Theory completion using Inverse Entailment

S.H. Muggleton and C.H. Bryant

Department of Computer Science,
University of York,
York, YO1 5DD,
United Kingdom.

Abstract. The main real-world applications of Inductive Logic Pro-
gramming (ILP) to date involve the “Observation Predicate Learning”
(OPL) assumption, in which both the examples and hypotheses define
the same predicate. However, in both scientific discovery and language
learning potential applications exist in which OPL does not hold. OPL is
ingrained within the theory and performance testing of Machine Learn-
ing. A general ILP technique called “Theory Completion using Inverse
Entailment” (TCIE) is introduced which is applicable to non-OPL ap-
plications. TCIE is based on inverse entailment and is closely allied to
abductive inference. The implementation of TCIE within Progol5.0 is
described. The implementation uses contra-positives in a similar way to
Stickel’s Prolog Technology Theorem Prover. Progol5.0 is tested on two
different data-sets. The first dataset involves a grammar which trans-
lates numbers to their representation in English. The second dataset
involves hypothesising the function of unknown genes within a network
of metabolic pathways. On both datasets near complete recovery of per-
formance is achieved after relearning when randomly chosen portions of
background knowledge are removed. Progol5.0’s running times for exper-
iments in this paper were typically under 6 seconds on a standard laptop
PC.

1 Introduction

Suppose that an ILP system is being used to augment an incomplete natural lan-
guage grammar. The grammar so far has the productions shown as Background
in Fig. 1 for the non-terminals S (Sentence) and NP (Noun Phrase). The Ex-
ample sentence cannot be explained by the Background knowledge, but can be
explained by the Hypothesis in Fig. 1. Note that the Example is of predicate S,
while the Hypothesis is of predicate NP. This contrasts with the usual Machine
Learning setting of “Observation Predicate Learning” (OPL) in which examples
and hypotheses define the same predicate. The simplified example in Fig. 1 is
typical of the situation in grammar learning.

A non-OPL setting is natural for many problems involved in scientific dis-
covery. For instance, at present in functional genomics (the determination of
the function of genes from their gene sequence), the metabolic pathways of cells
are being progressively determined. For a particular organism, such as yeast,

Alessandra Russo

Alessandra Russo

Grammar Functional Genomics
Background|S — NP VP pheno_effect(Gene,Growth medium) :-
NP — DET NOUN

codes(Gene,Enzyme)

Example S — the nasty man hit the dog|pheno_effect(gene,growth_medium).
Hypothesis NP — DET ADJ NOUN codes(gene,enzyme).

Fig. 1. Background knowledge, example and hypothesis involved in augmenting an
incomplete Grammar and in a Functional genomics setting. “pheno_effect” is a
shortening of “phenotypic_effect” (see Table 1).

it is possible to represent existing knowledge of metabolic pathways as a logic
program (see Fig. 1). New experimental observation can then be explained by
hypotheses such as the one shown in Fig. 1. Note once more the contrast with
OPL.

The formation of hypotheses such as those shown in Fig. 1 has been inten-
sively investigated within Abductive Logic Programming [7] (ALP). However,
unlike the case in ILP, the hypotheses sought in ALP are typically not univer-
sally quantified laws. In this paper we describe an approach to non-OPL called
Theory Completion using Inverse Entailment (TCIE). TCIE is based on inverse
entailment [8] and is implemented within Progol5.0'. TCIE suffers from lim-
itations of inverse entailment described by Yamamoto [20]. Augmentations of
inverse entailment which address these limitations have been suggested in [9,4],
though these have not yet been implemented in Progol5.0. However, experiments
in this paper show that good performance can be achieved using TCIE.

The paper has the following structure. Section 2 introduces TCIE as the spe-
cial case of inverse entailment in which the construction of the bottom clause
involves the derivation of negative ground instances from the background knowl-
edge. In Section 2.1 it is shown how these negative instances can be derived using
contra-positives introduced into the background knowledge in a fashion similar
to that employed in Stickel’s Prolog Technology Theorem Prover (PTTP). The
multi-predicate search implemented in Progol5.0 is given in Section 2.3. Exper-
iments are described which involve applying Progol5.0 to relearning a number
grammar (Section 3) and missing enzymes in metabolic pathways (Section 4).
A comparison with related work is given in Section 5. Section 6 concludes and
describes future research.

! The C source code for Progol5.0 and the datasets used for the experiments in this
paper can be downloaded from ftp://ftp.cs.york.ac.uk/pub/ML_GROUP /progol5.0/

2 TCIE

In the standard setting for ILP the learner is provided with logic programs
describing background knowledge B and examples E and is required to find a
consistent hypothesis H such that the following holds.

BAHEE 1)

Inverse entailment [8] is based on the observation that (1) is equivalent for all
B, H and E to the following.

BAEET 2)

Assuming F is a single example we can add its negation to B, deductively derive
a finite conjunction of ground facts L (B, E), and then construct hypotheses H
which subsume 1 (B, E). The following non-OPL example of Inverse Entailment
comes from [8].

Ezample 1. Non-OPL example.

B { hasbeak(X) < bird(X) }
~ | bird(X) + vulture(X)

E = hasbeak(tweety) «
E = « hasbeak(tweety)
1(B, E) = {hasbeak(tweety), bird (tweety), vulture(tweety) }
H; = bird(tweety) <
Hy = bird(X) «
Hj = vulture(tweety) <
H, = vulture(X) «

H,, Hy, H3, H, are potential hypotheses.

Yamamoto [20] has shown that this approach only derives clauses H for which
H subsumes E relative to background knowledge B (see Plotkin [11] for the
definition of relative subsumption). Relative subsumption is strictly weaker than
the form of entailment shown in (1). In relative subsumption H can be used at
most once in the derivation of E. This rules out, among other things, recursive
applications of H.

Irrespective of its limitations, the non-OPL form of inverse entailment shown
in Example 1 is not straightforward to implement using a Prolog interpreter.
The problem stems from the need to derive negative ground literals (such as
bird(tweety)) in the construction of L (B, E). The following sections show how a
Prolog implementation of non-OPL inverse entailment can be achieved based on
an adaptation of ideas in Stickel’s Prolog Technology Theorem Prover (PTTP).

2.1 PTTP and Contra-positives

Stickel’s PTTP [17] provides a method of applying a standard Prolog interpreter
to theorem proving with arbitrary non-definite clauses. This is achieved by a
number of transformations including the construction of contra-positives. Thus
a clause with n atoms is stored as n different rules, a technique known as locking.
For example, a < b, ¢ is also stored as b + @, c and € < b, @. The effect of negated
atomic formulae is achieved within the Prolog context by using extra predicate
symbols. Thus p(X) is implemented as non_p(X). The following shows locking
applied to B A E from Example 1.

Ezxample 2. Non-OPL example revisited.

hasbeak(X) + bird(X)
bird(X) <+ vulture(X)

B A E =< non_bird(X) + non_hasbeak(X)
non_vulture(X) « non_bird(X)
non_hasbeak(tweety) +

1(B, E) = {non_hasbeak(tweety), non_bird(tweety), non_vulture(tweety) }
1(B, E) = {hasbeak(tweety), bird (tweety), vulture(tweety) }

Clearly each ground atom in L (B, E) will succeed as a goal to a Prolog inter-
preter given the transformed B A E in this example. The clause L(B, E) is then
formed by simply removing the prefix “non_”.

2.2 Mode Declarations

Within Progol [8] the user indicates the language within which hypotheses are to
be constructed using mode declarations. Mode declarations come in two forms:
modeh statements indicate the predicates to be used in the head of hypothesised
clauses and modeb statements indicate predicates to be allowed in the body. A
mode declaration such as

:- modeb(1,p(+a,-b,#c))?

states that predicate ‘p’ has three arguments and will succeed with ‘1’ answer
substitution when called with the first argument (‘4 represents input variable)
bound with a term of type ‘a’. It will return terms of type ‘b’ (‘-’ represents out-
put variable) and ‘c’ (‘4 represents constant) as its second and third arguments.
The returned last argument will be used as a ground constant in the hypothesis.

Owing to the OPL assumption in previous versions of Progol, mode decla-
rations not only define the hypothesis language but also define the separation
between examples and background knowledge. Thus modeh statements indicate
which predicates represent examples while modeb statements indicate which
predicates represent background knowledge. In the non-OPL context of Progol5.0
modeh and modeb statements are still used to define the hypothesis language.

Grammar Tweety
E

O = Contra-positive definition created O = Contra-positive definition created

:- observable(s/2)? :- observable(hasbeak/1)7
:- modeh(* np(+sentence,-sentence))? :- modeh(1,bird(#object))?
:- modeh(* adj(+sentence,-sentence))? :- modeh(1,vulture(#object))?

:- modeb(*,det(+sentence,-sentence))?
:- modeb(*,adj(+sentence,-sentence))?
:- modeb(* ,noun(+sentence,-sentence))?

Fig. 2. Calling diagram and Progol5.0 declarations for Grammar from Fig. 1 and
Tweety in Examples 1 and 2.

Additional statements indicate which predicates are “observable”. Observable
predicates are those which represent examples. Fig. 2 shows the calling diagram
and Progol5.0 declarations for the Grammar example of Fig. 1 and the Tweety
example of Examples 1 and 2. Note that in the case of the Grammar, it is not
necessary to construct contra-positive definitions for each predicate in the calling
diagram. It is only necessary to do so for those on the paths in the calling diagram
between “modeh” (hypothesis) predicates and “E” (observable) predicates.

2.3 Multi-predicate Search Algorithm

As indicated in the Grammar example shown in Fig. 2 Progol5.0 can be given
multiple modeh declarations. Progol5.0 uses a standard covering algorithm where
each example is generalised using a multi-predicate search. This search is carried
out, over all the predicates associated with modeh declarations, to find the hy-
pothesis which covers the given example with maximal information compression.
Compression is calculated using the Minimal Description Length function

f=p—(c+n)

where p is the number of positive examples covered among the observable pred-
icates, ¢ is the number of atoms in the body of the hypothesised clause and
n is the number of negative examples covered by the hypothesised clause. The

MultiPredicateSearch(ModehPredicates,Example)
BestHypothesis=NULL % Best hypothesised clause so far
Max=0 % Maximum Compression achieved
For each P in ModehPredicates % Maximise over all modeh predicates
SinglePredicateSearch(P,Example,BestHypothesis,Max)
End for each
If Max>0 then return BestHypothesis

SinglePredicateSearch(P,Example,BestHypothesis,Max)

Ms is Modehs(P) % Find all modeh declarations for P
MakeContrapositives(P) % Contra-positives of the form ‘non_P’
As are NegAtomsOf Ms % Goals of the form “non_P”

Derive ground atomic Start-set from calling As
Obs are the observable predicates
For each s in Start-set
Let s’ be s with ‘non_’ prefix removed.
Let e be (s’ < Body(Example))
% Example may be non-unit clause
Construct 1 ; from e % See Section B.1
Retract Example
Find C, EmptyClause < C' < 1; with
maximum compression Comp wrt Obs
% See Section B.2
If Comp > Max then
Max = Comp
BestHypothesis = C
Assert Example
End for each

Fig. 3. Multi-predicate search algorithm

search related to each example to be generalised is carried out by the set of
related procedures given in Fig. 3.

The underlying refinement graph search is based on the Progol procedure
described in [8] (see Appendix A) modified to calculate compression over the
observable predicates.

3 Number Grammar Experiment

3.1 Materials

The experiment in this section involves learning a well-defined fragment of nat-
ural language, that is the translation of number phrases into their numerical
form. For instance, the grammar translates the English phrase “three hundred
and twenty-five” to the expression 3*100+2*10+5, or simply 325. Note that this
is a special case of the general problem of translation of syntax to semantics. A

wordnum(A, [1,T) :- tenu(A,[1,T).
wordnum(A, [1,T) :- word100(A,[]1,T).
wordnum(A, [1,T) :- word1000(A,[1,T).

word1000(A,[1,T) :- thou(a,[]1,T).
word1000(A,B,T+N) :- thou(A, [andIC],T), tenu(C,B,N).
word1000(A,B,T+H) :- thou(A,C,T), word100(C,B,H).

thou([D,thousand|R],R,T*1000) :- digit(D,T).

word100(A, [,H) :- hun(A,[],H).
word100(A,B,H+T) :- hun(A, [and|C],H), tenu(C,B,T).

hun([D,hundred |R] ,R,H*100) :- digit(D,H).

tenu([D], [1,N) :- digit(D,N).

tenu([ten],[]1,10). tenu([eleven],[],11). tenu([twelvel,[],12).
tenu([thirteen],[],13). tenu([fourteen],[],14). tenu([fifteen],[],15).
tenu([sixteen],[],16). tenu([seventeen],[],17). tenu([eighteen],[],18).
tenu([nineteen],[]1,19).

tenu([T], [],N) :- tenmult(T,N).
tenu([T,D], [1,N+M) :- tenmult(T,N), digit(D,M).

digit(one,1). digit(two,2). digit(three,3). digit(four,4).
digit(five,5). digit(six,6). digit(seven,7). digit(eight,8).
digit(nine,9).

tenmult (twenty,20). tenmult(thirty,30). tenmult(forty,40).
tenmult (fifty,50) . tenmult(sixty,60). tenmult(seventy,70).
tenmult (eighty,80). tenmult(ninety,90).

Fig. 4. Grammar for translating English number phrases to numbers.

complete Definite Clause Grammar (DCQG) for the numbers 1-9999 is shown in
Fig. 4.

3.2 Method

Note that the grammar in Fig. 4 has a hierarchically description similar to that
of Fig. 1. The aim of the experiment is to determine whether Progol5.0 can
recover performance of the complete theory in Fig. 4 after a randomly chosen
subset of clauses from throughout the theory is removed.

The complete theory shown in Fig. 4 has 40 clauses. Progol5.0 was applied
to learning from 100 randomly chosen examples with background knowledge
consisting of partial grammars in which randomly chosen subsets of size 5, 10,
15 and 20 clauses were left out. For each size 10 randomly chosen left-out subsets

Theory Recovery using 100 examples

100 T T T T

90 |- After -

80 | Before B

Predictive accuracy (%)

60 - .

0k /I/Q/Ié | |

50 60 70 80 90 100
Remaining background clauses (%)

[S)}

Fig. 5. Results of experiments on number grammar

were chosen and the results were averaged. Performance was measured on the
complete set of 9999 examples.

3.3 Results

Fig. 5 shows the results, indicating the predictive accuracy measured both before
and after relearning using Progol5.0. Error bars indicate the standard deviation

in the predictive accuracy. Each experiment took around 0.1 seconds to run on
a Dell 7000 Intel 686 laptop.

3.4 Discussion

The results in Fig. 5 indicate that substantial recovery of performance of a
relatively complex grammar can be achieved when up to half of the grammar
productions are deleted. However, when half or more of the clauses are deleted
recovery fails. The reason for this appears to be related to the incompleteness
of the approach discussed in [20]. That is, when multiple clauses are needed to
complete a proof Progol5.0 fails to be able to reconstruct them all.

4 Functional Genomics experiment

4.1 Context of Experiment

Genomic data is now being obtained on an industrial scale. The complete genomes
of around a dozen micro-organisms have been sequenced. The genomes of about
another 50 organisms are in the process of being sequenced and the completion

of the sequencing of the human genome is imminent. The analysis of this data
needs to become as industrialised as the methods for obtaining it.

The focus of genome research is moving to the problem of identifying the bio-
logical functions of genes. This is known as functional genomics. The problem is
important because nothing is known about the function of between 30-60% of all
new genes identified from sequencing [3, 5, 10]. Functional genomics is recognised
as central to a deeper understanding of biology, and the future exploitation of bi-
ology in medicine, agriculture, and biotechnology in general. Functional genomics
is an appropriate application to test TCIE because: a) relational representations
are appropriate for the problem; b) it is only possible to make experimental ob-
servations about concepts which are related to the target concept, as opposed
to the target concept itself.

Metabolism and Growth Experiments One approach to functional ge-
nomics involves growth experiments. These involve feeding a micro-organism
different mixtures of nutrients known as growth media and measuring the result-
ing growth. Cells of the micro-organism import molecules from a growth medium
and convert them to molecules which are essential for growth via pathways of
chemical reactions known as metabolic pathways. Each chemical reaction is catal-
ysed by an enzyme. Some of these enzymes are known and others are not. The
genes which code for the latter are genes whose function is not known.

To find out what the function of a gene is, mutants of a particular micro-
organism are grown which do not contain the gene in question. This process is
referred to as gene deletion. The effect of not having the gene can then be com-
pared with a control i.e. the wild form of the organism which does not have the
mutation. To make the effect of the mutation observable it is necessary to feed
samples of the mutant with different growth media. The observable character-
istics of an organism are collectively referred to as its phenotype. A phenotypic
effect is a difference between the phenotype of the wild strain of an organism
and the phenotype of one of its mutants.

4.2 Experimental Materials

The Functional Genomics Model In this experiment we simulate the effect
of single-gene-deletion growth experiments using the abstract, highly simplified
model of a cell shown in Fig. 6. In Computer Science terms, Fig. 6 may be viewed
as a graph in which nodes represent molecules, arcs represent chemical reactions,
labels of arcs represent enzymes which catatyse particular reactions and paths
correspond to metabolic pathways. Although the model is highly simplified it
is worthy of study because it has some of the characteristics of the functional
genomics domain.

Table 1 lists part of the logic program which represents the functional ge-
nomics model. A growth medium is a combination of growth nutrients. Thus
there are just seven growth media because there are just three nutrients. The
program also contains:

nutrient_1 nutrient_2 nutrient_3

c_a l e_bi L c_c

metabolite_ 1 metabolite_2 metabolite_3
h .
)/_g\ ¢ e i
metabolite_4 - metabolite_6 essential_molecule_4
e
. metabolite_5 —
€J l \S Kk metabolite_7
- e
essential essentail essentail
molecule_1 molecule_2 molecule_3

Fig. 6. Abstract, highly simplified model of a cell.

phenotypic_effect (Gene, Growth_medium) :-
nutrient_in(Nutrient, Growth_medium),
metabolic_path(Nutrient, Mi),
enzyme (E, Mi, Mj),
codes (Gene, E),
metabolic_path(Mj, Mn),
essential_molecule(Mn),
not (path_without_E(Growth_medium, Mn, E)).

nutrient_in(Nutrient, Growth_medium):- element(Nutrient, Growth_medium).

metabolic_path(A, A).
metabolic_path(A, B):- enzyme(_, A, B).
metabolic_path(A, B):- enzyme(_, A, X), metabolic_path(X, B).

path_without_E(Growth_medium, Mn, E):-
nutrient_in(Nutrient, Growth_medium),
path_without_E(Nutrient, Mn, E).
path_without_E(A,A,_).
path_without_E(A,B,E) :- enzyme(E2,A,B) ,not(E=E2).
path_without_E(A,B,E):- enzyme(E2,A,X) ,not(E=E2) ,path_without_E(X,B,E).

essential_molecule(ess_mol_1). essential_molecule(ess_mol_2).
essential_molecule(ess_mol_3). essential_molecule(ess_mol_4).

Table 1. Part of the logic program which represents the functional genomics model.

Table 2. Experimental Method

for j in (23, 45, 68, 91)
a training set was created by selecting j examples at random,;
for k in (0, 1, 4, 7, 10, 12, 13)
for 7 in 1 to 10 do
— k codes/2 facts were selected at random;
— the other 13 — k codes/2 facts were removed from the model;
— the performance of the resulting incomplete model was measured,;
— Logical Back Propagation was applied to the training set and the incom-
plete model;
— the performance of the updated model was measured.
end
end
end

— one enzyme(enzyme, molecule_in, molecule_out) fact for each enzyme
in the model i.e. for each arc in the graph shown in Fig.6;

— codes(gene, enzyme) facts representing a one-to-one mapping of genes to
enzymes.

The Example Set Examples were represented by positive or negative in-
stances of the predicate phenotypic_effect (gene, growth medium). For exam-
ple phenotypic_effect(gl, [nutrient_1, nutrient_2]) represents the fact
that a phenotypic effect is observed if a mutant strain of an organism is cre-
ated by removing the gene g1 and this mutant is fed the growth medium which
contains nutrients 1 and 2. There are 91 such examples since there are seven
examples for each of the 13 genes in the model: there are only seven possible
growth media. The class of each example (positive or negative) was deduced
from the complete model. There are 45 positives and 46 negatives.

4.3 Experimental Method

Table 2 summarises the experimental method. The performance measure used
was predictive accuracy on the complete distribution of the observable predicate
i.e. phenotypic_effect(gene, growth medium). The effect of the inner-most
loop is to measure pre-learning and post-learning performance ten times for
every possible pair of j and k values shown in Table 2; the purpose of this
repetition was to allow the subsequent calculation of the mean accuracy and
standard deviation for each pair of j and &k values.

It was not possible to use a purely inductive approach to regenerate the
codes/2 facts from the training data because codes/2 is below phenotypic_effect/2
in the calling diagram. CProgol was instructed to abduce codes/2 facts as fol-
lows.

:— modeh(1,codes (#gene,#enzyme))?
:— observable(phenotypic_effect/2)7?

During training, Progol was instructed to assume that codes(gene, enzyme)
is a one-to-one mapping by placing the following constraints in the learning file.

:— codes(Gene, Enzymel), codes(Gene, Enzyme2), not (Enzymel = Enzyme2).
:— codes(Genel, Enzyme), codes(Gene2, Enzyme), not (Genel = Gene2).

4.4 Results and Analysis

Fig. 7 shows a plot of the results in the form of four learning curves. The results
show that applying TCIE to a version of the model which has been made in-
complete by removing some of codes/2 facts leads to a recovery in performance,
regardless of how many facts were removed or the size of the training set. The
more codes/2 facts that are removed, the greater the recovery. The larger the
training set, the greater the recovery.

Running times for the experiments in Fig. 7 were typically under 6 seconds
on a Silicon Graphics O2 workstation.

5 Comparison with related work

TCIE fits within the general scheme of theory refinement described in [19].
Within this scheme TCIE is a form of theory revision based on generalising
(completing) revisions. Earlier systems with comparable aims include MIS [16]
CLINT [12,13], RUTH [1], AUDREY [18] and BORDA [6] (see also [15] and [14]).
We would argue that though similar in spirit to many of these earlier systems,
TCIE as implemented in Progol5.0, has advantages related to the inheritance of
efficient pruning, logical constraints and the general Progol framework from ear-
lier versions of Progol. Progol5.0’s efficiency is indicated by the fact that running
times for experiments in this paper were typically under 6 second on a standard
workstation.

Many of the basic mechanisms used throughout theory revision systems are
based on abductive operators from logic programming. In [2] Dimopoulos and
Kakas compared abductive and inductive forms of reasoning. They note that
ILP and abduction share the following relationship among background theory
T, hypothesis H and observation O.

THEO
They summarise the main difference between abduction and induction as follows.

Whilst in abduction the addition of H to T just adds missing facts
related to the particular observations in induction H introduces new
general relations in 7.

Predictive accuracy (%) Predictive accuracy (%) Predictive accuracy (%)

Predictive accuracy (%)

Theory Recovery using 23 examples
100

Before . —

50 _ 1 1 1 1
o 20 40 60 80 100
Remaining codes/2 facts (%)

Theory Recovery using 45 examples

100 I

85 -

65 — Before —
.

50 1 1 1 1
o 20 40 60 80 100
Remaining codes/2 facts (%)

Theory Recovery using 68 examples
100 T

65 - Before - —

50 _ I I I I
o 20 40 60 80 100
Remaining codes/2 facts (%)

Theory Recovery using 91 examples
100

-
65 — Before g —

50 _ 1 1 1 1
o 20 40 60 80 100
Remaining codes/2 facts (%)

Fig. 7. Learning curves for the model of functional genomics.

TCIE incorporates a form of abduction based on the use of contra-positives.
This is used to derive the set of ground atoms referred to as the Start-set in
the algorithm in Fig. 3. However, TCIE then goes on to generalise these facts
to find new general relations. We would therefore argue that TCIE is a form of
induction which incorporates abductive reasoning.

6 Conclusions and further work

In this paper we describe the non-OPL setting for ILP. Here the predicates in-
volved in observations are distinct from those in the head of hypothesised clauses.
It is shown how Inverse Entailment has been used to implement TCIE within
Progol5.0. Progol5.0 is then applied in two experiments to datasets in which
random subsets of the complete theory are deleted. The results indicate that
Progol5.0 is capable of recovering predictive accuracy to a substantial degree,
even when large sections of the background knowledge have been deleted.

However, it was noted in the discussion in Section 3.4 that the incompleteness
described by Yamamoto [20] limits the performance of Progol5.0. This incom-
pleteness stems from multiple uses of the hypothesised clause within the deriva-
tion of an example. The performance limitation might come as some surprise
in that this incompleteness limitation has often been assumed to be related to
learning of recursive theories which necessarily require recursive hypotheses to
be used more than once. The grammar shown in Fig. 3 is non-recursive. However,
consider parsing the phrase “two hundred and two”. This parse uses the ground
unit clause digit(two,2) twice. Therefore if this ground unit clause is missing from
the background theory then the incompleteness noted by Yamamoto will prevent
its being relearned. Thus methods to circumvent this form of incompleteness are
important for future research.

The datasets used in this paper differ substantially from those used in the
more familiar OPL setting, in which there is only one predicate to be learned. We
believe that the novel testing methodology used in the experimental sections of
this paper are important contribution. Moreover, we believe that the non-OPL
setting should be of increasing interest in applications of ILP.

Acknowledgements

The authors would like to thank Akihiro Yamamoto, Koichi Furukawa, Antonis
Kakas, Stefan Wrobal and Luc De Raedt for discussions about Abduction and
inverse entailment. The first author would like to thank his wife wife Thirza
and daughter Clare for their cheerful support during the writing of this paper.
This work was supported partly by the Esprit RTD project “ALADIN’ (project
28623), EPSRC grant “Closed Loop Machine Learning”, BBSRC/EPSRC grant
“Protein structure prediction - development and benchmarking of machine learn-
ing algorithms” and EPSRC ROPA grant “Machine Learning of Natural Lan-
guage in a Computational Logic Framework”.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

H. Ade, L. De Raedt, and M. Bruynooghe. Theory revision. In S. Muggleton, editor,
Proceedings of the 3rd International Workshop on Inductive Logic Programming,
pages 179-192, 1993.

Y. Dimopoulos and A. Kakas. Abduction and inductive learning. In L. De Raedt,
editor, Proceedings of the Fifth Inductive Logic Programming Workshop (ILP95),
pages 25-28, Leuven, Belgium, 1995. KU Leuven.

B. Dujon. The yeast genome project - what did we learn? Trends in Genetics,
12:263-270, 1996.

. K. Furukawa. On the completion of the most specific hypothesis computation in

inverse entailment for mutual recursion. In Proceedings of Discovery Science ’98,
LNATI 1532, pages 315-325, Berlin, 1998. Springer-Verlag.

Goffeau, A. et multi al. Life with 6000 genes. Science, 274:546-567, 1996.

K. Ito and A. Yamamoto. Finding hypotheses from examples by computing the
least generlisation of bottom clauses. In S. Arikawa and H. Motoda, editors, Pro-
ceedings of Discovery Science 98, pages 303-314. Springer, Berlin, 1998. LNAI
1532.

A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive logic programming. Journal
of Logic and Computation, 2, 1992.

S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245—
286, 1995.

S. Muggleton. Completing inverse entailment. In C.D. Page, editor, Proceedings
of the Eighth International Workshop on Inductive Logic Programming (ILP-98),
LNAI 1446, pages 245—249. Springer-Verlag, Berlin, 1998.

S.G. Oliver. From DNA sequence to biological function. Nature, 379:597-600,
1996.

G. Plotkin. A further note on inductive generalization. In Machine Intelligence,
volume 6. Edinburgh University Press, 1971.

L. De Raedt. Interactive Theory Revision: an Inductive Logic Programming Ap-
proach. Academic Press, 1992.

L. De Raedt and M. Bruynooghe. Interactive concept-learning and constructive
induction by analogy. Machine Learning, 8:107-150, 1992.

L. De Raedt and N. Lavrac. Multiple predicate learning in two inductive logic
programming settings. Journal on Pure and Applied Logic, 4(2):227-254, 1996.
B. L. Richards and R. J. Mooney. Automated refinement of first-order Horn-clause
domain theories. Machine Learning, 19(2):95-131, 1995.

E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.

M. Stickel. A Prolog technology theorem prover: implementation by an extended
Prolog compiler. Journal of Automated Reasoning, 4(4):353-380, 1988.

J. Wogulis. Revising relational theories. In Proceedings of the 8th International
Workshop on Machine Learning, pages 462-466. Morgan Kaufmann, 1991.

S. Wrobel. First-order theory refinement. In L. De Raedt, editor, Advances in
Inductive Logic Programming, pages 14-33. I0S Press, Ohmsha, Amsterdam, 1995.
A. Yamamoto. Which hypotheses can be found with inverse entailment? In
N. Lavra¢ and S. DZeroski, editors, Proceedings of the Seventh International Work-
shop on Inductive Logic Programming, pages 296-308. Springer-Verlag, Berlin,
1997. LNAI 1297.

A Progol algorithm

B Definition of most-specific clause

Definition 1. Most-specific clause L;. Let h,i be natural numbers B be a
set of Horn clauses, e = a < b1,..,b, be a definite clause, M be a set of mode
declarations containing exactly one modeh m such that a(m) < a and L be
the most-specific (potentially infinite) definite clause such that B A L A€ by
EmptyClause. L; is the most-specific clause in L;(M) such that 1; < L.

B.1 Construction of most-specific clause
Algorithm 1 Algorithm for constructing 1;.

1. Given natural numbers h,i, Horn clauses B, definite clause e and set of
mode declarations M.

2. Letk =0, hash : Terms — N be a hash function which unigquely maps terms
to natural numbers, € be the clause normal form logic program @Aby A..Aby,,
L; ={) and InTerms= 0.

3. If there is no modeh in M such that a(m) < a then return EmptyClause.
Otherwise let m be the first modeh declaration in M such that a(m) < a
with substitution Oy. Let ap, be a copy of a(m) and for each v/t in Oy if v
corresponds to a #type in m then replace v in ap by t otherwise replace v in
ap, by vy where k = hash(t) and add v to InTerms if v corresponds to +type.
Add ap to J_i.

4. If k =i return L; else k =k + 1.

5. For each modeb m in M let {v1,..,vn} be the variables of +type in a(m) and
T(m) =Ty x..xT, be a set of n-tuples of terms such that each T; corresponds
to the set of all terms of the type associated with v; in m (termt is tested to be
of a particular type by calling Prolog with type(t) as goal). For each (t1,..,t,)
in T'(m) let ap be a copy of a(m) and 0 = {v1/t1,..,v,/tn}. If Prolog with
depth-bound h succeeds on goal ayd with the set of answer substitutions Oy
then for each 8y in Oy and for each v/t in Oy if v corresponds to a #type in
m then replace v in ay by t otherwise replace v in ap by vy, where k = hash(t)
and add v to InTerms if v corresponds to -type. Add ay to L;.

6. Goto step 4.

B.2 A*-like algorithm for finding clause with maximal compression
Firstly we define some auxiliary functions used in Algorithm 2.

Definition 2. Auxiliary functions. Let the examples E be a set of Horn
clauses. Let h,i,B,e, M, 1; be as in Definition 1. Let C be a clause, k be a
natural number and 6 be a substitution.

0 if there is no -type variable in the head of 1;
d'(v) = 0 if v is -type in the head of L;
T) o if v is not in L

(minyey,d'(v)) + 1 otherwise

where U, are the -type variables in atoms in the body of C which contain +type
occurrences of v. Below state s has the form (C,0,k). c is a user-defined param-
eter for the mazimal clause body length. |S| denotes the cardinality of any set

S.

ps=1|{e:e € E and BAC Netp EmptyClause}|
ns =1|{e:e € E and BAC Aetp EmptyClause}|
cs=|C|—1

Vs ={v:ufv € and u in body of C}

hs = minyey,d (v)

9s = Ps — (Cs +hs)

fs =95 — s

best(S) is a state s € S which has ¢; < ¢ and for which there does not exist
s' € S for which fo > fs.

true ifns =0 and fs >0

true if gs <0

true ifcs > c

false otherwise

true if s = best(S),ns =0, fs >0 and
terminated(S, S') = for each s' in S' it is the case that fs > g¢
false otherwise

prune(s) =

Algorithm 2 Algorithm for searching EmptyClause X C' < 1;.

Given h,B,e, L; as in Definition 1.

Let Open = {(EmptyClause,d, 1)} and Closed = 0.

Let s = best(Open) and Open = Open—{s}.

Let Closed = Closed U{s}.

If prune(s) goto 7.

Let Open = (OpenlJp(s))— Closed.

If terminated(Closed, Open) then return best(Closed).

If Open = (then print ‘no compression’ and return (e, 0,1).
Goto 3.

© % RSO o=

