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Abstract This paper introduces a novel logical framework for concept-learning called
brave induction. Brave induction uses brave inference for induction and is useful for
learning from incomplete information. Brave induction is weaker than explanatory in-
duction which is normally used in inductive logic programming, and is stronger than
learning from satisfiability, a general setting of concept-learning in clausal logic. We
first investigate formal properties of brave induction, then develop an algorithm for
computing hypotheses in full clausal theories. Next we extend the framework to induc-
tion in nonmonotonic logic programs. We analyze computational complexity of decision
problems for induction on propositional theories. Further, we provide problem solving
by brave induction in systems biology, requirement engineering, and multiagent nego-
tiation.

Keywords brave induction - inductive logic programming - nonmonotonic logic
programming

1 Introduction

1.1 Explanatory Induction

Logical foundations for induction is one of the central topics in machine learning, and
different theories of induction have been proposed in the literature (Plotkin (1970);

Helft (1989); De Raedt and Lavrac¢ (1993); Muggleton (1995); Inoue (2004); Sakama
(2005), for instance). A typical induction task constructs hypotheses to explain an
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observation (or examples) using the background knowledge. More precisely, given a
first-order theory B as the background knowledge and a formula O as an observation,
a hypothesis H covers O under B if

BAHEO (1)

where BA H is consistent. This style of induction is called explanatory induction (Flach
1996) or learning from entailment (De Raedt 1997). It is used as a normal setting in
inductive logic programming (ILP) (Muggleton and De Raedt 1994; Nienhuys-Cheng
and Wolf 1997) and is also used for induction from full clausal theories (Inoue 2004).

By the definition, explanatory induction requires that a possible solution H to-
gether with B logically entails O. In other words, O is true in every model of B A H.
This condition is often too strong for building possible hypotheses, however.

Ezample 1.1 Suppose that there are 30 students in a class, of which 20 are European,
7 are Asian, and 3 are American. The situation is represented by the background
knowledge B and the observation O:

B : student(1) A - - - A student(30),
O : euro(1) A--- Aeuro(20) A asia(21) A--- A asia(27) A usa(28) A --- A usa(30)

where each number represents individual students. In this case, the following clause,
saying that every student is either European, Asian, or American, appears a good
hypothesis:

H: euro(z)Vasia(z)V usa(r) < student(x). (2)
Unfortunately, however, H does not satisfy the relation B A H = O. In fact, BA H
has many models in which O is not true. An instance of such a model is:

{ student(1), ..., student(30), euro(1),...,euro(30) }.

Explanatory induction in ILP has mainly been used for learning Horn theories.
When the background knowledge B and a hypothesis H are Horn theories, the inter-
section of all models of B A H coincides with the unique minimal model (or the least
model). The relation (1) then implies that O is true in the least model of BA H. On the
other hand, when B or H contains indefinite information, B A H becomes a non-Horn
theory which has multiple minimal models in general. In this case, an observation O
may be true in some minimal models of B A H but not every one. However, the rela-
tion (1) excludes a hypothesis H due to the existence of a (minimal) model in which
O is not true. As a result, meaningful hypotheses might be unqualified as presented
above.

1.2 Learning from Interpretation and Learning from Satisfiability

Explanatory induction is used for classifying observed data and predicting unseen phe-
nomena. By contrast, learning from interpretations (LFI) (De Raedt 1997; De Raedt
and Dehaspe 1997a) seeks regularities over observed data. In LFI observations are
given as interpretations, and induction seeks hypotheses which are satisfied by obser-
vations expanded by the background knowledge. More precisely, a hypothesis H covers
O under B in LFI iff H is true in the least model of B A O.}

L This is a definition for a definite clause theory B (De Raedt and Dehaspe 1997a), and its
extension to non-Horn theory is discussed in Section 6.2.



Ezample 1.2 Consider the background knowledge B and the observation O in Exam-
ple 1.1, in which O is viewed as the interpretation containing atoms appearing in O.
Then, the hypothesis H of (2) covers O under B in LFI. Suppose, on the other hand,
that B' = B U { student(31)}. Then, H does not cover O under B’ in LFI as the least
model of B' A O does not satisfy H.

In Example 1.2, when there is a student whose nationality is unknown, LFI does
not infer the hypothesis H. This is because in LFI, observations are assumed to be
completely specified. Thus, if complete knowledge of observations is unavailable, one
should be cautious with this approach (De Raedt and Dehaspe 1997a).

Learning from satisfiability (LFS) (De Raedt 1997; De Raedt and Dehaspe 1997b)
is used for concept-learning in face of incompletely specified observations. By the def-
inition, a hypothesis H covers O under B in LFS iff B A H has a model satisfying
0.

Ezample 1.3 Consider again the background knowledge B and the observation O in
Example 1.1. Then, the hypothesis H of (2) covers O under B in LFS. In Example 1.2,
H also covers O under B’ in LFS.

Thus, learning from satisfiability can induce the hypothesis H of (2) under both
B and B'. Due to its weak setting, however, the hypotheses space of LFS is generally
huge. In fact, any theory H becomes a possible solution of LF'S as far as it is consistent
with B A O. In Example 1.1, the following hypotheses:

Hy : euro(x) V student(z) <,
Hs : student(x) < euro(z) A asia(z),
Hs: < asia(x) A usa(x),

all become solutions of LFS.

1.3 Brave Inference and Cautious Inference

When B A H is a non-Horn theory, B A H has multiple minimal models in general. In
this case, two different types of inferences, brave inference and cautious inference, are
considered in nonmonotonic logics (McDermott 1982) and disjunctive logic programs
(Eiter and Gottlob 1995). Under the minimal model semantics, a formula F is a con-
sequence of brave inference in a theory T if F is true in some minimal model of T'. By
contrast, F' is a consequence of cautious inference in 7" if F' is true in every minimal
model of T. Brave and cautious inferences are also applied to abduction in artificial
intelligence. Given the background knowledge B, an observation O is ezplained under
brave (resp. cautious) abduction if O is true in some (resp. every) minimal model of a
consistent theory B A H (Eiter etal. 1997). Here, H C A and A is a set of formulas
representing candidate hypotheses (called abducibles).

Ezample 1./ Suppose the background knowledge B and abducibles A:
B : light_of f < power_failure,
light of f < broken_bulb,
broken_bulb V melted_fuse < high_current.
A power_failure,

high_current.



Given the observation O = light of f, E1 = power_failure is the unique (minimal)
explanation in cautious abduction, while Ey = high_current as well as E; are two
(minimal) explanations in brave abduction.

Thus, brave inference is weaker than cautious inference, and it is especially useful
for hypothetical reasoning as it can compute more hypotheses than cautious one.

1.4 Outline of the Paper

In this paper, we apply brave inference to induction. Brave induction can induce non-
Horn clauses from a full clausal theory with incomplete observations. It is weaker that
explanatory induction but stronger than learning from satisfiability, thus provides a
reasonable compromise between the two frameworks. Using brave induction, the hy-
pothesis (2) becomes a solution of both B of Example 1.1 and B’ of Example 1.2. Brave
induction is also defined for induction from nonmonotonic logic programs containing
default negation. We show potential applications of brave induction for problem solving
in systems biology, requirement engineering, and multiagent negotiation.

The rest of this paper is organized as follows. Section 2 introduces a logical frame-
work of brave induction and develops a procedure for computing hypotheses. Section 3
extends the framework to induction from nonmonotonic logic programs. Section 4 ana-
lyzes computational complexity of brave induction on propositional theories. Section 5
addresses problem solving by brave induction. Section 6 discusses related issues, and
Section 7 concludes the paper. This paper is a revised and extended version of (Sakama
and Inoue 2008). Section 4 and Section 5 are new in this paper. Moreover, new con-
siderations and additional arguments are added throughout the paper.

2 Brave Induction
2.1 Logical Framework

We first introduce a logical framework of induction considered in this paper. A first-
order language L consists of an alphabet and all formulas defined over it. The definition
is the standard one in the literature (Nienhuys-Cheng and Wolf 1997). For induction
we use a clausal language which is a subset of L.

A clausal theory (or simply a theory) is a finite set of clauses of the form:

A1V"'VAmV_‘Am+1V"'V_'An (anZO)

where each A; (1 < i < n) is an atom. Any variable in a clause is assumed to be
universally quantified at the front. A clause of the above form is also written as

A1V~~~VAm(—Am+1/\---/\An. (3)

A1 V-V Ay, is the head of the clause, and A4 A -+ A Ap is the body. Given a
clause C of the above form, head(C) represents the set { Aj,..., A } and body(C)
represents the set { A1, .., An }. A clause C is often identified with the set of literals
{A1,...,Am, " Am+1,-.-, 7 An }. A positive clause is a clause C' with body(C) = 0,
and a negative clause is a clause C with head(C) = 0. A Horn clause is a clause C' with



| head(C) | < 1. A Horn theory is a finite set of Horn clauses. A theory is identified
with the conjunction of the clauses in it. A theory, a clause or an atom is ground if it
contains no variable. A (ground) substitution 6 replaces variables z1, ...,z occurring
in a clause C (resp. an atom A) to (ground) terms ¢1,...,t; in CO (resp. Af). A clause
C subsumes a clause D if there is a substitution € such that CO C D. A conjunctive
normal form (CNF) formula is a conjunction of disjunction of literals, and a disjunctive
normal form (DNF) formula is a disjunction of conjunction of literals. A CNF formula
or a DNF formula is ground if it contains no variable. A DNF formula FF =¢; V---Vey
is irredundant if F # F' forany F' =c¢; V-~V 1 Ve V- Ve, (1<i<k). A
conjunction C of ground atoms is identified with the set of ground atoms in C'. Given
a literal L, pred(L) represents the predicate of L, and term(L) and const(L) represent
the sets of terms and constants in L, respectively.

The domain of a theory T is given as the Herbrand universe HU and an inter-
pretation of T is defined as a subset of the Herbrand base HB. An interpretation I
satisfies a ground clause (3) if { Apy41,...,An } C Iimplies { Ay, ..., Am }NT # 0. An
interpretation I satisfies a theory T if I satisfies every clause in 7. An interpretation I
is a model of T if I satisfies T. Mod(T') represents the set of all models of 7. A model
M € Mod(T) is minimal if N C M implies M C N for any N € Mod(T). The set of
minimal models of T is written as MM (T). A theory T entails a formula F (written
as T |E F) if F is true in any I € Mod(T). A theory T is consistent if Mod(T) # 0;
otherwise, T is inconsistent.

Let B, O and H be all clausal theories, where B, O, and H are respectively called
a background knowledge, an observation, and a hypothesis. Here, B, O, and H are sets
of clauses, but each set is identified with the conjunction of clauses included in the set
as usual. We assume that B, O and H have the same HU and HB. Given B and O,
explanatory induction construct H to explain O under B. Formally, a hypothesis H
covers O under B if

BAHEO (4)

where B A H is consistent. H is called a solution of explanatory induction.
Two new frameworks of induction are introduced next.

Definition 2.1 (brave and cautious induction) Let B be the background knowledge
and O an observation. A hypothesis H covers O under B in brave induction if B A H
has a minimal model satisfying O. In this case, H is called a solution of brave induction.

By contrast, H covers O under B in cautious induction if B A H is consistent and
every minimal model of BA H satisfies O. In this case, H is called a solution of cautious
induction.

The names of brave and cautious induction are taken from brave and cautious in-
ferences. Under the minimal model semantics, a formula F is a consequence of cautious
inference in a theory T if it is true in every minimal model of 7', while F' is a conse-
quence of brave inference in T if F' is true in some minimal model of T.2 When a theory
contains indefinite or incomplete information, brave inference infers more results than
cautious inference in general. Brave and cautious inferences have been used in different
reasoning tasks of deduction and abduction in artificial intelligence. It is thereby natu-
ral to apply these inferences to induction from non-Horn theories containing indefinite
or incomplete information.

2 Brave and cautious inferences are also called credulous and skeptical inferences, respec-
tively.



Relations between explanatory induction, cautious induction, and brave induction
are as follows.

Proposition 2.1 (relation among solutions) Let B be the background knowledge and
O an observation.

1. If H is a solution of explanatory induction, H is a solution of cautious induction.
The converse implication also holds when O is a set of positive clauses.

2. If H is a solution of cautious induction, H is a solution of brave induction. The
converse implication also holds when B N\ H is a Horn theory.

Proof (1) The if-part is obvious by the definition. To see the converse, if H is a solution
of cautious induction, any positive clause C' in O is satisfied in every minimal model of
a consistent theory B A H. Then, C is satisfied in every model of a consistent theory
B A H. (2) The if-part is obvious by the definition. When B A H is a Horn theory, it
has a unique minimal model. Hence, the result holds. O

The converse implication of Proposition 2.1(1) does not hold in general when O
contains a clause C with body(C) # 0.

Ezample 2.1 Let B = {p(a)Vq(a) } and O = {-p(a)}. Then, H = {g(a)} is a solution
of cautious induction, but H is not a solution of explanatory induction because B A H
has a model in which p(a) is true.

Proposition 2.2 (eristence of solutions) Let B be the background knowledge and O
an observation. Then, the following four conditions are equivalent.

1. B A O is consistent.

2. Brave induction has a solution.

8. Cautious induction has a solution.

4. Ezplanatory induction has a solution.

Proof We prove (1)< (2), but (1)<(3) and (1)<(4) are proved in the same manner.
If brave induction has a solution H, B A H has a minimal model satisfying O. Then,
B A O is consistent. To see the converse, suppose that brave induction has no solution.
Then, for any H no minimal model of B A H satisfies O. This implies that for any H no
minimal model exists for BA H A O, so BA H A O is inconsistent for any H. Putting
H =0, B A O is inconsistent. Hence, the result holds. O

Corollary 2.3 (necessary condition of solutions) Let B be the background knowledge
and O an observation. If H is a solution of brave induction, B A H A O is consistent.
The same condition holds for cautious and explanatory induction.

We later provide another necessary and sufficient condition for brave induction in
Proposition 2.7.

Next we compare properties of brave and cautious induction. In what follows, B,
O, and H represent the background knowledge, an observation, and a hypothesis,
respectively.

Proposition 2.4 (conjunction of solutions) The fact that both Hy and Hy are solu-
tions of brave induction does not imply that Hy A Hs is a solution of brave induction.
This is also the case for cautious induction.

The above property also holds for explanatory induction (De Raedt and Dehaspe
1997b).4

3 Every consistent clausal theory has a minimal model (Bossu and Siegel 1985).
4 This property is also called nonmonotonicity of induction.



Table 1 Comparison of Properties

Brave Ind. | Cautious Ind. | Explanatory Ind.
Conjunction of solutions X X X
Disjunction of solutions O O O
Conjunction of observations X O O

Ezample 2.2 Let B = {p(a) « } and O = {q(a) V r(a) +, <« g(a) Ar(a)}. Then,
both H; = {q(z) < p(z)} and Hy = {r(z) « p(z)} cover O under B in brave or
cautious induction, but H; A Ho does not.

Proposition 2.5 (disjunction of solutions) If H1 and H> are solutions of brave in-
duction, so is H1 V Ha. This is also the case for cautious and explanatory induction.

Proof By BA(H1 V Hs) = (BAHyp)V (BA Hs), if both BA Hy and B A Hs have a
minimal model satisfying O, so does B A (H1 V Hs). Moreover, if O is satisfied in every
(minimal) model of B A H; and O is satisfied in every (minimal) model of B A Ha, O
is also satisfied in every (minimal) model of (B A H1) V (B A Ha). |

Proposition 2.6 (conjunctions of observations) The fact that H covers both O1 and
O> under B implies that H covers O1 A O2 under B in cautious and ezplanatory
induction. But this is not the case for brave induction.

Proof If O1 and O- are satisfied in every (minimal) model of B A H, so does O1 A Os.
A counter-example for brave induction is shown in Example 2.3. O

Ezample 2.3 Let B = {p(z)Vq(z) < r(z), s(a) «}, 01 ={p(a)}, and Oz = {q(a) }.
Then, H = {r(z) + s(z) } covers both O; and O» under B in brave induction, but H
does not cover O1 A O under B.

Proposition 2.6 provides a property that distinguishes brave induction from cau-
tious and explanatory induction. This property implies that given a series of obser-
vations, brave induction is not adapted for performing incremental computation of
candidate hypotheses in general. Such an incremental computation is done in brave
induction for hypotheses that are also solutions of cautious or explanatory induction.

Table 1 summarizes comparison of properties between brave, cautious and explana-
tory induction. By the table, we can observe that cautious induction and explanatory
induction share similar properties. In fact, the difference between cautious and explana-
tory induction arises only when O contains non-positive clause (Proposition 2.1(1)).
In many induction tasks, however, observations are usually given as a set of positive
clauses or ground facts. On the other hand, brave induction may have solutions differ-
ent from those of cautious or explanatory induction when B or H contains disjunctive
clauses (Proposition 2.1(2)). Then, we are interested in computing possible solutions
of brave induction under the background knowledge containing indefinite information,
or computing solutions containing disjunctive information.

When B has a minimal model satisfying O, O is inferred by brave inference from
B. In this case, H = true covers O, which is a trivial and uninteresting solution. The
problem of our interest is the case in which B has no minimal model satisfying O.
When a clausal theory B has no minimal model satisfying O, —O is derived from B
under the generalized closed world assumption (GCWA) (Minker 1982).



Ezample 2.4 Let B = {p(a) V q(b) } be the background knowledge which has two
minimal models {p(a)} and {q(b)}. Then, H = true covers the observation O; = {p(a)}
under B in brave induction, while H does not cover the observation Os = {p(b)}. In
this case, the GCWA derives —p(b) but does not derive —p(a).

It is worth noting that explanatory induction in Horn theories assumes that the
background Horn theory B has no minimal model satisfying 0.5 In this case, -0 is
derived from B under the closed world assumption (CWA) (Reiter 1978). Thus, brave
induction in non-Horn theories is considered a natural extension of explanatory induc-
tion in Horn theories. In the next subsection, we develop an algorithm for computing
brave induction.

2.2 Computation

In this section, we develop an algorithm for computing brave induction. We first char-
acterizes the brave induction problem.

Proposition 2.7 (necessary and sufficient condition for brave induction) Let B be
the background knowledge, H a hypothesis, and O an observation. Then, B A H has
a minimal model satisfying O iff there is a disjunction F of ground atoms such that
BAHEOVF and BAHWEFS

Proof (—) Suppose that B A H has a minimal model M such that M | O. Consider
a disjunction F of ground atoms satisfying (i) M = F and (ii) N = F for any N €
MM (B A H) such that N [~ O. Such F is constructed by picking up ground atoms
from each N\ M. Then, BAH = OV F holds. As M £ F, BAH }£ F.

(+) Suppose that B A H = OV F holds for a disjunction F' of ground atoms and
B AH £ F. If BA H has no minimal model satisfying O, BA H = O V F implies
B A H = F. This contradicts the assumption that BA H [~ F. |

Throughout the section, the following conditions are assumed on the syntax of
observations and hypotheses.

1. An observation O is a finite set of ground atoms.
2. A hypothesis H is a finite clausal theory such that each clause has the non-empty
head.

The first condition is assumed as the normal problem setting in ILP (Nienhuys-Cheng
and Wolf 1997). The second condition is also natural with the following reason. When
B has no minimal model satisfying O, we introduce H to B to get a minimal model
satisfying O. However, introducing negative clauses to B has an effect of eliminating
minimal models of B but does not contribute to obtaining a new minimal model. So
the exclusion of negative clauses in H is not a strong restriction.

5 The condition is called prior necessity (Muggleton and De Raedt 1994).

6 Related results are shown in (Gelfond etal. 1989, Theorem 4.5) in the context of circum-
scription, and in (Inoue 2002, Corollary 3.5) in terms of abduction.



The procedure for computing brave induction consists of four steps.

Step 1: Computing ground hypotheses

By Proposition 2.7, a solution of brave induction is obtained by computing H
satisfying

BAHEOVF (5)
and
BAHIWEF. (6)
By (5), it holds that
BA-O E-HVF. (7)

—HVF is thus obtained by deduction from BA—O. This technique is inverse entailment
that is originally proposed by Muggleton for induction in Horn theories (Muggleton
1995), and is later extended by Inoue to full clausal theories (Inoue 2004).

As H is a clausal theory, put

H:(El(—Fl)A~~~/\(Ek(—Fk) (8)

where ¥; (i =1,...,k) is a disjunction of atoms and I'; (i =1,...,k) is a conjunction
of atoms. It then becomes

—-H:(ﬁElArl)V---V(—!Ek/\Fk). (9)

Since F' is a disjunction of ground atoms, every formula =H V F in (7) is a disjunctive
normal form. From B A =0, a number of DNF formulas could be deduced. Among
them, we take DNF formulas obtained as follows.

Definition 2.2 (prime clause, prime CNF) A ground clause C is called a prime clause
with respect to a theory T'if T |= C but T [~ C' for any C' C C. A prime CNF formulas
with respect to T is a conjunction of prime clauses with respect to 7T'.

First, compute prime CNF formulas with respect to B A =O. Prime CNF formulas
are computed by a system of consequence-finding such as (Inoue 1992). Second, given
a prime CNF formula ¢; A --- A ¢, produce an irredundant DNF formula d; V --- V d;
where d; (1 <¢ <) contains a literal from each ¢; (1 < j < k). Then,

BA-OkEdiV---Vvd

holds, and we identify the DNF formula ~H V F of (7) with d; V- --Vd;. After deriving
such a ground DNF formula, the next task is to separate =H and F in d; V ---V d;.
This is simply done as follows. By the assumption, ¥; in H is non-empty, so that - H
is a DNF formula in which each disjunct =X; A I'; of (9) contains at least one negative
literal. Thus, from the DNF formula d; V- --Vd;, =H is extracted by selecting disjuncts
containing negative literals. Hence, H is obtained as a ground clausal theory.

Step 2: Generalization

As H is a clausal theory containing no variable, we generalize H in the next step. For
this purpose, we use Plotkin’s least generalization under subsumption (LGS) (Plotkin
1970).
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Definition 2.3 (comparable) Clauses C1, ..., C}, are comparable if there is a predicate
appearing in every head(C1), ..., head(C}).

Let H be a clausal theory obtained by Step 1. Then, H is partitioned into
H=H{AN---ANHp (10)

where each H; (1 < i < n) is a conjunction of comparable clauses.” Next, the LGS of
each H; is computed and collected as

lgs(H) =lgs(H1) A--- ANlgs(Hy) (11)

where lgs(H;) represents the result of LGS of H;. Note that since each H; is a set of
comparable clauses, lgs(H;) is a clause with the non-empty head.
Step 3: Constructing a weak form of hypotheses

We next consider a method of constructing a weaker hypothesis for brave induction.
For each clause lgs(H1),...,lgs(H»n) of (11), take the greatest specialization under
implication (GSI) (Nienhuys-Cheng and Wolf 1997). The GSI of any finite set of clauses
exists and is computed by taking a disjunction as

gSi(lgS(Hl)a EERE) lgS(Hn)) = lgS(Hl) V.-V lgS(Hn)- (12)
By lgs(H;) E gsi(lgs(Hi),...,lgs(Hn)) for ¢ = 1,...,n, the GSI (12) provides a
formula which is weaker than each lgs(H;).

Step 4: Optimization

Hypotheses computed in the above steps generally contain clauses or atoms that
are useless or have no direct connection to explaining the observation. In this step,
hypotheses are optimized to extract meaningful information.

Definition 2.4 (isolated) Two atoms A; and Ay are linked if term(Ay) Nterm(As) #
0. Given a clause C with the non-empty body, an atom A is isolated in C if there is
no atom A’(# A) in C such that A’ and A are linked.

Ezample 2.5 O Given C = (p(z) < q(z,y),7(y), s(z)), the atom s(z) is isolated in C.

Optimization is done in two steps.

1. Remove any isolated atom from the body of any clause lgs(H;) (1 <i < n).
2. Remove any clause Igs(H;) (1 < i < m) that is subsumed by another clause
lgs(H;) (1< j < n).

The result of such reduction on lgs(H;) is denoted by lgs*(H;). When B A lgs(H;) is
consistent, the reduction is performed as far as B Algs™(H;) is consistent. Finally, put

H" = /\ lgs* (H;)

if BA A; lgs*(H;) A —F is consistent for a disjunction F of ground atoms computed
by Step 1. On the other hand, put

HY = v lgs* (H;)

7 A clause C could be included in different H; and H; (i # j) if C is comparable to clauses
in both H; and Hj.
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Procedure: BRAIN

Input : the background knowledge B and an observation O;
Output : hypotheses H" and HV.

Step 1 : Compute ground and irredundant DNF formulas —=H V F' from B A —=O, and extract
-H from -H V F.

Step 2 : Compute the least generalization under subsumption lgs(H).

Step 3 : Compute the greatest specialization under implication gsi(lgs(H1),...,lgs(Hz)).

Step 4 : Produce lgs*(H;) by reduction, and compute H” and HV.

Fig. 1 An algorithm for brave induction

if there is a disjunction F' of ground atoms such that B A \/, lgs*(H;) A =F' is
consistent and B A \/; lgs*(H;) A =O A =F' is inconsistent.
The algorithm (called BRAIN) for computing hypotheses is summarized in Figure 1.8

Now we show that BRAIN computes a solution for brave induction.

Theorem 2.8 (soundness) Let H" and H" be clausal theories obtained by BRAIN.
Then, H" and H are solutions of brave induction.

Proof Step 1 computes a ground clausal theory H satisfying BAH = OV F. In
Step 2, lgs(H;) | H; holds for each H; of (10). Then, lgs(H) = H and B Algs(H)
BAH.So BAlgs(H) = OV F. In Step 4, it holds that lgs*(H1) A--- Algs*(Hn) |E
lgs(Hy) A --- ANlgs(Hpn). Then, \; lgs*(H;) = lgs(H) and B A A, lgs*(H;) =
BAlgs(H).So BA A\, lgs*(H;) E OV F, and \; lgs*(H;) satisfies the relation (5). If
B A N; lgs*(H;) A —F is consistent for a disjunction F' of ground atoms computed by
Step 1, then B A \; lgs™(H;) = F and \; lgs*(H;) satisfies the relation (6). Hence,
B A H” has a minimal model satisfying O (Proposition 2.7).

Next, suppose gsi(lgs(Hi),...,lgs(Hn)) in Step 3 is optimized as \/; lgs*(H;) in
Step 4. If B A, lgs*(H;) A —~O A =F' is inconsistent for a disjunction F' of ground
atoms, then B A/, lgs*(H;) = OV F'. Thus, \/; lgs*(H;) satisfies the relation (5).
Moreover, if B A/, lgs*(H;) A =F' is consistent, B A \; lgs*(H;) F= F'. Then,
A, lgs*(H;) satisfies the relation (6). Hence, B A H" has a minimal model satisfying
O (Proposition 2.7). |

Note that BRAIN is not complete with respect to solutions of brave induction. This
is because we reduce seemingly useless hypotheses in the optimization phase of Step 4.
We do not consider the incompleteness of the algorithm is a serious flaw, however.
This is because there may exist possibly infinite solutions for explaining observations
in general, and it seems meaningless to guarantee the completeness for computing tons
of useless hypotheses. We select candidate solutions to reduce the hypotheses space at
the cost of giving up the completeness.

Ezample 2.6 Consider the background knowledge B and the observation O:

B : teacher(0) A student(1) A - - - A student(30),
O : euro(1) A--- Aeuro(20) A asia(21) A--- A asia(27) A usa(28) A --- A usa(30).

8 BRAIN is named after BRAve INduction.
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BRAIN computes candidate hypotheses as follows.

(Step 1) B A —O entails the prime clauses:

teacher(0), student(1), - -- , student(30),
—euro(1l) V ---V =euro(20) V —asia(21) V - - - V —asia(27) V —usa(28) V - - - V —usa(30).

Taking the conjunction of them, the prime CNF formula:

teacher(0) A student(1) A - -- A student(30)
A(=euro(1) V - -V meuro(20) V —asia(21) V - - - V masia(27) V ~usa(28) V - - - V ~usa(30)),

which is equivalent to B A =0, is computed.
Next, an irredundant DNF formula =H; V =Hs V =Hs3 V F' is obtained where

-Hy = (BA=-euro(l))V---V (BA —euro(20)),

—~Hy = (BA-asia(21))V ---V (B A —asia(27)),

—Hs = (BA-wusa(28))V ---V (B A -usa(30)),
F = false.

By this, ground hypotheses:
Hy = (=B Veuro(l)) A--- A (=B V euro(20)),

Hs = (=B Vasia(21)) A--- A (0B V asia(27)),
H3 = (=B V usa(28)) A --- A (=B V usa(30))

are obtained.
(Step 2) The LGS of each H; becomes
lgs(H1) = —teacher(0) V —student(z) V euro(x),
lgs(Hy) = —teacher(0) V mstudent(y) V asia(y),
lgs(H3) = —teacher(0) V —student(z) V usa(z).
Then, lgs(H) = lgs(H1) A lgs(Hsz) A lgs(Hs).
(Step 3) By each lgs(H;), the greatest specialization becomes
gsi(lgs(Hy), ... lgs(Hn)) = lgs(H1) V lgs(Hz) V lgs(Hs)
= =teacher(0) V —student(x) V euro(z) V asia(x) V usa(x).
(Step 4) The atom teacher(0) is isolated in each lgs(H;) (i = 1,2,3), so it is

removed from the body of each clause. Since BA A; lgs*(H;) A =F is consistent, H"
becomes

(euro(x) + student(x)) A (asia(z) < student(z)) A (usa(z) < student(z)).
On the other hand, for the disjunction F' of ground atoms:

F' = (asia(1) Vusa(1)) V- -V (asia(20) V usa(20))
V (euro(21) V usa(21)) V- -- V (euro(27) V usa(27))
V (asia(28) V euro(28)) V - - - V (asia(30) V euro(30)),



13

BA V,; lgs*(H;) AN—F' is consistent and B A \/, lgs*(H;) A—O A—F' is inconsistent.
Then, HY becomes

euro(z) V asia(z) V usa(x) < student(zx).

As a result, H" and H" become two solutions of brave induction.
Note that if there are negative clauses

« euro(z) A asia(z),
+ euro(z) A\ usa(x),

+ asia(x) A usa(x)

in B, BA\; lgs*(H;) is inconsistent. In this case, H” is not a solution of brave
induction, while H" is still a solution.

Solutions of cautious induction are computed as a special case of BRAIN.

Corollary 2.9 (computing cautious induction) Let H" be clausal theories obtained by
BRAIN. If F = false in Step 1, H is a solution of cautious induction.

Proof When F = false, BRAIN computes H satisfying BA H |= O (5) and BA H [~
false (6). Then, H is a solution of explanatory induction. Since O is a set of ground
atoms, solutions of explanatory induction coincide with those of cautious induction
(Proposition 2.1(1)). Hence, the result holds. a

In Example 2.6, H" also becomes a solution of cautious induction.

3 Brave Induction in Nonmonotonic Logic Programming

As presented in Section 2, brave induction is useful for learning theories with indefinite
or incomplete information. Incomplete information is also represented as default rule
in logic programming. In this section, we consider brave induction in nonmonotonic
logic programs.

3.1 Answer Set Programming

Answer set programming (ASP) (Lifschitz 2002) represents incomplete knowledge in a
logic program and realizes nonmonotonic default reasoning. In ASP a logic program is
described by an eztended disjunctive program (EDP). An EDP (or simply a program)
is a set of rules of the form:

Li;---; L + LH_l,...,Lm,noth+1,...,noth (13)

(n > m > 1 > 0) where each L; is a positive/negative literal, i.e., A or =A for an
atom A. not represents default negation or negation as failure (NAF). not L is called an
NAF-literal. Literals and NAF-literals are called LP-literals. The symbol “;” represents
disjunction and “,” represents conjunction. The rule (13) is read “if all L;11,...,Lm
are believed and all Ly, 41, ..., Ln are disbelieved, then some of Ly, ..., L; is believed”.
The left-hand side of “” is the head, and the right-hand side is the body. For each
rule r of the form (13), head(r), body™(r) and body ™ (r) denote the sets of literals
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{L1,..., L}, {Liy1,...,Lm}, and {Lm41,...,Ln}, respectively. Also, not_body™ (r)
denotes the set of NAF-literals {not Ly1,...,not Ly}. A disjunction of literals and
a conjunction of (NAF-)literals in a rule are identified with its corresponding sets of
literals.” A rule r is often written as

head(r) < body™ (r), not_body™ (r) or head(r) + body(r)

where body(r) = body™ (r) U not_body™ (r). A rule r is disjunctive if head(r) contains
more than one literal. A rule r is a constraint if head(r) = 0; and r is a fact if
body(r) = 0. A program is NAF-free if no rule contains NAF-literals. A rule r; subsumes
a rule ro if head(r1)0 C head(r2) and body(r1)8 C body(ra) hold for some substitution
0. A program, rule, or literal is ground if it contains no variable. A program P with
variables is a shorthand of its ground instantiation Ground(P), the set of ground rules
obtained from P by substituting variables in P by elements of its Herbrand universe
in every possible way. Two literals L1 and Ly have the same sign if both L1 and Lo
are positive literals (or negative literals). A set S of ground literals is consistent if
L € S implies =L ¢ S for any literal L; otherwise, S is contradictory. A set S of literals
satisfies a program P if body™ (r) C S and body™ (r) NS = 0 imply head(r)N S # 0 for
any rule r in Ground(P).

The semantics of an EDP is defined by the answer set semantics (Gelfond and
Lifschitz 1991). Let Lit be the set of all ground literals in the language of a program.
Suppose a program P and a set of literals S(C Lit). Then, the reduct P° is the
program which contains the ground rule head(r) < body™ (r) iff there is a rule r in
Ground(P) such that body™ (r) N S = 0. Given an NAF-free EDP P, let S be a set of
ground literals that is (i) closed under P, i.e., for every ground rule r in Ground(P),
body(r) C S implies head(r) NS # 0; and (ii) logically closed, i.e., it is either consistent
or equal to Lit. An answer set of an NAF-free EDP P is a minimal set S satisfying
both (i) and (ii). Given an EDP P and a set S of ground literals, S is an answer set
of P if S is an answer set of P°. A program has none, one, or multiple answer sets in
general. The set of all answer sets of P is written as AS(P). An answer set is consistent
if it is not Lit. A program P is consistent if it has a consistent answer set; otherwise,
P is inconsistent.

Ezample 3.1 The program

tea; coffee <,
milk < tea, not lemon,
lemon <+ tea, not milk,

milk < coffee
has the three answer sets:
{tea, milk}, {tea,lemon}, { coffee, milk},

which represent possible options for drink.

9 By this fact, any duplicated appearance of the same literal in a rule is ignored. That is, a
disjunction (L; L) is identified with L, a conjunction (L, L) or (not L, not L) is identified with
L or not L, respectively.
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3.2 Brave Induction in ASP

In this section, we consider the following problem setting:

— the background knowledge B is given as an EDP,
— an observation O is given as a set of ground literals,
— a hypothesis H is a finite set of rules.

Then, brave induction in ASP is defined as follows.

Definition 3.1 (brave and cautious induction in ASP) Let B be the background
knowledge and O an observation. A hypothesis H covers O under B in brave induction
if BU H has a consistent answer set S such that O C S. H is called a solution of
brave induction. By contrast, H covers O under B in cautious induction if BU H is
consistent and O C S for any consistent answer set S of BU H. H is called a solution

of cautious induction. 1°

Proposition 3.1 (sufficient condition for the ezistence of solutions) Brave induction
has a solution if B U O is consistent. This is also the case for cautious induction.

Proof If B U O is consistent, B U O has a consistent answer set S. Then, S becomes a
consistent answer set of B°UO and O C S. By putting H = O, any consistent answer
set S of B U H satisfies O C S. O

In contrast to Proposition 2.2, the condition of Proposition 3.1 is not a necessary
one.

Ezample 3.2 Let B = {p < ¢, notp} and O = {q}. Then, B U O has no answer set
thereby inconsistent. But H = {q < p, p <} becomes a solution of brave and
cautious induction, since B U H has the answer set {p, ¢} in which ¢ is included.

Proposition 3.2 (necessary condition for the ezistence of solutions) Brave induction
has a solution only if AS(B U O) # {Lit}.

Proof When AS(B U O) = {Lit}, two cases are considered. (i) When AS(B) = {Lit},
B" has the answer set Lit. This means that the set of NAF-free rules in B is con-
tradictory, so that there is no way to recover consistency by introducing any H to
B. In this case, brave induction has no solution. (ii) Else if AS(B) # {Lit} but
AS(B U O) = {Lit}, the set of NAF-free rules in B is consistent but B U O is
contradictory. This means that there is a literal L such that L € O and ~L € S for
any minimal closed set S of BLityo. Suppose that there is a solution H such that
B U H has a consistent answer set 7' satisfying O C T'. In this case, T is a minimal
closed set satisfying BLit7 so T is an answer set of BY* U T. Since =L € S for any
minimal closed set S of BY® U0 and O C T, =L € U for any minimal closed set U
of Bt yT. Here, T C U holds. As T is an answer set of Bty T, T is a minimal
closed set of B UT and L € T. By Le OCT,L €T soT is contradictory. This
contradicts the assumption that T is a consistent answer set. Thus, BU H cannot have
a consistent answer set T satisfying O C T. Hence, brave induction has no solution.
By (i) and (ii), if brave induction has a solution, AS(B U O) # {Lit}. |

10 In nonmonotonic logic programming, logical connectives in classical logic are not used. So
we write B U H instead of BA H.
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By the proof of Proposition 3.2, it is observed that the same necessary condition
holds for cautious induction.

Proposition 3.3 (necessary condition of solutions) If H is a solution of brave induc-
tion, BU H U O is consistent. This is also the case for cautious induction.

Proof If H is a solution of brave induction, B U H has a consistent answer set S
satisfying O C S. In this case, B® U H® has a consistent answer set S satisfying
O C S. Then, S becomes an answer set of BS UH® U O, so S is an answer set of
BUH UO. Hence, BU H U O is consistent. The case for cautious induction is proved
in a similar way. O

Proposition 3.4 (relation between brave and cautious induction)

1. Brave induction has a solution iff cautious induction has a solution.
2. If H is a solution of cautious induction, H is a solution of brave induction. The
converse implication also holds when BU H contains neither disjunction nor NAF.

Proof If brave induction has a solution H, BU H U O is consistent (Proposition 3.3).
Put H' = HUO. Then, every consistent answer set S of BUH' satisfies O C S. Hence,
cautious induction has a solution. Conversely, if cautious induction has a solution H,
it is also a solution of brave induction. When B U H contains neither disjunction nor
NAF, B U H has at most one answer set. In this case, brave induction coincides with
cautious induction. O

Some properties of brave or cautious induction follows. !t

Proposition 3.5 (conjunction of solutions) The fact that both Hy and Hsy are solu-
tions of brave induction does not imply that H1 U Ha is a solution of brave induction.
This is also the case for cautious induction.

Proposition 3.6 (conjunctions of observations) The fact that H covers both O1 and
Os under B implies that H covers O1 U Oz under B in cautious induction. But this is
not the case for brave induction.

Proof If O1 C S and Oz C S hold for any consistent answer set S of B U H, then
01 UO2 C S. A counter-example for the case of brave induction is Example 2.3. O

There are algorithms for computing cautious induction in ASP (Sakama 2005). In
what follows, we develop a procedure for computing brave induction in ASP. As the
case of clausal theories, the problem of our interest is the case when B has no answer
set including O. It is worth noting that in case of clausal theories, the consistency of
B A H implies the consistency of B, H, and O. On the other hand, in case of ASP, the
consistency of B U H implies the consistency of O, but it does not necessarily imply
the consistency of B or H. In fact, an inconsistent program B having no answer set
can recover consistency by introducing an appropriate H.

Ezample 3.3 Let B = {p < notp}. Then, H = {p} recovers the consistency in BUH.

1 We do not address the property of disjunction of solutions, since it requires a definition of
disjunction of ASP programs.
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For a technical reason, however, we assume the consistency of B in the rest of this
section. In case of brave induction from clausal theories, inverse entailment is used for
computing hypotheses. However, it is known that inverse entailment in classical logic is
not applied to nonmonotonic logic programs (Sakama 2000). We then consider another
method for computing possible hypotheses.

Step 1: Computing ground hypotheses

We first introduce a notion used in this step.

Definition 3.2 (relevant) Let Ly be a ground literal and S a set of ground literals.
Then, L1 € S is relevant to Ly if either (i) const(Lg) N const(Ly) # 0, or (ii) for some
literal Ly € S, const(L1) N const(Ly) # B and Lo is relevant to Lg. Otherwise, L1 € S
is irrelevant to Lg.

Given an observation O, let @ = { L | L € Lit and pred(L) appears in O }. Sup-
pose that the background knowledge B has a consistent answer set S. Then, construct
a finite and consistent set R of ground rules satisfying the following conditions. For
any rule r € R,

1. head(r) C O and for any L € O, there is a rule r € R such that head(r) = {L}.

2. body™(r) = {L | L € S and L is relevant to the literal in head(r) }.

3. body™ ( {L | L€ Lit\ (SUBO) and L is relevant to the literal in head(r)
and appears in Ground(P) }.

r

The third condition requires that no rule contains default negation of literals in
S U ©. The reason is that if body™ (r) contains literals from S, body(r) may contain
both L in body™ (r) and not L in body™ (r), which makes the rule meaningless. Also,
if body ™ (r) contains literals from @, r may contain a negative loop that would make
a program inconsistent. By its construction, different hypotheses are constructed by
different answer sets in general.

Step 2: Generalization

The notion of LGS is extended to rules containing default negation. It is done by
syntactically viewing rules as “clauses”. That is, identify disjunction “;” with the classi-
cal one “V, and any NAF-literal “not p(t1,...,tn)” with a new atom “not_p(ti,...,tn)”
with the predicate “not_p”. —p is also considered a predicate
a predicate different from p. With this setting, the notion of comparable set of rules
is defined as Definition 2.3, and the LGS of a comparable set of rules is defined in the
same manner as the one in clausal theories (Sakama 2001). The generalization phase
is similar to the case of clausal theories. For the set R of rules obtained by the Step 1,
R is partitioned as R = Ry U--- U Ry, where each R; (1 < i < n) is a comparable set
of ground rules. Then, the LGS of each R; is computed and collected as

—_p” and is considered

lgs(R) = {lgs(R1), ..., lgs(Rn)}.

Step 3: Constructing a weak form of hypotheses

To construct a weak form of hypotheses, we introduce the notion of cardinality
constraint rules (Niemeld etal. 1999). A cardinality constraint rule is a rule of the
form:

h{Ll,..., Ll}k — LH_l,...,Lm,noth+1,...,noth (14)
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Procedure: BRAIN™??

Input : the background knowledge B and an observation O;
Output : hypotheses H" and HV.

Step 1 : Select an answer set S of B and construct a set R of rules.
Step 2 : Compute lgs(R).

Step 3 : Compute CCR(lgs(R1),...,l9s(Rn)).

Step 4 : Produce lgs*(R;) by reduction, and compute H" and HV.

Fig. 2 An algorithm for brave induction in ASP

where h and k are two integers such that h < k. The rule (14) means if the body holds

then at least h and at most k literals in the head hold. This type of rules is useful for

representing knowledge in ASP and is used in the smodel system (Niemela et al. 1999).

A program with this type of rules is translated into a semantically equivalent EDP.
Given lgs(R1),...,lgs(Rn), we construct a cardinality constraint rule

1Yk« I (15)

where ¥ = head(lgs(R1))U---Uhead(lgs(Rn)), I' = body(lgs(R1))U - - - Ubody(lgs(Rn)),
and k is the number of literals in ¥, i.e., k =| X' |. We write CCR(lgs(R1),-..,lgs(Rn))
to represent a cardinality constraint rule (15) constructed by lgs(Ry1),...,lgs(Rn).
Step 4: Optimization

Optimization is done in two steps. First, remove any isolated literal from the body
of any rule lgs(R;) (1 < ¢ < n). Here, the notion of “isolated literal” in a rule is defined
by replacing a clause with a rule, and an atom with a literal in Definition 2.4. Second,
remove any rule lgs(R;) (1 < ¢ < n) that is subsumed by another rule lgs(R;) (1 <4 <
n). Let lgs*(R;) be the result of such reduction over lgs(R;). When B U {lgs(R;) } is
consistent, the reduction is performed as far as B U {lgs*(R;) } is consistent. Finally,
put

H" = {1gs"(R:) }
i
if BUJ, {lgs™(R;)} is consistent. Also, put
HY = {CCR(lgs*(Ry),...,lgs*(Rn)) }

if BU{CCR(lgs*(R1),...,lgs"(Rn)) } is consistent.

The algorithm of brave induction in ASP (called BRAIN is sketched in Figure 2.
In what follows, we show that BRAIN™®* computes hypotheses for brave induction in
ASP. We say that O is independent of B if every predicate in O appears nowhere in B.

not)

Lemma 3.7 Let B be the background knowledge and O an observation. If O is inde-
pendent of B, BU H” has an answer set U such that O C U.

Proof Let S be a consistent answer set of B. For any rule r in R, head(r) + body™ (r)
is in RS. Here, body™(r) C S, head(r) C O, and for any L € O, pred(L) appears
nowhere in B. Put T = SU{L | L € head(r) andr € R® }. By BT URT = BSURT,
T becomes a minimal closed set of BT URT = (BU R)T. Since O is independent of
B, every predicate in head(r) appears nowhere in B so that T is a consistent set of
literals. As every literal in O appears in the head of some rule r in R, T is a consistent



19

answer set of BU R such that O C T. Next, we show that B U lgs(R) has a consistent
answer set such that O C U. Let R = Ry U --- U Ryp. By the definition, lgs(R;)0 C r
for any r € R; (1 < i < n) with some ground substitution #. Then, for any rule r € R;,
body(r) NS = 0 implies body (Igs(R;)d) NS = 0. So BS U R® C B® Ulgs(R)°.
Since O is independent of B, lgs(R)° \ R® is a set of NAF-free rules whose heads
have predicates appearing nowhere in B. Put V = { L | r € lgs(R)® \ R®, head(r) =
{L} and body™ (r) C S}. Then, B%“Y Ulgs(R)°“Y = B® Ulgs(R)® has a minimal
closed set U = SUV. Since O is independent of B, SUV is consistent. As any literal in
O appears in the head of some ground instance of a rule in BUlgs(R), U is a consistent
answer set of B U lgs(R) such that O CU. When B U |J; {lgs*(R;) } is consistent, U
also becomes a consistent answer set of BU H”. Hence, the result follows. ]

Lemma 3.8 Let B be the background knowledge and O an observation. If O is inde-
pendent of B, BU HY has an answer set U such that O C U.

Proof Let r = CCR(lgs(Ry),...,lgs(Rxn)). For any ground instance of rf satisfying
body™(rf) C S and body™ (rf) NS = O for some answer set S of B, a set T of literals
is constructed in a way that a literal L is selected from the head of each 78 whenever
L € O. Since O is independent of B, S UT is consistent. Then, U = S U T becomes
a consistent answer set of BU { CCR(lgs(R1),-..,lgs(Rn)) } and O C U. When B U
{CCR(lgs*(Ry),...,lgs*(Rn)) } is consistent, U also becomes a consistent answer set
of BUH". o

By Lemmas 3.7 and 3.8, we have the next result.
Theorem 3.9 (soundness) Any hypothesis computed by BRAIN™®t becomes a solution
of brave induction.
not

BRrAIN
seemingly useless hypotheses in the optimization phase.

is incomplete with respect to solutions of brave induction, since it reduces

Ezample 3.4 There are two couples, Adam and Nancy, and Bob and Jane. They plan
to go to either sea or mountain on this weekend. Each couple can select one of them,
but a husband and a wife go to the same place. The situation is represented as the
background knowledge B:

s(z) < not m(x),

m(x) < not s(x),

c(a,n) +,

c(b, j) <,

« c(z,y),s(x), m(y),

 c(z,9), 5(y), m(2)
where the predicates s, m and ¢ mean sea, mountain and couple, respectively, and the

constants a, n, b and j mean Adam, Nancy, Bob and Jane, respectively. B has four
answer sets:

S1 = {c(a,n), ¢(b, ), s(a), s(n), s(b), s(4) },
Sy = {cla, n), c(b, ), s(a), s(n), m(b), m(j) },
Sz = {c(a, n), c(b, ), m(a), m(n), s(b), s(4) },
Sy = { c(a,n), ¢(b, j), m(a), m(n), m(b), m(j) }
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Suppose the observation that Adam and Nancy are tanned, but Bob and Jane are
not. It is represented as:

O = {t(a)7 t(n)7 _'t(b)7 _'t(J)}

where the predicate ¢ mean tanned.
BRAIN™! constructs candidate hypotheses as follows.

(Step 1) First, an answer set of B, for instance So, is selected. A set R of rules is
then constructed as:

), not m(n),
, not m(a) ,

)
b), m(j

, not m(n)
, not s(b), not s(j),

(b
(), not s(j).

, not s

Note that the body of each rule contains literals that are relevant to the literal in the
head.

(Step 2) Next, the lgs(R) is constructed as
t(z) < c(a,n), s(x), not m(x),
—t(y) « c(b, j), m(y), not s(y).

(Step 3) Third, from the rules in lgs(R), the cardinality constraint rule is con-
structed as

{t(z), ~t(y) }2 < cla,n), c(b, j), s(x), m(y), not m(z), not s(y).

(Step 4) Finally, isolated literals c(a,n) and ¢(b, j) are removed, and H” and HY
become

H" = {#(z) ¢ s(x), not m(z), =t(y) + m(y), not s(y)},
HY = {1{t(z), ~t(y) }2 + s(z), m(y), not m(z), not s(y) },

which are two solutions of brave induction.

4 Computational Complexity

In this section, we consider computational complexity of brave induction. Throughout
the section, we assume that the background knowledge, hypotheses, and observations
are are all represented over a finite propositional language.12

The following two decision problems are considered.

— Existence: Given the background knowledge B and an observation O, deciding
whether O has a solution of brave induction under B.

— Verification: Given the background knowledge B and an observation O, deciding
whether a given hypothesis H is a solution of brave induction under B.

12 We view a program with variables as a shorthand of its ground instantiation. When the
language contains no function symbol, the ground instantiation of a program is finite. In this
case, the ground instantiated program is identified with a finite propositional program.
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We consider these problems in the context of clausal theories (CT) and answer
set programming (ASP), and compare complexity results between brave induction and
cautious induction.

Theorem 4.1 In clausal theories the following complexity results hold.

1. Deciding the existence of solutions in brave induction is NP-complete. The same
complexity result holds for cautious induction.

2. Deciding whether a given hypothesis is a solution of brave induction is E;-complete,
while the corresponding problem in cautious induction is coNP-complete.

Proof (1) By Proposition 2.2, brave induction has a solution H iff B A O is consistent.
The task of deciding the consistency of B A O is NP-complete. Since the existence of
solutions coincides in brave and cautious induction, the same complexity result holds
for cautious induction.

(2) To show the result, we consider a complementary problem: a ground clausal
theory BA H has no minimal model satisfying a conjunction O of ground atoms. This is
a task of the extended GCWA and is known ITJ -complete (Eiter and Gottlob 1995), so
that the verification problem is Ef -complete. In case of cautious induction, H becomes
a solution iff BA H |= O iff BA H A =0 is inconsistent. Deciding the unsatisfiability
of BA H A -0 is coNP-complete. O

To show complexity results in ASP, we introduce a program transformation.
Let r be a ground rule of the form

Li;---; L + LH_l,..., Lm, noth+1,..., not L, (16)
(n > m >1>0). The propositional formula ¢(r) associated with r is defined as
Liggy A ANLpy A=Lppig A A=Lp DLy V-V L (17)

where L} = L; if L; is a positive literal, and L; =Aif L; is a negative literal =4
(1 < i, j < n). Thus, any negative literal =A in r is transformed to a new atom A, and
default negation not L is transformed to a negative literal — L in ¢(r). Given a ground
EDP P, we define a propositional theory ¢(P) as

1. for any r € P, ¢(r) is in ¢(P).
2. for any positive literal L € Lit, the following formula is in ¢(P)

LALD false. (18)

Given a set S of literals, S is the set of atoms which is obtained from S by replacing
every negative literal =L with the corresponding atom L. Conversely, given a set M of
atoms, M is the set of literals which is obtained from M by replacing every atom L
with the corresponding negative literal —L.

Proposition 4.2 If an EDP P is consistent, so is ¢p(P).

Proof If P is consistent, there is a consistent minimal set S of literals such that
{Li41,..., Lm} C S and {Lm+1,..._, L,}NS = 0 imply {L1,...,L;} NS #0

for any rule (16) in P. In this case, S satisfies both (17) and (18). Hence, ¢(P) is
consistent. O
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Table 2 Computational Complexity

Brave Induction Cautious Induction
Language CcT ASP CT ASP
Existence NP NP NP NP
Verification | XF xF coNP nr

Theorem 4.3 In ASP the following complexity results hold.

1. Deciding the existence of solutions in brave induction is NP-complete. The same
complexity result holds for cautious induction.

2. Deciding whether a given hypothesis is a solution of brave induction is E;-complete,
while the corresponding problem in cautious induction is Hf—complete.

Proof (1) Given an EDP B and a set O of ground literals, we show that brave induction
has a solution iff the propositional theory ¢(BUO) is consistent. Suppose that ¢(BUO)
is consistent. Then, ¢(BUO) has a model M satisfying the following three conditions: (i)
O C M, (i) for any formula (17) in ¢(B), {Lj, ..., Lm} € M and{Ly, 1 ,..., Lp}N
M =0 imply {L},..., L}} N M # 0, and (iii) for any atom L, {L, L} € M by (18). In
this case, M is a consistent set of literals satisfying B U O. Then, M " is a consistent
minimal closed set satisfying BM UM ™. Thus, M~ is an answer set of B UM~ and
O C M™. Putting H = M, H is a solution of brave induction. Conversely, suppose
that brave induction has a solution. Then, for any solution H of brave induction,
B U H U O is consistent (Proposition 3.3). In this case, ¢(B U H U O) is consistent
(Proposition 4.2), so that ¢(BUO) is consistent. Hence, brave induction has a solution
iff (B U O) is consistent. Since deciding the consistency of the propositional theory
¢(B U O) is NP-complete, the result holds. By Proposition 3.4, brave induction has a
solution iff cautious induction has a solution. Hence, the same complexity result holds
for cautious induction.

(2) Deciding whether some (resp. every) consistent answer set S of B U H satisfies
O C S is ¥ -complete (resp. IT¥-complete) (Eiter and Gottlob 1995). Hence, the
result holds. O

The complexity results are summarized in Table 2. In the table, every entry repre-
sents completeness for the respective class. These complexity results show that brave
and cautious induction are in the same complexity class for checking the existence of
solutions. It is worth noting that extending the language from CT to ASP does not lead
to a complexity increase in this problem. On the other hand, for the task of solution
verification, the complexity of brave induction is one level higher in the polynomial hi-
erarchy than that of cautious induction in CT. By contrast, the complexities of brave
induction and cautious induction are at the same level of the polynomial hierarchy in
ASP.

5 Problem Solving by Brave Induction

5.1 Systems Biology

In this section, we show the use of brave induction for inference of master reactions
from biochemical networks in systems biology. It is a crucial feature of flux distributions
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Fig. 3 Two reactions with one substrate and one product

that metabolic reactions with fluxes spanning several orders of magnitude coexist under
the same conditions (Almaas etal. 2004). Although most metabolic reactions have
low fluxes, the overall behavior of metabolism is dominated by several reactions with
very high fluxes. In (Yamamoto et al. 2009), the states of each enzyme reaction is
simply divided into two kinds, activated and non-activated, in order to analyze which
chemical reactions have high fluxes. This analysis is helpful to solve the differential
equations associated with reactions by ignoring non-activated reactions with low fluxes.
We apply brave induction to hypothesis-finding in biochemical networks. Consider a
simple chemical reaction represented in Figure 3.13

In Figure 3, the two reactions involve the same substrate s; and are catalyzed by
the enzymes e; and ey, then lead to the products p; and ps, respectively. These two
reactions are represented by the formulas:

R = {reaction(e, $1,p1), reaction(es, s1,p2) }.

Assume that the levels of concentration of compounds are classified into five, l1,...,[5 ,14

and that the concentration levels of the products p; and po are as follows:
O = { concentration(p1,l1), concentration(pz,ls)}.
Next, suppose that the two enzymes e; and ey are of the same type ¢:
E = {class(e1,t), class(es,t)}.

Let the background knowledge be B = R U E. Then, the next hypothesis H becomes
a solution of brave induction.

H = { concentration(Y,l1) V concentration(Y,l2)

+ reaction(Enzyme, X,Y) A class(Enzyme,t) }.

The above H cannot be induced by explanatory nor cautious induction. The hypothesis
H represents that an enzyme reaction of the type ¢ leads to a product with low-level
concentration that is either at level [ or l2. In other words, an enzyme of the type ¢ is
non-activated or is inhibited by some reason. Note that, if the concentration level of p;

13 This example is given by Yoshitaka Yamamoto.

14 On logical representation of concentration change, we here subdivide the levels into five or
more instead of qualitative two-valued expression like “up” and “down” in (Yamamoto et al.
2009). With this refinement, more precise representation becomes possible. This is advised by
Andrei Doncescu.
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is the same as that of ps, ordinary systems of explanatory induction can also induce an
appropriate hypothesis. However, when we consider multiple levels of concentration,
the hypothesis by brave induction is considered more useful.

In general, brave induction can induce a causal rule which combines multiple states
as alternative effects. To infer master reactions correctly from biochemical pathways,
it is necessary to set the background knowledge appropriately. This task often involves
abduction (Tamaddoni-Nezhad etal 2006; Yamamoto etal. 2009), but causal rules
given in the background knowledge are often incomplete. Brave induction can thus be
useful to complete missing causal rules in these applications.

5.2 Requirements Engineering

Requirements engineering involves the elicitation of high-level stakeholder goals that
are described by scenarios of desirable and undesirable system behavior. Alrajeh et al.
(2007) introduce an ILP framework for inferring requirements from a set of scenarios
and incomplete requirements specification. Scenarios represent examples of desirable
and undesirable system behavior over time, while the requirements specification cap-
tures the initial but incomplete background knowledge of the envisioned system and
its environment. The task is then to complete the specification by learning a set of
missing requirements that cover all of the desirable scenarios but none of the undesired
ones. Formally, the problem is specified as follows:

Given: a requirement specification Spec, a set Des of desirable scenarios, and a set
Und of undesirable scenarios
Find: a set Pre of event precondition axioms satisfying the conditions:
— SpecU Pre = —Py for any Py € Und,
— Spec U Pre fEpr - Py for any Py € Des,
where =) means an entailment relation under an LTL'® model M.

Any set of event precondition axioms that satisfy these two properties is said to be
a correct extension of a requirements specification with respect to the given scenarios.
The specification and scenarios are represented by event calculus normal logic programs.
They compute Pre satisfying that Spec U Pre has a stable model M such that every
element in Und is false M and every element in Des is consistent with M. Incidentally,
their program transformation produces a normal logic program Spec U Pre which has
a single stable model, but it is inherently a problem of brave induction.

5.3 Multiagent Negotiation

Negotiation is a process of reaching agreement between different agents. In a typical
one-to-one negotiation, an agent makes a proposal on his/her request and the opponent
agent decides whether it is acceptable or not. If a proposal is unacceptable as it is, an
agent seeks conditions to accept it by extending his/her current belief to accommodate
another agent’s request.

Sakama (2008) formulates the process of building conditions in terms of induction.
Given the current belief B of an agent and a proposal G of another agent, B could

15 Linear Temporal Logic
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accept G under the condition H if:
BUH EG

where B U H is consistent. Here, H is a condition that bridges the gap between the
current belief of an agent and the request made by another agent. Viewing G as an
observation, the problem of finding H is considered a process of building a hypothesis
to explain G under B.

When B contains multiple minimal models or answer sets, however, the relation
B U H = G is strong. This is because an agent would have alternative options for a
deal, and the cautious inference requires that the proposal G must be satisfied in every
possible option. To relax the condition, Sakama uses brave induction for negotiation.
That is, B could accept G under the condition H if BU H has an answer set satisfying
G.

Ezample 5.1 Consider negotiation between a buyer and a seller. A seller agent has the
knowledge base B which consists of the following rules:

product(pc, $1500) < not — product(pc, $1500), (19)
< product(pc, ), product(pc,y), T # vy, (20)
= product(pc, $1500) < product(pc, ),z < $1500, pay_cash, (21)
pay_cash; pay_card <+ . (22)
Here, the rule (19) represents that the normal price of a PC is 1500 USD. The rule (20)

represents a constraint that the same pc cannot have different prices at the same time.
The rule (21) represents if discount is made by payment with cash, the normal price
is withdrawn. The rule (22) represents two options for payment. With this setting, B
has two answer sets:

Sy = {product(pc, $1500), pay_cash },
So = { product(pc, $1500), pay-card },

which represent the seller’s initial belief.
Next, suppose that a buyer proposes

G : product(pc, $1300)

to the seller. As G is included in no answer set of B, the seller cannot accept G as it
is. The seller then seeks a condition H to accept G and induces the hypothesis

H : product(pc,$1300) < pay_cash.
Now B U H has two answer sets:

S3 = { product(pc, $1300), = product(pc, $1500), pay_cash },
S4 = {product(pc, $1500), pay-card },
of which S3 satisfies G. Thus, H covers G under B in brave induction. Based on H,

the seller returns the condition
G': pay_cash

as a counter-proposal.
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6 Discussion

In the previous sections, we mainly compared brave induction with explanatory or
cautious induction. Here, we compare brave induction with other forms of induction.

6.1 Learning from Satisfiability

De Raedt and Dehaspe (De Raedt 1997; De Raedt and Dehaspe 1997b) introduce
the framework of learning from satisfiability (LFS). Given the background knowledge
B and an observation O, a hypothesis H covers O under B in LFS iff BA HAO is
consistent. In other words, H covers O under B in LFS iff BA H has a model satisfying
O. As already argued in the introduction, LFS is weaker than brave induction.

Proposition 6.1 If a hypothesis H covers O under B in brave induction, H covers O
under B in LFS.

Proof The result holds by Proposition 2.3. O

The converse implication of Proposition 6.1 does not hold in general. Since brave
induction is weaker than both explanatory and cautious induction (Proposition 2.1),
the following relation holds.

explanatory induction < cautious induction

< brave induction < learning from satisfiability

where X <Y means that any solution of X is also a solution of Y, but not vice versa.

Compared with brave induction, LFS does not require the minimality of models.
So any theory H becomes a solution as far as it is consistent with B A O. Due to
its weak condition, the hypotheses space for LFS is generally huge, and additional
language bias would be necessary for practical usage. Brave induction is considered
as a strengthened version of LFS, that is, we imposed the condition of minimality on
models of B A H satisfying O. It is known that LFS does not satisfy the property of
“conjunction of solutions” in Section 2.1 (De Raedt and Dehaspe 1997b). The following
example illustrates that LFS also does not satisfy the property of “conjunction of
observations”.

Ezample 6.1 Let B = {p(a)}, O1 = {q(a)} and Oz = {r(a)}. Then, H = {q(a) V
r(a) < p(a), < q(a) Ar(a)} covers both O; and Oz under B in LFS, but H does
not cover O1 A Os.

Thus, as for the properties of Table 1 in Section 2.1, LFS is the same as brave
induction. In (De Raedt and Dehaspe 1997b) the authors say:

One open question for further research is how learning from satisfiability (which
employs a monotonic logic) could be used for inducing nonmonotonic logic
programs.

In Definition 3.1, brave induction is defined as inducing hypothesis H such that B U
H has a consistent answer set S satisfying O C S. The definition is considered a
strengthened version of LFS in nonmonotonic logic programs.
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6.2 Learning from Interpretations and Confirmatory Induction

As argued in the introduction, learning from interpretations (LFI) realizes a different
style of induction. When the background knowledge B is given as a definite clause
theory, a hypothesis H covers O under B in LFT iff H is satisfied in the least model
of B A O (De Raedt and Dehaspe 1997a). On the other hand, when B is a full clausal
theory, Helft (1989) distinguishes two types of induction.'® Strong generalization is
a set H of clauses which are satisfied in every minimal model of B A O, while weak
generalization is a set H of clauses which are satisfied in some minimal model of B AOAT

Ezample 6.2 Consider the background knowledge B and an observation O,

B : amarican(John) V english(John),
O : speak_english(John).

Then,

Hy : american(z) < speak_english(x),

Hs : english(z) < speak_english(z)
are two weak generalizations, while
Hs : american(z) V english(x) < speak_english(z)
is a strong generalization.

In Example 6.2, none of Hy, Ha, and H3 becomes a solution of brave induction.
Solutions by brave induction are, for instance,

Hy : speak_english(z) < american(zx),

H; : speak_english(z) < english(zx),

which are also solutions of LFI. Note that H4 or Hs does not become a solution of
cautious induction, while H4 U H5 becomes a solution of cautious induction.

On the other hand, if the fact american(Mary) is added to B, Hy and Hj are still
solutions of brave induction but Hy is not a solution of LFI anymore. This is because
H, is not satisfied in BU{american(Mary)}. Thus, brave induction is neither stronger
nor weaker than LFI. Generally speaking, LFI does not explain why particular individ-
uals are observed under the background knowledge. In fact, LFI does not distinguish
between B and O. Moreover, LFI assumes that all observations are completely speci-
fied, so that it has no mechanism of predicting unseen phenomena. This is in contrast
to brave or cautious induction which has a mechanism of prediction.

Confirmatory induction or descriptive induction (Lachiche 2000) also builds hy-
potheses that are satisfied by observations. Given the background knowledge B and
an observation O such that B A O is consistent, a hypothesis H covers O under B in
confirmatory induction iff Comp(BAO) = H where Comp represents Clark’s predicate
completion (Clark 1978).

16 Helft’s semantics is often called nonmonotonic ILP, but we reserve the term for induction
from nonmonotonic logic programs. Helft’s semantics is similar to LFI in spirit (De Raedt and
Dehaspe 1997a), while it is also viewed as an instance of confirmatory induction (De Raedt
and Lavra¢ 1993; Lachiche 2000).

17 Helft imposes additional conditions on the satisfiability of H in a model of B A O, but we
neglect them to make discussion simple.
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Ezample 6.8 Given B and O of Example 6.2, Comp(B A O) becomes

amarican(z) < x = John A —english(John),
english(z) < © = John A mamerican(John),
speak-english(z) < © = John,

together with the Clark’s equality axioms. Thus, Hi,..., Hs are all solutions of con-
firmatory induction.

Like LFI, brave induction is neither stronger nor weaker than confirmatory induc-
tion in general.

6.3 Induction in Nonmonotonic Logic Programs

Otero (2001) introduces a framework for learning positive/negative examples in normal
logic programs.18 He considers induction from several sets of ezamples such that: given
a normal logic program P and several sets of examples E, ..., En where E; = Ej' U
E; (1 <i< n), His a solution of induction if there is a stable model M; of P U H
such that M; = E;L and M; = E; for each Ej;.

Ezample 6.4 (Otero 2001) Consider the normal logic program B:
p < not q

which has the unique stable model {p}. Given examples E; = {p} and Ex = {q},
H = {q + notp} becomes a solution as B U H has two stable models E; and Es.

In Otero’s setting, examples are given as multiple sets and each set of examples
is examined to be satisfied by a stable model of a program. This is different from
the problem setting of brave induction which examines satisfaction of a single set of
examples in an answer set of a program. Otero’s framework reduces to the definition
of cautious induction for a single set of examples.

Induction in answer set programming is introduced by Sakama, (2005), which builds
new rules to cover positive examples and uncover negative examples. More precisely,
given an extended logic program B9 and a ground literal L™ (resp. L) as a positive
(resp. negative) example, it finds a set H of rules such that

BUHEL" and BUHKEL™

and B U H is consistent. This definition provides a logical framework of cautious in-
duction in ASP.

Ray (2008) develops a nonmonotonic ILP system, called XHAIL, which combines
abduction and induction for building hypotheses. The background theory is given as a
normal logic program, and its semantics is given by the stable model semantics. Given
examples, XHAIL first computes explanations by brave abduction. Next, XHAIL con-
struct ground rules as hypotheses by putting abductive explanations in heads of rules

18 A normal logic program is a logic program in which a rule can contain default negation
but contains neither negative literals nor disjunction.
19 Extended logic programs are a subclass of extended disjunctive programs such that a
program contains no disjunction in the heads of rules.
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and putting deductive consequences of B in bodies of rules. In this phase, mode dec-
laration specifies atoms appearing in heads and bodies of possible hypotheses. Finally,
the ground hypotheses is generalized in the inductive phase. The resulting hypothesis
becomes a solution of brave induction because it is constructed from explanations of
brave abduction. In this sense, it is said that XHAIL realizes brave induction. How-
ever, the paper (Ray 2008) does not mention any motivation of brave induction apart
from technical reasons, nor investigate any formal property of brave induction. In fact,
temporal theories in event calculus provided as a case study in (Ray 2008) always have
a single stable model, and the result of brave induction coincides with that of cautious
induction in this case study.

6.4 Further Extensions and Issues

In brave induction B A H has a minimal model in which an observation O is satis-
fied. In this case, H covers the positive observation O under B. In ILP, on the other
hand, negative observations as well as positive ones are also handled. Given a negative
observation N, it is required that H uncovers N under B. This condition is logically
represented as B A H [~ N. Definition 2.1 is extended to handle negative observations
as follows.

Definition 6.1 Let B be the background knowledge, P a positive observation, and N
a negative observation. A hypothesis H is a solution of brave induction if B A H has a
minimal model M such that M |= P and M [~ N.

Note that we are interested in minimal models in which a positive observation P
is true, so a negative observation N is requested to be false in those minimal models.

By putting O = P A =N, the above definition reduces to Definition 2.1 and negative

observations are handled within the framework of this paper.2°

Ezample 6.5 Consider the background knowledge B and an observation O,

B : amarican(John) V english(John),
american(Mary),
french(Nicolas).

P : speak_english(John),

N : speak_english(Nicolas).

Then, putting O = P A =N,

H; : speak_english(zx) < american(zx),

Hs : speak_english(z) < english(z)

are two solutions of brave induction.

20 Strictly speaking, —N requires Skolemization when a clausal theory N contains variables.
For detailed technique, see (Inoue 2004).
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In this paper, we introduced induction algorithms which produce clauses or rules
that define more than one predicate. The problem is known as multiple predicate learn-
ing (MPL) (De Raedt and Lavrac¢ 1996). In MPL the order of learning different clauses
affects the results of learning tasks and even the existence of solutions, especially in the
presence of negative observations (De Raedt and Lavraé 1993). As discussed in Sec-
tion 2.1, however, brave induction is not adapted for incremental learning in general.
Given an observation O containing multiple predicates, BRAIN computes a candidate
hypothesis H based on the relation B A -0 = ~H V F at once. Those hypotheses are
verified by checking the consistency of B A H A —=F.

Brave induction proposed in this paper uses minimal models as a semantical basis.
Due to its minimality, however, it often fails to induce useful hypotheses.

Ezample 6.6 John and Mary are students. John takes the courses of mathematics and
physics, and Mary takes the courses of mathematics and chemistry. The situation is
represented by the background knowledge B and the observation O:

B : student(John) A student(Mary),
O : math(John) A math(Mary) A physics(John) A chemistry(Mary).

In this case, the clause
H: math(z)V physics(x) V chemistry(x) < student(z)
is not a solution of brave induction.

The problem of Example 6.6 is that B A H does not allow any student to take
more than one course. In other words, disjunction is interpreted ezclusively under the
minimal model semantics. To allow H as a solution for explaining O, a semantics
which allows inclusive interpretations is necessary. A semantics which allows both
exclusive and inclusive interpretations of disjunction in a logic program is known as
the possible model semantics (Sakama and Inoue 1994). For instance, the disjunctive
clause p V q has three possibles models {p}, {¢}, and {p, q}, of which {p} and {q} are
minimal models. Thus, the possible model semantics considers non-minimal models as
well as minimal ones. Brave induction under the possible model semantics is defined
by replacing minimal models with possible models in Definition 2.1. In Example 6.6,
B A H has the possible models:

{math(John), math(Mary), physics(John), chemistry(Mary) },

so that H becomes a solution of brave induction for explaining O under the possible
model semantics. Recently, it is known that the possible model semantics characterizes
the semantics of cardinality constraint rules in ASP (Marek et al. 2007).%!

7 Conclusion
This paper introduced a logical framework of brave induction and developed algorithms

in both full clausal theories and answer set programming. The utility of brave induction
in problem solving was illustrated in systems biology, requirements engineering, and

21 For cardinality constraint rules, see Section 3.2.
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multiagent negotiation. Brave induction is different from the existing frameworks for
induction, and provides an intermediate solution between learning from satisfiability
and explanatory induction. Compared with existing frameworks, brave induction has an
advantage for managing incompleteness which may arise in the background knowledge,
hypotheses and observations.

Brave and cautious inferences are widely used for commonsense reasoning from in-
complete knowledge. In hypothetical reasoning, two different types of abduction under
brave and cautious inferences are used in the literature. Since abduction and induction
are both hypothetical reasoning which extend the background knowledge to explain
observations, brave induction proposed in this paper has a right place and serves as a
natural extension of brave abduction.

There are several directions for future work. From a theoretical viewpoint, this
paper considered the minimal model semantics in clausal theories. Such a minimal
model is defined by minimizing all predicates, but there is a notion of (P, Z)-minimal
models in circumseription (McCarthy 1980) in which only some selected predicates
P are minimized and some Z can be varied. Circumscriptive induction has been pro-
posed in (Inoue and Saito 2004) by unifying descriptive and explanatory induction, so
brave induction would be considered in the context of circumscriptive induction. From
a computational viewpoint, the BRAIN procedure introduced in this paper is naive and
needs further optimization. In particular, the introduction of inductive bias is impor-
tant in practical setting. Implementing an efficient procedure for brave induction and
validating its effect in practical applications are left for future work.
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