
Inductive Logic Programming in Answer Set
Programming

Domenico Corapi, Alessandra Russo, and Emil Lupu

Department of Computing,
Imperial College London,

Exhibition Road London, SW7 2AZ, United Kingdom,
{d.corapi, a.russo, e.c.lupu}@imperial.ac.uk

Abstract. In this paper we discuss the design of an Inductive Logic Pro-
gramming system in Answer Set Programming and more in general the
problem of integrating the two. We show how to formalise the learning
problem as an ASP program and provide details on how the optimisation
features of modern solvers can be adapted to derive preferred hypotheses.

1 Introduction

Over the last years we have witnessed increasing interest in nonmonotonic logic
programming, as an alternative to systems based on classical logic. Nonmono-
tonicity is considered essential for systems based on common-sense reasoning.
Answer Set Programming (ASP) is a recent approach to nonmonotonic logic
programs that builds on the stable model semantics. The success of ASP is due
in part to the recent availability of efficient and powerful inference engines and
solvers. Despite the recent growth of ASP, little has been done to investigate the
potential contribution to the field of Inductive Logic Programming (ILP).

Besides the challenges posed by nonmonotonicity, ILP systems are not declar-
ative enough. Users are sometimes required to experiment with the ordering of
the clauses, this being relevant not only to efficiency but even to termination
or correctness. Also, whenever the task is particularly knowledge-intensive, ILP
systems usually tend to perform redundant computations and a high share of
the total computation time is taken by particularly heavy inferences. This is also
the case of those ILP applications in which a large portion or all of the admis-
sible solutions are required. ASP provides a natural solution to computational
problems that are more adequately solved by SAT-based techniques rather than
resolution. We also believe the rate of improvements of tools and solver over the
last years makes ASP a very promising area for the field of ILP.

In this paper we present an ILP system, called ASPAL, that relies on the
mapping of the mode declarations into partially instantiated rules. An ASP
solver is used to find an optimal or all the possible hypotheses.

2 The hypothesis space

We assume the reader is familiar with logic programming [3], and ILP [4]. In
particular in this paper we approach the problem of nonmonotonic ILP [6], [1].

2 Domenico Corapi, Alessandra Russo, Emil Lupu

We recall the definition of mode declaration from [4] as it plays a key role in this
paper.

Definition 1. Let m be a mode declaration and l a literal. l is compatible with
m iff l corresponds to the schema of m where all the input and output place-
markers are replaced with variables and constant placemarkers are replaced with
constants. Let r be a rule h ← b1, ..., bn with a specific total order on the lit-
erals (ordered rule) in the body and M be a set of mode declarations. r is
compatible with M on (mh,mb1 , ...,mbn) iff the following conditions are met:
(i) mh = modeh(s) ∈M and h is compatible with mh (ii) for each bi, i = 1, ..., n,
mbi = modeb(s) ∈M and bi is compatible with mbi ; (iii) every input variable in
any of the literals is either an input variable in h or an output variable in some
literal bj , j < i. The set of all compatible rules is denoted RoM

2.1 Hypothesis complexity

In order to derive an effective strategy we want to study how the given inputs
affect the number of candidate solutions defined by a set of mode declarations.
We use |out(m)|, |inp(m)|, |con(m)| to denote respectively the number of out-
put, input and constant placemarkers, in a mode declaration m. The space of
the admissible hypotheses depends, amongst other factors, on the number of
constants that can be instantiated. We want to abstract from it and reason on
an intermediate case.

Definition 2. A skeleton rule for a given set of mode declarations M is a com-
patible rule where all the constants placemarkers are replaced with different vari-
ables instead of constants. A skeleton hypothesis is a set of skeleton rules.

We want to analyse the space of possible skeleton hypotheses for a given
language bias M . The number of possible heads Nh is the number of head mode
declarations, since each placemarker is substituted by a different variable with
no degree of freedom. The number of possible conditions depends on the number
of variables that can be bound to input variables (namely the set of variables
that appear as output variables in preceding conditions or as input variables in
the head), denoted as v in the following:

Nc(v) =
∑
m∈Mb

v|inp(m)| ≤ |Mb|vmax{|inp(m)|:m∈Mb}

We define a limit on the number of conditionsMNC. To simplify the notation
we denote max{|inp(m)| : m ∈Mb} = maxi and max{|out(m)| : m ∈Mb} =
maxo. An upper bound for the number of variables given as input to a condition
is the maximum number of outputs in a conditions multiplied by the maximum
number of conditions: maxo ∗MNC. An upper bound for the number of rules
can be derived considering for each place in the body all possible conditions:

Nr ≤ |Mh| ∗ (|Mb| ∗ (maxo ∗MNC)maxi)MNC

Inductive Logic Programming in Answer Set Programming 3

This upper bound confirms the intuitive idea that the number of input place-
markers and the maximum number of conditions are the factors that affect the
most the hypothesis complexity. ASPAL iterates on the maximum number of
conditions allowed in a rule in order to avoid the generation of superfluous skele-
ton rules, control the computation time and avoid costly groundings.

3 Abduction in ASP

The approach presented here is based on the mapping of the ILP problem into an
abductive problem where language bias is “flattened” into logic atoms (similarly
to [1]). In most of ILP problems we are not interested in all solutions but we
want to find optimal solutions, according to some notion of optimality. In order
to achieve this, we use abduction with penalisation [5].

Definition 3. An abduction with penalisation task is a tuple 〈T,E,A, γ〉, where
T is a normal logic program called background knowledge, E is a conjunction of
literals called examples, A is a set of atoms called abducibles and γ is a function
from A to the non-negative reals called penalty function. A set of hypotheses
∆ ⊆ A is called (abductive) hypothesis if there exists a stable model M of T ∪∆
such that E is true in M . Γ (∆) =

∑
a∈∆ γ(a) is called the penalisation of ∆.

Modern ASP solver support aggregates [2]. In particular, we can explicitly
state the set of abducibles A = {a1, ..., an} as follows in clingo [2], the solver
used in ASPAL:

0 {a1, ..., an} max abducibles.

where max abducibles defines the maximum number of elements in A that can
be true in an answer set. Note that the abducibles can be stated intensionally
by using variables and defining the type of variables. The penalisation function
is supported by an optimisation statement:

minimize[a1 = γ(a1), ..., an = γ(an)]

The solver will find an answer set S and an abductive solution ∆ ⊆ S such that
Γ (∆) is minimum.

4 Inductive learning in ASP

The learning process starts by generating all the possible skeleton rules. Given
the skeleton rules and a set of abducibles associated to them, the burden of the
search for the final hypotheses is shifted onto the ASP solver.

The overall procedure is described in Algorithm 1. A first phase derives from
the given mode declarations the skeleton rules with an additional abducible in
the body that identifies the rule and contains the constants that appear in it.

The outer loop iterates on the number of maximum conditions allowed in
the rule. The loop terminates when a condition is met, e.g. when a satisfactory

4 Domenico Corapi, Alessandra Russo, Emil Lupu

Algorithm 1 Find-Hypothesis

Inputs: E examples; B background theory; M mode declarations; γ penalisation func-
tion
Outputs: H hypotheses

MNC = 0
H = ∅
while 〈termination condition〉 do
Q,A = derive-skeleton-rules(M , MNC)
{∆1, ..., ∆n} = asp-abduce(Q ∪B, E, A, γ)
H = H ∪ translate-solutions({∆1, ..., ∆n},M)
〈increase MNC〉

end while

number of solutions is generated or when an optimal solution is found. Opti-
misation statements are used to find an optimal solution within each iteration.
In the most common case where the optimisation is on the complexity of the
rule we can derive lower bounds on the penalisation in order to terminate the
computation of an optimal answer1.

The generation of skeleton rules is the core part of the algorithm and it is
driven by mode declarations. A direct generation from mode declarations is not
possible since the definition introduces redundancies in the hypotheses space,
due to the use of ordered rules. For example, consider the ordered (skeleton)
rule p(X) ← q(X), r(X). In the construction of skeleton rules we need to be
careful not to construct also the logically equivalent rule p(X) ← r(X), q(X).
Redundancies like these have the effect of producing multiple answers for the
same inductive solution with no benefit on the search. We could be tempted
to define a subset of semantically equivalent compatible ordered rule just by
commuting conditions. Unfortunately only some of the resulting rules would still
be compatible because of condition (iii) in Definition 1, that imposes an ordering
over conditions that share variables. To overcome this, we define a subset of Ro
(we omit the implicit M in the following), whose elements satisfy a given total
order.

Definition 4. Let f1 and f2 be two conditions within an ordered rule. We define
a full order as follows: f1 ≤ f2 iff (i) There is an input variable in f2 that is
bound to an output variable in f1 or (ii) Condition (i) is false and f1 ≤l f2. The
ordering ≤l is an arbitrary total order on Ro.

We call the set of rules that respect the above order Rr ⊆ Ro.

Theorem 1. Each element r in Rr characterises an equivalence class [r] =
{r′ ∈ Ro : r′ ∼ r}.
1 For example, if a solution with complexity 2 has been found in an iteration where
MNC = 1, we know that the iteration with MNC = 2 will not find a better solution
since the new solutions explored will have at least complexity 3 (the head plus the
two conditions).

Inductive Logic Programming in Answer Set Programming 5

The mapping Ro 7→ Rr is a canonical projection from an ordered rule to an
equivalent (non-ordered) rule. We can use the new set to remove the redundancy
caused by ordered rules without loss of completeness and soundness.

In order to derive a concrete implementation we need to define the arbitrary
total order ≤l in Definition 4. In ASPAL we further refine ≤l to be a lexico-
graphic order on an internal mode-based representation. The skeleton rules are
constructed using a dynamic programming algorithm based on the extension of
the set of skeleton rules. This is achieved by adding the head first, then adding
all possible sequences of producers and then adding the consumers. When decid-
ing whether to add or not a condition, the order defined in Definition 4 is used.
The outcome of this process is a set of rules of the following type:

head :−
. . . , c ond i t i ons , . . .
r u l e (< i n t e r n a l r ep r e s en ta t i on >)

where rule is an abducible containing a list of constants used in the rule. When-
ever a certain rule atom is abduced an instantiation of the constants is chosen
and the effect on the semantics of the final theory augmented with the abducible
is the same as adding the skeleton rule with the specified instantiations of the
constants. This is made clear in the next section with an example.

5 Example

Consider the following ILP problem:

B =


bird(a). bird(b).
can(a, fly). can(b, swim).
ability(fly).
ability(swim).

M =

{
modeh(penguin(+bird)).
modeb(notcan(+bird,#ability)).

E =

{
penguin(b).
not penguin(a).

We consider as penalisation function the number of literals in a hypothesis.
The following skeleton rules Q are derived for MNC = 22:

penguin (A):−
r u l e (r1) .

penguin (A):−
A=B, not can (B,C) ,
r u l e (r2 , c (C)) .

penguin (A):−
A=B, not can (B,C) ,
A=D, not can (D,E) ,
r u l e (r3 , c (C,E)) .

The abducibles A = {rule(r1), rule(r2, c(C)), rule(r3, c(C,E))} contain an iden-
tifier for the rule, and a list of constants that must be instantiated in a final
solution. The following aggregates and optimisation statements are also derived:

2 Type conditions are not shown for brevity. Integrity constraints, not shown here are
used to enforce the order over conditions with same structure but different constants.
The encoding for the abducibles (here using rule ids r1, r2, r3 for simplicity) uses
the flattening mechanism introduced in [1]

6 Domenico Corapi, Alessandra Russo, Emil Lupu

0 { r u l e (r1) , r u l e (r2 , c (C)) : a b i l i t y (C) ,
r u l e (r3 , c (C,E) : a b i l i t y (C) : a b i l i t y (E)} 2 .

minimize [r u l e (r1)=1 , r u l e (r2 , c (C))=2: a b i l i t y (C) ,
r u l e (r3 , c (C,E)=3: a b i l i t y (C) : a b i l i t y (E)] .

The first statement limits the hypotheses to maximum two rules. The second
statement assigns the penalisation to abducibles. The background theory, to-
gether with the skeleton rules, the aggregates, optimisation statements and the
integrity constraint ← penguin(b), not penguin(a) derived from the examples
are provided as input to the ASP solver. The final solution can be translated
back into a rule. For example, since the final theory has an answer set containing
rule(r2, c(fly)) then, as supported by completeness and soundness results not
shown here, penguin(A)← not can(A, fly) is a hypothesis for the original ILP
task.

6 Conclusion

We presented an integrated approach to solve ILP problems in Answer Set Pro-
gramming. The approach is based in a preliminary construction of so called
skeleton rules that serve as base for final hypotheses. The number of skeleton
rules grows exponentially with the number of allowed conditions, but for many
significant applications, compressive rules (thus with shorter conditions) are pre-
ferred. We tackle this complexity issue by using a iterative deepening approach
on the number of conditions.

Acknowledgments

This work is funded by the UK EPSRC (EP/F023294/1) and supported by IBM
Research as part of their OCR initiative and Research Councils UK.

References

1. D. Corapi, A. Russo, and E. Lupu. Inductive logic programming as abductive
search. In Tec. Comm. of the 26th ICLP, volume 7 of LIPIcs, pages 54–63, Dagstuhl,
Germany, 2010.

2. M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M. T. Schnei-
der. Potassco: The potsdam answer set solving collection. AI Commun., 24(2):107–
124, 2011.

3. J. W. Lloyd. Foundations of logic programming. Springer-Verlag New York, Inc.,
New York, NY, USA, 1984.

4. S. Muggleton. Inverse entailment and progol. New Gen. Comp., 13(3&4):245–286,
1995.

5. S. Perri, F. Scarcello, and N. Leone. Abductive logic programs with penalization:
Semantics, complexity and implementation. TPLP, 5(1-2):123–159, 2005.

6. C. Sakama. Nonmonotonic inductive logic programming. In LPNMR, page 62, 2001.

