e.

Theorem 1. Given STDHD = ⟨NT, ⊤, B, E⟩ assumptions (1) and (2) hold only
if for each positive example e ∈ E there exists an SLD refutation R of ¬e from
⊤, B, such that R can be re-ordered to give R′ = DhRe where Dh is an SLD
derivation of a hypothesis h for which (1) and (2) hold.

According to Theorem 1, implicit hypotheses can be extracted from the refu-
tations of a positive example e ∈ E. Let us now consider a simple example.

Example 1. Let STDHD = ⟨NT, ⊤, B, E⟩ where NT , B , e and ⊤ are as follows:

NT = {$body}
B = b1 = pet(lassy) ←
e = nice(lassy) ←

⊤ =

⎧
⎨

⎩

⊤1 : nice(X) ← $body(X)
⊤2 : $body(X) ← pet(X)
⊤3 : $body(X) ← friend(X)

Given the linear refutation R = ⟨¬e, ⊤1, ⊤2, b1⟩, we now construct the re-ordered
refutation R′ = DhRe where Dh = ⟨⊤1, ⊤2⟩ derives the clause h = nice(X) ←
pet(X) for which (1) and (2) hold.

3 System Description

TopLog is a prototype ILP system developed by the authors to implement the
TDHD described in section 2. It is fully implemented in Prolog and is ensured

Alessandra Russo

TopLog: ILP Using a Logic Program Declarative Bias 689

to run at least in YAP, SWI and Sicstus Prolog. It is publicly available at
http://www.doc.ic.ac.uk/∼jcs06 and may be freely used for academic purposes.

3.1 From Mode Declarations to ⊤ Theory

As the user of TopLog may not be familiar with specifying a search bias in
the form of a logic program, TopLog has a module to build a general ⊤ theory
automatically from user specified mode declarations. In this way input compati-
bility is ensured with existing ILP systems. Below is a simplified example of user
specified mode declarations and the automatically constructed ⊤ theory.

modeh(mammal(+animal)).
modeb(has milk(+animal)).
modeb(has eggs(+animal)).

⊤ =

⊤1 : mammal(X) ← $body(X).
⊤2 : $body(X) ← .%emptybody
⊤3 : $body(X)← has milk(X),$body(X).
⊤4 : $body(X)← has eggs(X),$body(X).

Fig. 1. Mode declarations and a ⊤ theory automatically constructed from it

The above illustrated ⊤ theory is extremely simplified. The actual implemen-
tation has stricter control rules like: variables may only bind with others of the
same type, a newly added literal must have its input variables already bound.

It is worth pointing out that the user could directly write a ⊤ theory specific
for the problem, potentially restricting the search better than the generic ⊤
theory built automatically from the mode declarations.

3.2 TopLog Learning Algorithm

The TopLog learning algorithm consists of three major steps: 1) hypotheses
derivation for each positive example, 2) coverage computation for all unique
hypotheses, H , derived in previous step, 3) construct the final theory, T , as the
subset of H that maximizes a given score function (e.g. compression).

Hypotheses derivation. Contrary to MDIE ILP systems, there is no construc-
tion of the bottom clause but rather an example guided generalization, deriving
all hypotheses that entail a given example w.r.t. the background knowledge, B.

This procedure consists of two steps. Firstly an example is proved from B and
the ⊤ theory. That is, the ⊤ theory is executed having the example matching
the head of its start clause (i.e. ⊤1). This execution yields a proof consisting
of a sequence of clauses from the ⊤ theory and B. For instance, using the ⊤
theory from figure 1 and B = b1 = has milk(dog) to derive refutations for
example e = mammal(dog), the following two refutations would be yielded:
r1 = ⟨¬e, ⊤1, ⊤2⟩ and r2 = ⟨¬e, ⊤1, ⊤3, b1, ⊤2⟩. Secondly, Theorem 1 is applied
to r1 and r2 deriving, respectively, the clauses h1 = mammal(X) from ⟨⊤1, ⊤2⟩
and h2 = mammal(X) ← has milk(X) from ⟨⊤1, ⊤3, ⊤2⟩.

Coverage computation. Each h ∈ H is individually tested with all the ex-
amples (positives and negatives) to compute its coverage (i.e. the examples it
entails). Positive examples used to derive h are not tested for entailment as it is
guaranteed by the hypothesis derivation procedure that h entails them.

Alessandra Russo

Alessandra Russo

Alessandra Russo

690 S.H. Muggleton, J.C.A. Santos, and A. Tamaddoni-Nezhad

Constructing the final theory. The final theory to be constructed, T , is a
subset H ′ of H that maximizes a given score function (e.g. compression, coverage,
accuracy). Each h ∈ H has associated the set of examples from which it was
derived, Egh, and the set of examples which it entails, Ech.

The compression score function (the default) evaluates T as the weighted
sum of the examples it covers (positive examples have weights > 0 and negative
examples < 0) minus number of literals in T . This is the minimum description
length principle and is analogous to Progol’s and Aleph’s compression measure.
T is constructed using a greedy approach where at each step the hypothesis, if
any, that maximizes current T ′ score is added to the next round.

Efficient cross-validation. Prior to N fold cross-validation (CV) all possible
hypotheses are derived and their coverage is computed on all examples. This is
the most time consuming step. Then, examples are randomly assigned a fold and
N theories are built each using a distinct combination of N − 1 folds as training
and one fold as testing.

Hypotheses generated exclusively from examples in the test set are not eligible
for the theory construction step. Also, the merit of a hypothesis is evaluated
only taking into account the hypothesis coverage on examples belonging to the
training folds. At the end of cross-validation, N fold average training and test
accuracies and standard deviations are reported.

It is not possible to do efficient cross-validation with Aleph or Progol as no
relationship exists between hypotheses and the examples that generated it.

4 Experimental Evaluation

Materials & Methods. We used four datasets: mutagenesis [5], carcinogenesis
[6], alzheimers-amine [7] and DSSTox [8] as they are well known to the ILP com-
munity. TopLog was compared with the state of the art MDIE ILP system Aleph
[9]. Both were executed on YAP Prolog 5.1.3. The experiments were performed
on a Core 2 Duo @ 2.13 GHz with 2Gb RAM.

Aleph and TopLog were executed with similar settings to ensure a fair test.
Clause length=4 (in DSSTox=10), noise=100%, evaluation function=
compression and search nodes per example=1000. Aleph was called both with
induce and induce max settings. In induce (the default), after finding a com-
pressive clause for an example, it retracts all positive examples covered by that
clause while induce max, as TopLog, does not.

Results. In the table below, time is the CPU seconds the ILP systems took to
build a model in the training data and for ten folds (CV column). We distinguish
between the two to highlight the benefits of TopLog’s efficient cross validation.
The accuracy column has the average (over the ten folds) percentage of correct
predictions made by the ILP models with the respective standard deviation.

In the induce max setting TopLog is clearly faster than Aleph. In the induce
setting the speed advantage for training is dataset dependent but considering
only CV then TopLog is again clearly faster. Although this may seem a side

Alessandra Russo

Alessandra Russo

Alessandra Russo

Alessandra Russo

Alessandra Russo

Alessandra Russo

TopLog: ILP Using a Logic Program Declarative Bias 691

Table 1. Accuracy and time comparison between Aleph and TopLog

Aleph with induce Aleph with induce max TopLog
Times Times Times

Dataset CV Accuracy Train CV CV Accuracy Train CV CV Accuracy Train CV
Mutagenesis 77.2%±9.2% 0.4s 4s 68.6%±11.4% 2s 17s 70.2%±11.9% 0.4s 0.5s
Carcinogenesis 60.9%±8.2% 6s 54s 65.1%±8.6% 29s 245s 64.8%±6.9% 7.0s 7.4s
Alzheimers 67.2%±5.0% 5s 40s 72.6%±6.2% 18s 156s 70.4%±5.6% 17s 16s
DSSTox 70.5%±6.5% 30s 253s 71.3%±3.4% 82s 684s 71.7%±5.6% 3.4s 3.6s

point, built-in efficient CV is important both to tune parameters and to properly
assess model accuracy. The accuracies are identical with none being statistically
significantly different at ρ = 0.01 level.

5 Conclusions and Future Work

The key innovation of the TDHD framework is the introduction of a first order ⊤
theory. We prove that SLD derivation can be used to efficiently derive hypotheses
from ⊤. A new general ILP system, TopLog, is described implementing TDHD.
An empirical comparison demonstrates the new approach is competitive, both
in predictive accuracy and speed, with a state of the art system like Aleph.

Parallelization. Since building the hypotheses set is example independent, it is
straightforward to parallelize TopLog main algorithm by dividing the examples
through all available cpus.

Sample hypotheses space. If the ⊤ theory represents a Stochastic Logic
Program [10] rather than a regular logic program (as it is now), it would be
possible to elegantly bias the hypotheses search space.

Acknowledgments. We thank James Cussens for illuminating discussions on the
TDHD framework and Vı́tor Santos Costa for his prompt help with YAP. The first au-
thor thanks the Royal Academy of Engineering and Microsoft for funding his present
5 year Research Chair. The second author thanks Wellcome Trust for his Ph.D. schol-
arship. The third author was supported by the BBSRC grant BB/C519670/1.

References

1. Muggleton, S.H.: Inverse entailment and Progol. NGC 13, 245–286 (1995)
2. Cohen, W.: Grammatically biased learning: Learning logic programs using an ex-

plicit antecedent description language. Artificial Intelligence 68, 303–366 (1994)
3. Boström, H., Idestam-Almquist, P.: Specialisation of logic programs by pruning

SLD-trees. In: Proceedings of the 4th ILP Workshop (ILP 1994), Bonn, pp. 31–48
(1994)

692 S.H. Muggleton, J.C.A. Santos, and A. Tamaddoni-Nezhad

4. Kedar-Cabelli, S.T., McCarty, L.T.: Explanation-based generalization as resolu-
tion theorem proving. In: Langley, P. (ed.) Proceedings of the 4th Int. Workshop
on Machine Learning, Los Altos, pp. 383–389. Morgan Kaufmann, San Francisco
(1987)

5. Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experi-
ments in a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of
the 4th ILP Workshop, ILP 1994, GMD-Studien Nr 237 (1994)

6. Srinivasan, A., King, R.D., Muggleton, S.H., Sternberg, M.: Carcinogenesis pre-
dictions using ILP. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI),
vol. 1297, pp. 273–287. Springer, Heidelberg (1997)

7. King, R.D., Srinivasan, A., Sternberg, M.J.E.: Relating chemical activity to struc-
ture: an examination of ILP successes. New Gen. Comp. 13, 411–433 (1995)

8. Richard, A.M., Williams, C.R.: Distributed structure-searchable toxicity DSSTox
public database network: A proposal. Mutation Research 499, 27–52 (2000)

9. Srinivasan, A.: The Aleph Manual. University of Oxford (2007)
10. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Proceedings of

the 5th International Workshop on ILP, Katholieke Universiteit Leuven (1995)

