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ABSTRACT
In this paper, we present CrowdWiFi, a novel vehicular mid-
dleware to identify and localize roadside WiFi APs that are
located outside or inside buildings. Our work is motivated
by the recent surge in availability of open WiFi access points
(APs) that are enabling opportunistic data services to mov-
ing vehicles. Two key elements of CrowdWiFi that provide
vehicles with opportunistic WiFi access include (a) an online
compressive sensing component and (b) an offline crowd-
sourcing module. Online compressive sensing (CS) tech-
niques are primarily used to for the coarse-grained estima-
tion of nearby APs along the driving route; here, the received
signal strength (RSS) values are recorded at runtime, and
the number and locations of APs are recovered immediately
based on limited RSS readings. The offline crowdsourcing
mechanism assigns the online CS tasks to crowd-vehicles and
aggregates answers using a bipartite graphical model. This
offline crowdsourcing executes at a crowd-server that iter-
atively infers the reliability of each crowd-vehicle from the
aggregated sensing results and refines the estimation of APs
using weighted centroid processing. Extensive simulation re-
sults and real testbed experiments confirm that CrowdWiFi
can successfully reduce the number of measurements needed
for AP recovery, while maintaining satisfactory counting and
localization accuracy. In addition, the impact of CrowdWiFi
middleware on WiFi handoff and data transmission applica-
tions is examined.
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1. INTRODUCTION
Roadside WiFi networks are increasingly being tapped

into by end users with WiFi interfaces in vehicular networks
opportunistically for a broad range of applications includ-
ing ad hoc data dissemination and low-cost Internet access.
These networks use fixed access points (APs) that provide
improved higher bandwidth connectivity due to better signal
propagation characteristics and their ability to exploit spare
spectrum. This is especially the case in locations with lim-
ited cellular coverage and/or in environments vulnerable to
the obstruction of satellite signals by buildings and is typi-
cal in both urban environments (with significant built infras-
tructure) and in rural areas (where cellular connectivity may
be sparse). To support smooth continuous Internet opera-
tion in the presence of dynamics caused by vehicle mobility,
we argue that a middleware that supports accurate real-time
identification of roadside APs is critical; something which
current mobile devices and vehicular middleware cannot of-
fer. Since APs are deployed in a dynamic and unregulated
manner, the efficient in-network lookup of roadside APs is
key to mobile vehicles seamlessly finding WiFi connections.
The desired service must support multiple functionalities in-
cluding lookup of APs, identification of APs in near range,
their count and location; the design of such as middleware
presents unique opportunities and challenges.
The AP lookup feature has multiple benefits in roadside

WiFi networks. For example, in conditions where a popular
AP is congested, the mobile vehicle can switch to other can-
didate APs in its communication range. Accurate lookup of
roadside APs, deployed outdoors or inside buildings, is also
an important step towards understanding the topologies and
network characteristics of large scale WiFi networks, e.g.
network density, connectivity, interference properties, etc,
in urban areas. Furthermore, the lookup of APs may reveal
interesting social aspects of vehicular networks so that mo-
bile vehicles can be involved in location based services and
mobile cloud support.
However, enabling accurate lookup in dynamic settings is

however not straightforward.

1) War-driving [5] techniques proposed for AP lookup in
mobile scenarios assume relatively low moving speeds.

229



With fast-moving vehicles, lookup results based on fin-
gerprinting WiFi beacons usually yield rough location
estimates with errors in tens of meters - this is often due
to the fact that only a small number of beacons can be
collected by fast-moving vehicles. Accurate location esti-
mates of roadside APs are critical for the mobile vehicle
being able to associate with the best-available AP. We
require solutions to improve AP location estimates by
an order of magnitude in highspeed vehicular networks,
given sparse signal collection opportunity.

2) High mobility in vehicular networks also impacts the con-
nection between mobile vehicles and roadside APs. Ide-
ally, vehicles can obtain a list of APs from the server
along its path – such lookup results from existing war-
driving databases, e.g. Skyhook [15], are simplistic and
error-prone since the server side lacks efficient methods
to evaluate the accuracy of the information contributed
by various mobile users from the same geographic area.
Meaningful learning schemes are needed to generate more
accurate lookup results by fusing multiple estimates and
inferring the overall reliability of the aggregate values.

To address the above challenges, we propose CrowdWiFi,
a crowdsensing middleware (See Section 3) specifically de-
signed for vehicular networks. It consists of two major com-
ponents to enable efficient lookup on roadside WiFi net-
works: an online compressive sensing component and an
offline crowdsourcing component. The online compressive
sensing component running at the vehicle end coarsely counts
and localizes nearby APs in real-time while driving, using
sparse signal collection capabilities. The Offline crowdsourc-
ing component running at the server end assigns online com-
pressive sensing tasks to some mobile vehicles, then aggre-
gates the online sensing results uploaded by these vehicles,
and produces a fine-grained estimation of AP distribution.
In-network localization algorithms require a large number

of RSS (Received Signal Strength) readings; this is impracti-
cal with fast-moving vehicles. We exploit the use of compres-
sive sensing (CS [3]) techniques to reduce complexity since
they allow the recovery of sparse signals with far fewer noisy
measurements than that predicted by the Shannon-Nyquist
sampling theorem. Unlike several existing solutions [7, 19],
we aim to provide an online CS scheme to recover sparse
signals by reading and handling dynamic amounts of noisy
measurements at runtime in vehicular networks. Feng et
al [7] used CS to localize only one mobile target from multi-
ple stable reference nodes, which is vastly simpler than the
problem we attempt to solve, which requires looking up mul-
tiple targets from a single mobile vehicle. Our scheme im-
plements CS using �1-minimization [3], which can be solved
in polynomial time, to count and localize APs in a sparse
network online without a priori knowledge of their num-
ber and location. We apply our CS scheme in a situation
where RSS values are recorded by an RSS-collector online,
and the number and location of APs must be recovered im-
mediately based on only a few noisy RSS readings, so that
efficient estimations can be made in the presence of network
dynamics. Upon receiving the measurements, the recovered
information includes the number of nearby APs and their
coarse-grained locations on a grid.
Crowdsourcing [10] refers to the outsourcing or sharing

of tasks among loosely defined resources, typically workers,
crowd-vehicles, in our case. CrowdWiFi uses geographical

participation allowing servers to assign AP lookup tasks to
crowd-vehicles to run the online CS component, and gain in-
formation from aggregated answers. A major problem of this
crowdsoucing scenario is that the answers are often unreli-
able and diverse, mainly because it is difficult to monitor the
performance of a large collection of crowd-vehicles under var-
ious communication environments and mobility situations.
In the extreme, there may exist “spammers”, who submit
random rather than good-faith answers. Efficient aggrega-
tion methods should take into account the differences in the
reliabilities of crowd-vehicles’ answers. A common strategy
to improve aggregation is to add redundancy. CrowdWiFi

uses a bipartite graph to assign each task to multiple work-
ers and then aggregate the resulting answers. In addition,
we address offline crowdsourcing by transforming the aggre-
gation problem into an iterative inference problem on the
graphical model, and obtain the reliability of each crowd-
vehicle. The reliability information is used to refine the es-
timation of APs using weighted centroid processing. The
crowdsourced result can be further used for WiFi topology
analysis, or downloaded and shared by other vehicles that
will move into these road segments and need Internet access,
data dissemination or other infrastructural supports.
To the best of our knowledge, CrowdWiFi is the first mo-

bile middleware using the concept of crowdsensing to localize
roadside APs in vehicular networks. The rest of this paper
is organized as follows. Section 2 presents the related work
on localization. Section 3 gives a system overview of Crowd-
WiFimiddleware. Section 4 describes the online compressive
sensing in CrowdWiFi. Section 5 addresses the offline crowd-
sourcing issues in CrowdWiFi. Section 6 evaluates CrowdWiFi
performance using simulations and real testbed experiments.
Section 7 concludes our paper.

2. RELATED WORK
We describe related work on localization in vehicular net-

works using RSS-based and crowdsourcing-based approaches.
Several in-network localization approaches use RSS-based

collection since it is straightforward to implement in wire-
less environments and has no extra requirement on hard-
ware, For instance, grid based target lookup algorithms [20]
have used a Gaussian mixture model and an expectation-
maximization method to derive the number and location
of wireless sensors, by enumerating the probabilities associ-
ated with each grid point estimate. Multidimensional scal-
ing (MDS) based approaches [9] have been designed to an-
alyze the dissimilarities between pairs of WiFi APs from
radio scans, then produce a geometric configuration of WiFi
APs. Place Lab [4] presented a ranking scheme to sort RSS
collected from wardriving, then apply k-nearest neighbor
(KNN) based fingerprinting to localize WiFi infrastructure.
Techniques have also been proposed to improve the robust-
ness of RSS-based localization algorithms using probabilistic
models and calibration enhancements [6, 16]. Compressive
sensing based localization has been addressed in [7, 19] for
sparse target counting and positioning via �1-minimization
program.
In recent years, crowdsourcing based solutions for WiFi

fingerprint localization have been attracting much atten-
tion. Zee [12] is an indoor localization system that makes
the calibration zero-effort, by enabling training data to be
crowdsourced without any explicit effort on the part of users.
FreeLoc [18] can extract accurate indoor fingerprint values
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from short RSS measurement times and achieve calibration-
free positioning across different devices in crowdsourcing
based systems. [17] proposed a centroid method to crowd-
source heterogeneous access points for routing switch and
data dissemination in hybrid networks. A major problem
of crowdsourcing-based localization is that the qualities of
the answers are often unreliable and diverse. A common
strategy to improve reliability is to add redundancy, such
as assigning each task to multiple workers, and aggregate
the workers’ answers by some method such as majority vot-
ing [14]. This problem also can be addressed by building
probabilistic models to assign tasks and process answers us-
ing standard inference. [8] gave a message-passing style al-
gorithm for deciding which tasks to assign to which workers
and for inferring correct answers from the workers’ answers.
Note that RSS-based localization approaches have been

primarily designed for localizing wireless client nodes, and
not the infrastructure. In this paper, we consider the oppo-
site problem – localization of infrastructure nodes (APs) for
roadside WiFi lookup. In addition, given sensing capabilities
of fast-moving vehicles, we use crowdsourcing to improve the
accuracy of the lookup results, where we focus on analysis of
crowd-vehicles’ reliabilities and effective aggregation models
for fine-grained estimation of roadside APs.

3. SYSTEM OVERVIEW
In this section, we present the architecture of CrowdWiFi,

a crowdsensing middleware to look up roadside APs.
CrowdWiFi has two key elements – an online compressive

sensing component which counts and localizes nearby APs in
a coarse-grained way along the driving route; and an offline
crowdsourcing component which evaluates the reliability of
each crowd-vehicle after aggregating sensing results and then
produces fine-grained estimation of the APs’ locations.
As shown in Fig. 1, the CrowdWiFi middleware is de-

signed to operate as a service on a vehicular/mobile plat-
form to provide intelligent transportation applications exe-
cuting in a distributed setting with information about APs.
The online compressive sensing component executes on the
client/vehicle OS, while the offline crowdsourcing compo-
nent executes on the server side. Client-server interaction
protocols enable mobile vehicles to upload the coarse-grained
online sensed results to the server, and download the fine-
grained offline crowdsourced results from the server. The
AP lookup results generated by CrowdWiFi middleware are
provided through a service interface to many software appli-
cations in vehicular networks, e.g. WiFi handoff operation,
WiFi topology analysis, and other location-based services.
Three crowdsensing parties are actively involved in Crowd-

WiFi system for AP lookup, as shown in Fig. 1, with follow-
ing specific functions:

• Crowd-vehicle: this party plays the role of a worker
in the CrowdWiFi system. Typical candidates for crowd-
vehicles come from public transportation, e.g. buses,
official vehicles, e.g. patrol cars that have regular driv-
ing routes and schedules to provide WiFi sensing ser-
vices in certain geographical areas. Private cars also
can sense and upload roadside WiFi information to the
crowd-server, possibly in return for a small reward.

• Crowd-server: this party assigns AP lookup tasks
to crowd-vehicles to run online compressive sensing in
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Figure 1: Crowdsensing of roadside WiFi and
CrowdWiFi middleware.
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some road segments, and then aggregates answers with
different reliabilities by offline crowdsourcing. The re-
fined crowdsourced result can be further used for WiFi
topology analysis, or downloaded by user-vehicles that
will present in these road segments and need roadside
WiFi access.

• User-vehicle: this party downloads fine-grained AP
lookup results from crowd-server in advance, and uses
this information for further opportunistic connection
with nearby WiFi APs.

The workflow of CrowdWiFi middleware is illustrated in
Fig.2. We use an upload case from the crowd-vehicle to the
crowd-server to explain its operational steps. In order to
further enhance the processing speed and derive the number
and location of APs while the vehicle is moving, we pro-
pose an iterative approach for online CS, based on a sliding
window and additional steps over the RSS data series col-
lected in a driving grid. Through online CS, nearby APs
will be located on grid points with coarse-grained estima-
tion. However, crowd-vehicles that execute the compressive
sensing task have different reliabilities, due to various com-
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munication environments (e.g. signal interference, malicious
attack), and processing capabilities (e.g. CPU, memory).
Besides assigning lookup tasks to crowd-vehicles for online
CS, the crowd-server also assigns mapping tasks to crowd-
vehicles in a bipartite graph to aggregate AP lookup results,
and analyzes the reliability of each crowd-vehicle using an
iterative inference approach. Finally, the reliability informa-
tion will be used to refine the estimation of APs by using
weighted centroid processing. The individual blocks of the
system model in Fig.2 will be further explained in detail in
the following sections.

4. ONLINE COMPRESSIVE SENSING
We formulate roadside AP lookup tasks on crowd-vehicles

as a compressive sensing problem and propose corresponding
online strategies for efficient estimates in CrowdWiFi.

4.1 Fundamentals of Compressive Sensing
Recently, research has shown that CS can reconstruct a

sparse signal with a much lower sampling rate than Nyquist’
Shannon sampling theorem. Let s be a N×1 column vector.
Given anN×N orthogonal basis Ψ = [Ψ(1),Ψ(2), . . . ,Ψ(N)]
where each Ψ(i) being a column vector, s can be expressed

by: s = Ψθ =
∑N

i=1 θiΨ(i), where θ is the sequence of coef-
ficients needed to represent s in the domain of the basis Ψ.
Signal s is k-sparse if it is a linear combination of k basis
vectors. If k � N , compressive sensing aims to reconstruct
s by taking a set of measurements M much smaller than N
by finding a minimal solution to: y = Φs = ΦΨθ = Aθ,
where y is an M × 1 vector, k < M � N , Φ is an M × N
measurement matrix, and A is an M ×N matrix.

• �1-minimization: For an N × 1 vector θ, its solution is
obtained from the following �1-minimization [3], which
can be solved in polynomial time, to reconstruct the
sparse signal: θ̂ = argminθ∈AN ‖θ‖1, s.t. y = Aθ, where
‖.‖1 is the �1-norm. If the measurement y include some
noise ε, e.g. additive white Gaussian noise, then the �1-
minimization to reconstruct θ is θ̂ = argminθ∈AN ‖θ‖1,
s.t. y = Aθ + ε.

�1-minimization can be used to recover θ exactly if θ is
k-sparse, or compute an approximation of θ that is at least
as good as if it is computed from the values and locations of
the k most significant coefficients of s.

4.2 Compressive Sensing in AP Lookup

4.2.1 Channel Model
The relationship between RSS and the distance between

vehicle and AP is usually defined by a log-distance path loss
model [13], as: r = t− l0 − 10γ log10(

d
d0
)− S, d ≥ d0. t and

r are the transmitted and received signal power in dBm,
respectively; d is the distance between the transmitter and
receiver; d0 is the reference distance; l0 means the path loss
in dBm at d0; γ refers to the path loss exponent; and S is
the log-normal shadow fading in dB.
However, in reality, the RSS-collector receives signals from

multiple APs, so each RSS measurement could potentially
come from any of the sources in a probabilistic way. To cap-
ture such a fact, we collect a series of RSS measurements at a
time, denoted as R = {r1, r2, . . . , rn}, which are assumed to
be mutually independent, and the probability of RSS mea-
surement series R coming from the mixture of K APs can
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Figure 3: Compressive sensing in roadside WiFi net-
works.

be described using Gaussian mixture model (GMM), as:

p(R) =
n∏

i=1

K∑
j=1

wij√
2πσij

exp

[
− (ri − μij)

2

2σ2
ij

]
(1)

where μij represents the expected value of the i-th RSS mea-
surement, which can be computed by the distance between
the j-th AP and the RSS-collector at each RSS measure-
ment point i, using the log-distance path loss model, as:
μij = t − l0 − 10γ log10 dij . σij is the standard deviation
of the Gaussian model. For convenience, we set σij = bμij ,
where b is a constant.
The weight wij of each RSS measurement ri depends on

the Cartesian distance dij between the AP j and the RSS-
collector at the i-th RSS measurement. It is computed by:
wij = e−dij

/∑K
j=1 e

−dij , which places more weight in re-
ceiving RSS measurements from the closer APs than from
the farther ones, thus enforcing a myopic policy to filter the
RSS data and make our model reliable in real environment.
Our goal is to find the optimum K AP locations such that

the probability p(R) in Eq. (1) is maximized. In order to
decide the right number of mixtures, we will use a penalty
for introducing too many Gaussian components based on
Bayesian information criterion (BIC) [6] in Section 4.3.5.

4.2.2 Problem Formulation
Fig. 3 illustrates an example with K = 4 APs deployed

in a vehicular area divided into a discrete grid with N = 64
grid points (GPs), while the number and locations of these
APs are unknown to a mobile vehicle. On-board wireless de-
vices take the drive-by RSS measurements from these APs
at M = 5 arbitrary reference points (RPs) over the grid.
The goal is to determine the number and locations of these
APs efficiently, using only a small number of noisy RSS mea-
surements. Since K � N , and the number of measurements
M � N , the APs lookup problem can be well formulated
as a sparse matrix recovery problem in the discrete spatial
domain using compressive sensing as follows:

Y = ΦΨΘ+ ε, (2)

where:

• ΘN×K is a N×K matrix denoting the locations of the
APs over the grid, and Θ = [θ1, θ2, . . . , θK ]. Each θk is
an N × 1 vector with all elements equal to zero except
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θk(n) = 1. n is the index of the grid point at which
the kth AP is located.

• ΨN×N is the sparsity basis, under which the measured
signals have sparse coefficients Θ, as defined above.
Assume that the transmitted signal power of an AP is
t (dBm). The received signal power r(dij) follows the
log-distance path loss model. [Ψ]ij = r(dij) records
the RSS reading on grid point i from the AP located
at grid point j, for all 1 ≤ i ≤ N , 1 ≤ j ≤ N .

• ΦM×N is the measurement matrix to record the lo-
cations of the vehicle to collect the RSS. Vehicle can
know its location from widely used GPS or other po-
sitioning systems. Only a small number of RSS mea-
surements are collected by the mobile vehicle on sev-
eral arbitrary grid points, referred as RPs. Thus, each
row of Φ represents the location of each RP, with an
element of 1 to indicate the grid point at which the RP
is located.

• YM×K includes the compressive noisy RSS measure-
ments from K APs and collected by the mobile vehicle
on M RPs. Each row vector indicates one measure-
ment value, since the vehicle only can receive one RSS
measurement at a time. The number of measurements
obeys M = O(K log(N/K)), with M � N .

• ε is the measurement noise.

The specific application of above CS operations is illus-
trated in Fig. 3 by the matrix Y , Φ, Ψ, and Θ.
Since the sparsity basis Ψ and the measurement matrix

Φ are coherent in spatial domain, we apply an orthogonal
operation on matrix Y so that we can use the compressive
sensing.

Proposition 1. Assume compressive noisy measurement
matrix Y with size M × K. Y = ΦΨΘ + ε, where Θ is
a K-sparse matrix in a N-dimensional space, and M =
O(K log(N/K)). Let Y ′ = TY , A = ΦΨ, and Q = orth(AT )T ,
where T = QA† and A† is a pseudo-inverse of matrix A.
Then, Θ can be well recovered from Y ′ via an �1-minimization
program.

Proof. See Appendix A.

4.3 Online Counting and Localization
While in theory �1-minimization is solvable in polynomial

time [3], it becomes computationally expensive when N is
large. When a vehicle moves in a vehicular network, it keeps
reading the RSSs from different APs, so the noise measure-
ment matrix Y is increasing fast online, as shown in Fig. 3.
Meanwhile, the size of Φ and Ψ will be updated as well in
order to get an online estimate of Θ.
In order to further enhance the processing speed and de-

rive the number and location of the wireless APs while the
vehicle is moving, we propose an online CS approach in
CrowdWiFi, using a sliding window and an iteration step over
the collected RSS data series. In comparison with traditional
CS localization using orthogonal noisy RSS measurements
and �1-minimization as introduced in Section 4.2.2, the pro-
posed online CS in CrowdWiFi applies additional steps to
online counting and localization based on limited RSS mea-
surements, and can achieve low cost on CS computation for
efficient estimation by several iterations. The workflow of

online CS to count and localize APs is illustrated in Fig.2.
We explain its key components in details as follows.

4.3.1 Grid Formation
Vehicle trajectories typically cross a large geographic area.

These long trajectories result in a large number of grid points
and large sparsity bases Ψ in the offline CS operation. How-
ever, many of these grid points provide irrelevant or redun-
dant information. Therefore online AP lookup from current
grid points in reachable region is more practical for vehicle
users.
Our online grid formation in CrowdWiFi is designed based

on the dynamic time-dependent route in each round of on-
line CS. In the n-th round of CrowdWiFi with inputs Rn,
we count and localize the APs by a grid structure on cur-
rent driving area. We derive the boundaries of the driv-
ing area according to the input RSS measurements Rn and
their corresponding RP location information. Simply, the
boundaries of the fixed area is defined by a rectangle with
(xmin − Tm, ymin − Tm) and (xmax + Tm, ymax + Tm) as the
lower-left and upper-right corners’ coordinates, and xmin,
ymin and xmax, ymax are the minimum and maximum x and
y coordinates of the series of RPs’ locations, respectively.
Tm is the communication radius of the RSS-collector in the
vehicle.
Given the area definition, we draw a grid structure on the

area. Depending on the accuracy and computation cost of
the lookup algorithm, the edge length of each lattice in the
grid structure can be determined.

4.3.2 Sliding Window based RSS Readings
Based on the driving route and its time-dependent grid

area, the mobile vehicle will collect a series of RSS measure-
ments from APs. In order to further enhance the processing
speed in CrowdWiFi and look up APs while the vehicle is
moving, we take an iterative approach using a sliding win-
dow concept over the collected RSS data series. Each RSS
is tagged with a time stamp and TTL (Time to Live). Since
old RSS data can not provide valuable information for on-
line lookup, they will be expired and then removed from the
data set after the TTL.
As the RSS-collector gathers RSS information, we group

the most recently collected RSS data series into a small data
set for current estimation of nearby AP number and loca-
tion. Suppose the length of the current collected RSS se-
quence is k. We use a sliding window with a length of s(s <
k) to extract the input data sequence from current collected
RSS sequence. The iteration step size is set to q(q < s < k).
Then, the set of the input RSS sequence in the n-th round
of iteration is Rn = {rq(n−1)+1, rq(n−1)+2, . . . , rq(n−1)+s}. In
each round of iteration, CrowdWiFi searches the likely num-
ber and locations of APs on a grid structure, which maxi-
mizes the probability of the data series Rn by a way intro-
duced in Section 4.3.5. After several iterations of selecting q
RSS values from data set Rn, CrowdWiFi consolidates these
estimates as in Section 4.3.6, and then refine the APs’ num-
ber and locations through offline crowdsourcing introduced
in Section 5.4.
The sliding window based RSS readings can reduce the

number of measurements for AP lookup. It makes online
CS operation in CrowdWiFi fast and low-complexity, while
achieving accurate lookup.

4.3.3 Combination of AP and RSS Data
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In the AP lookup application, we assume there is no in-
formation to indicate how many APs are present, and which
RSS reading comes from which AP. In each iteration of slid-
ing window based RSS reading, we put an extra step to make
a classification of collected RSS data into different APs, and
then apply it to the CS operation before obtaining good
lookup results.
CrowdWiFi first makes an estimation of the AP number

of K. Given a small size of RSS readings collected from
different RPs on the continuous vehicle trajectory, the upper
bound of the AP number should be same as the number of
collected RSS by M . Suppose we have M = 5 RSS values,
we can classify these RSS values under different estimates
of the AP number K, where K = 1, 2, . . . , 5. The matrix
Y ∈ R

M×K in Fig. 3 shows an example on the classification
and combination of five RSS values when CrowdWiFi assumes
there are five APs.

Proposition 2. The problem formulation cannot state
the number of APs, and which RSS reading comes from
which AP. If there are K APs and M RSS measurements,
for all the possibilities of AP number K, (K = 1, 2, . . . ,M),
the complexity of enumerating combinations of (K,M) is
Ω(MM ).

Proof. See Appendix B.

From Proposition 2, we know that the number of com-
binations exponentially increases with the number of RSS
readings. If we estimate APs based on too much RSS data,
it will induce a large cost to run �-1 minimization in the CS,
which is not practical for online counting and localization.
Therefore, it is necessary to take the sliding window based
RSS reading to reduce the number of (RSS, AP) combina-
tions for online computation. Given the limited number of
RSS, the capability of CS to recover sparse signal still can
give good coarse-grained estimate of the APs.

4.3.4 Centroid Processing
For each θ̂k, the output of the �1-minimization for CS

operation turns out to be a N × 1 vector with all elements
equal to zero except one element equal to one, which exactly
indicates the grid point at which the AP is located. This
means that if the APs are exactly located at the grid points,
then the recovery can be precise.
However, the recovered location θ̂k does not turn out to be

an exact 1-sparse vector, but has a few non-zero coefficients.
In order to compensate for the error induced by the grid
assumption, a centroid processing procedure is conducted.
We choose the dominant coefficients in θ̂k whose values are
above a certain threshold ζ, and take the centroid of these
grid points as the location indicator. Let Sk be the set of all
indexes of the elements of θ̂k such that: Sk =

{
n|θ̂k(n) > ζ

}
.

These are potential candidate points for the estimate of
the location of the kth source. Each n ∈ S represents a
point in the two dimensional space (xn, yn). The location
of source k can be estimated by finding the centroid of the
candidate points using weighted mean in (3). The weight

for each (xk, yk) is its corresponding value θ̂k in that grid
point. We have,

(x̂k, ŷk) =
1∑

k∈Sk

θ̂k

∑
k∈Sk

θ̂k(xk, yk). (3)

4.3.5 Bayesian Information Criterion
In maximum likelihood estimation, the more Gaussian

components are estimated, the more accurate the maximum
likelihood of the GMM (see Section 4.2.1). In order to decide
the right number of mixtures, we introduce a penalty for in-
troducing too many Gaussian components. The Bayesian in-
formation criterion (BIC) is commonly used to select model
parameters [6].
As shown in Fig. 3, we enumerate the (AP, RSS) combi-

nations from the sliding window based RSS readings, and
estimate the number and locations of APs in Θ after the CS
operation. Based on these estimates, we use BIC to pick the
best estimate in the n-th round of iteration, which provides
the maximum likelihood log p(Rn) and lead to BIC estimate
under current AP number K.

Given v as the number of free parameters to be estimated
andR as the data, we define BIC as: BIC = 2max log p(R|v)−
v log(m), where max p(R|v) is the maximum likelihood of
the data R given the number of parameters v, and m is the
number of data samples in the n-th round of iteration. In
our models, the parameters to be estimated are the two-
dimension coordinates of APs, thus v = 2K. To use BIC for
model selection, we simply choose the model that leads to
the maximum BIC. After certain number of combinations
on (AP, RSS), CrowdWiFi is able to find the best number of
APs that maximizes the registered BIC value, as well as the
locations of the APs.

4.3.6 Credit based Consolidation
After computation of the maximum BIC value from each

iteration of sliding window based RSS reading, we grant one
credit to each of the estimated locations satisfying the maxi-
mum BIC. Because we maintain a dataset to record previous
estimates and credits, we need to update the credit data once
we have new assignment of credit.
CrowdWiFi takes a data cleansing step that consolidates

the location estimates of the prior iterations. We compare
the location estimates of current iteration with those of the
previous iterations. If any location in the current estimates
aligns with a previous location estimate, these two locations
are merged, and the merged location gains the credit points
of both new and prior location estimates. In addition, the
coordinate of the merged location estimate is averaged by
taking the centroid of the coordinates of the new and old
points, proportional to their credits. If a location in the
current estimate does not align with any prior location es-
timates, the location is added as a new AP location in the
AP set.
Finally, after a few iterations of online RSS reading and

BIC computations, or when RSS data collection is complete,
CrowdWiFi filters out the spurious location estimates that
have few credits. The number of credits for filtering spu-
rious estimates is cross-referenced by reality check, and is
normally set at 1. That is, if a location estimate has only
one credit, it is removed from the final AP set.

5. OFFLINE CROWDSOURCING
After online compressive sensing of roadside WiFi infor-

mation, crowd-vehicle uploads the geographical distribution
of nearby APs, with the number and location information on
the corresponding grid formation, to the crowd-server for of-
fline crowdsourcing. The offline crowdsourcing in CrowdWiFi
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Figure 4: Aggregation in offline crowdsourcing.

assigns the AP mapping tasks to crowd-vehicles by a bipar-
tite graph, and aggregates answers using iterative inference
on the graphical model. CrowdWiFi also refines the locations
of APs using crowdsourced coarse-grained locations of these
APs on the grid points.

5.1 Spammer-hammer Model
In CrowdWiFi, each crowd-vehicle is assigned with multiple

lookup tasks to sense APs along different road segments. We
assume that all the tasks have the same level of difficulty, but
that crowd-vehicles may have different reliabilities. Some
crowd-vehicles can provide better AP estimates than others
due to various communication environments and process-
ing capabilities, while some other crowd-vehicles might be
spammers.
We assume the reliability of crowd-vehicle j is measured

by a single parameter qj , which corresponds to its prob-
ability of correctness. The values of qj reflect the diver-
sity in crowd-vehicles’ reliability, which are independent dis-
tributed random variables with a given distribution on [0,
1]. One typical example is spammer-hammer model where,
qj ≈ 1 correspond to hammers that provide reliable an-
swers, and qj ≈ 1/2 denote spammers that give random
answers. We assume the qj of all crowd-vehicles are drawn
independently from a common prior p(qj |λ), where λ are
the hyper-parameters of a prior distribution [10]. To avoid
the cases when spammers overwhelm the system, it is rea-
sonable to require that E[qj |λ] > 1/2. Typical priors in
spammer-hammer model includes the discrete prior, where
qj ≈ 0.5 or qj ≈ 1 with equal probability.

5.2 Graphical Model
To aggregate results from unreliable crowd-vehicles and

determine their reliability qj , we have designed a bipartite
graph scheme for crowd-server to enumerate and assign map-
ping tasks to crowd-vehicles. As shown in Fig. 4 (a), the
task assignment scheme can be represented by a bipartite
graph where an edge (i, j) denotes that the mapping task
i is labeled by the crowd-vehicle j. Each mapping task
is a possible distribution pattern (combination of number
and location) of APs, denoted by blue dots in a grid forma-
tion, given a road segment ID. Crowd-vehicles submit their

lookup results to answer if these distribution patterns exist
(labeling +1) or not (labeling -1). Initially, some AP distri-
bution patterns are generated randomly by crowd-server for
bootstrapping purpose. After that, more distribution pat-
terns can be added into the mapping set by selecting the
lookup results from crowd-vehicles, so that the crowd-server
can avoid generating too many non-existent AP distribution
patterns to save computation and assignment cost.
Specifically, assume there are M crowd-vehicles and N

mapping tasks with binary labels ±1. The true label of
task i is denoted by zi ∈ ±1, i ∈ [N ], where [N ] rep-
resents the set of first N integers. Nj is the set of tasks
labeled by crowd-vehicle j, and Mi is the set of the crowd-
vehicles labeling task i. The labeling results form a matrix
L ∈ 0,±1N×M , where Lij ∈ ±1 denotes the answer if crowd-
vehicle j labels task i, and Lij = 0 if otherwise. Therefore,
the reliability qj of crowd-vehicle j is defined by the prob-
ability of correctness: qj = prob[Lij = zi]. The goal is to
find an optimal estimator ẑ of the true labels z given the
observation L, minimizing the average bit-wise error rate
1
N

∑
i∈[N ] prob[ẑi 	= zi].

5.3 Iterative Inference
A naive approach to aggregate crowd-vehicles’ labels L

is to use majority voting. Majority voting simply chooses
what the majority of crowd-vehicles agree on. When there
are many spammers, majority voting is error-prone since
it weights all the crowd-vehicles equally. We use an itera-
tive inference approach for CrowdWiFi, based on a message-
passing algorithm proposed by [8]. Let xi→j and yj→i be
real-valued messages from tasks to crowd-vehicles and from
crowd-vehicles to tasks, respectively. Initializing y0

j→i ran-

domly from Normal(1, 1) or deterministically by y0
j→i = 1,

iterative inference updates the messages at t-th iteration via

xt+1
i→j =

∑
j′∈Mi\j

Lij′y
t
j′→i, yt+1

j→i =
∑

i′∈Nj\i

Li′jx
t+1
i′→j . (4)

A crowd-vehicle message yj→i represents the updated re-
liability of the crowd-vehicle j, and the labels are estimated
via the sum of the answers weighted by each crowd-vehicle’s
reliability as: ẑti = sign[x̂t

i], where x̂t
i =

∑
j∈Mi

Lijy
t
j→i.

Note that the 0th iteration of iterative inference reduces to
majority voting when initialized with y0

j→i = 1.
After transforming the labeling aggregation problem into

an iterative inference problem on a bipartite graphical model,
the joint posterior distribution of crowd-vehicles’ reliabilities
q = qj , j ∈ [M ] and the true labels z = zi, i ∈ [N ] condi-
tional on the observed labels L and hyper-parameter λ is

p(z, q|L, λ) ∝ ∏
j∈[M ] p(qj |λ)

∏
i∈Nj

p(Lij |zi, qj)
=

∏
j∈[M ] p(qj |λ)q

cj
j (1− qj)

γj−cj ,
(5)

where γj = |Nj | is the number of answers made by crowd-
vehicle j, and cj :=

∑
i∈Nj

I[Lij = zi] is the number of j’ s

answers that are correct. By standard Bayesian arguments,
one can show that the optimal estimator of z to minimize
the bit-wise error rate is given by

ẑi = argmax
zi

p(zi|L, λ), (6)

where p(zi|L, λ) = ∑
z[N]\i

∫
q
p(z, q|L, λ)dq.

5.4 Fine-grained Estimation
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Figure 5: Trajectory illustrations upon APs lookup in the UCI simulation scenario.

Online compressive sensing finds the coarse-grained loca-
tions of the APs with coordinates all placed on the grid
points. From iterative inference in offline crowdsourcing, we
can obtain the optimal estimation of z and the correspond-
ing reliability of each crowd-vehicle. Based on the optimal
results, we can further refine the locations of APs by edging
into the true locations, using operations on crowdsourced
grids weighted by the reliability of each crowd-vehicle.
According to the grid formation in Section 4.3.1, because

of different moving paths, operation times and sensing loca-
tions, crowd-vehicles may form various grid structures from
local views during online compressive sensing, even though
they are in the same sensing area. As shown in Fig. 4 (b),
the estimated locations of the same AP, denoted by three
blue dots, are located on different grid points of three grid
formations, due to three crowd-vehicles moving on the differ-
ent paths. Since the three estimated AP locations are close
in these overlapped driving grids, a centroid processing pro-
cedure is conducted by the crowd-server to merge the three
estimates on different grid points to be one estimate on the
true location, denoted by the red dot in Fig. 4 (b). Crowd-
vehicles with higher reliability can present more accurate es-
timations, therefore the centroid operation of crowdsourced
estimates is weighted by the reliability of each crowd-vehicle
to compensate for the lookup error during online compres-
sive sensing. The weighted centroid processing using a crowd-
vehicle’s reliability is similar to the centroid method illus-
trated by Eq. 3 in Section 4.3.4.

5.5 Crowdsourcing Platform
The crowdsourcing platform in CrowdWiFi consists of four

components: (1) a web interface where vehicle can upload
and download nearby APs information based on its loca-
tion; (2) a crowd-server including a database for storing the
crowdsourced AP information and for distributing the in-
formation to potential users; (3) a client application for the
crowd-vehicle, which pulls available AP lookup tasks from
the database, based on its given driving route and geographi-
cal information; and (4) a client application for user-vehicles
to obtain AP information. Through this crowdsourcing plat-
form, CrowdWiFi is able to virtually provide nearby AP in-
formation to vehicles requesting wireless access and data
dissemination solutions at any time and anywhere.
The driving routes and locations of crowd-vehicles, their

AP lookup results, and other relevant crowdsourcing factors
are privacy information. Therefore, in CrowdWiFi, crowd-
vehicles have the right to accept tasks to share these in-
formation for rewards, or deny the tasks to protect their
privacy.

6. PERFORMANCE EVALUATIONS
We implemented CrowdWiFi and evaluated its performance

on lookup accuracy by simulation and real testbed experi-
ments. We also evaluated it as a vehicular middleware on
handoff performance by some real trace studies. In our grid
setting, some RPs located around grid points are selected to
estimate the number and locations of APs, according to the
formulation of online CS problem in Section 4.2.2.
We first formally define the localization error. For each

grid i, let ki and k̂i be the actual and estimated num-
bers of roadside APs, respectively. Assume there are k
actual APs with locations {(xi, yi)}, ∀i = 1, 2, . . . , k, and

there are corresponding {k̂i} estimated APs with locations

{(x̂i, ŷi)}. Furthermore, let kmin = min{k, k̂}, and thus we
derive the localization error as the normalized relative dis-

tance: (

kmin∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2)/(kminl), where l is the

length of grid lattice. If the error is less than 100%, then
it indicates that the estimated location is close to the real
location as their distance is shorter than the grid diameter.
Accordingly, we define the counting error in our evaluation,

as: (

N∑
i=1

|ki − k̂i|)/(
N∑
i=1

ki).

6.1 Simulation Results
The campus map of the University of California, Irvine

(UCI) and the AP deployments on the map have been used
here for AP lookup. There were 8 APs deployed at UCI, and
an RSS-collector collected the RSS values of periodic radio
packets from these APs along a path as shown in Fig. 5(a).
We used NCTUns v5.0 [1] to model the vehicular network
and scaled the UCI campus map over a 300m× 180m rect-
angular area in our simulations. The distance between each
pair of APs is more than 50m, and the effective signal trans-
mission radius of the APs is 100m. The path loss at reference
distance 1m is 45.6dBm and the path loss exponent is 1.76.
The standard deviation of the shadow fading is set to 0.5dB.
We run three sets of simulations based on Fig. 5 as follows
to test online CS and offline crowdsourcing.
In order to demonstrate the AP lookup performance using

online CS, we first set the 8 APs physically located on 8 grid
points and then run online CS to estimate locations at three
different moments, namely, those when the RSS-collector
collected 60-th, 120-th, and 180-th RSS values in the sim-
ulation, respectively. The resulting location estimates are
shown in Fig. 5(b), (c), and (d), respectively, where the
crosses represent the actual AP locations, and circles are lo-
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Figure 6: Impact of lattice size on localization error.

cation estimates by CrowdWiFi. In the proposed CrowdWiFi

algorithm, the sliding window size for each computation it-
eration is set as 60, and the iteration step size is 10. That is,
we re-run CrowdWiFi using the past 60 data samples when
RSS-collector collects additional 10 RSS values. In order to
test the robustness of our algorithm, we intentionally add
Gaussian white noise N (0, σ2) to the observation vector y
when running CrowdWiFi. We use SNR to quantify the sig-
nal to noise ratio and set SNR=30dB. The lattice size in
grid structure is set as 8m× 8m.

As Fig. 5(b) to Fig. 5(d) show, when vehicles move around
the trajectory, the number of RSS readings are increased,
and CrowdWiFi can filter out the spurious AP locations and
provide accurate estimations of the number and locations of
APs in the Credit-based consolidation. Furthermore, Fig. 5(c)
confirms that online CS successfully finds both the number
and locations of APs when 120 data points collected. Then,
Fig. 5(d) shows that after collecting all 180 data points, the
CrowdWiFi algorithm accurately provides 8 estimated APs,
successfully matching with the exact AP number and loca-
tions. Based on these three location estimates, the aver-
age estimation error reduces from 2.6157 meters (for the 60
points) to 1.8316 meters (for the 180 points), demonstrating
that the presented online CS can correctly find APs within
a satisfactory error bound.
The lattice size (or the number of grid points) in grid

structure is an important parameter to run CS, and can
determine the accuracy level of AP lookup that CrowdWiFi
can achieve. Fig. 6 examines this impact of lattice size on
localization error via CrowdWiFi, based on the simulation
scenario of UCI map and 180 data points. The localiza-
tion error is computed by above mentioned method times
100%. Fig. 6 shows that a smaller length of lattice (larger
number of grid points) results in more accurate location es-
timation. When the length of lattice is less than or equal
to 10 meters, CrowdWiFi can achieve a low estimation error
less than 2 meters. When the length of lattice is around 20
meters, CrowdWiFi still can maintain the error at a certain
level below 3 meters. Usually, the estimation error increases
along with increasing the lattice length, and a very small
length of lattice will result in a more expensive computation
cost of the algorithm. According to the results, we learn
that choosing a feasible lattice length between 5 to 10 me-
ters can guarantee satisfactory localization performance. We
also evaluated the impact of lattice size on counting error,
and CrowdWiFi shows 0 counting errors for lattice lengths in
the range between 2 meters to 20 meters.
Since online CS only can provide estimates of APs located

on grid points, but most APs in reality are not physically
exactly located on grid points, we set the true locations of
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Figure 8: Comparisons between CrowdWiFi and other
algorithms on counting and localization errors.

8 APs randomly on grid structure in the second set of sim-
ulations. Then we verified the performance of offline crowd-
sourcing on fine-grained estimation.
We generated the reliabilities qj from the spammer-hammer

priors, that equals 0.5 or 1.0 with certain probabilities. The
assignment graphs were randomly drawn from the set of
(�, γ)-regular bipartite graphs with 1000 tasks. The left de-
gree � denotes the number of crowd-vehicles per task, and
the right degree γ denotes the number of tasks per crowd-
vehicle. For comparison, we also calculated the majority vot-
ing (MV) that chooses what the majority of crowd-vehicles
agree on [14], the Skyhook that compares relative rankings
using the Spearman rank-order correlation coefficient [4],
and the oracle lower bound (Oracle) that assumes the true
qj are known. We terminate all the iterative algorithms
at a maximum of 100 iterations or with 10−6 message con-
vergence tolerance. All results are averaged on 100 random
trials. As shown in Fig. 7 (a) and (b) in our experiments, the
bit-wise error rate of the iterative inference in CrowdWiFi is
shown to be lower than majority voting and Skyhook due to
its reliability evaluation, and CrowdWiFi scales in the same
manner as an oracle lower bound. Also, we show that the
error rates of the crowdsourcing algorithms generally decay
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Figure 9: Roadside APs lookup and crowdsourcing in UCI testbed experiments.

exponentially w.r.t. the degree � and γ of the assignment
graph on a spammer-hammer model.
In the third set of simulations, we have tested the perfor-

mance of offline crowdsourcing combined with online CS on
AP lookup. To verify the strength of AP lookup in Crowd-

WiFi, we compared it with several state-of-art algorithms
specifically developed for counting and locating WiFi APs.
We implemented the Gaussian mixture model based grid
algorithm [20], and multidimensional scaling (MDS) based
radio scan algorithm [9], referred as “LGMM” and “MDS”,
respectively. We also implemented Skyhook [15] based on
Place Lab’s fingerprinting algorithm [4] (Skyhook’s algo-
rithm is proprietary, but similar to Place Lab [5]). The
localization error and counting error are computed by above
mentioned method times 100%, respectively. The simula-
tion area is 250m× 250m, and the lattice size in grid is set
as 8m× 8m.

Fig. 8(a) and (b) depict the counting and localization er-
ror vs. the sparsity level k when N = 900, M = 160, where
k, N and M indicate the number of WiFi APs, the number
of grid points and the number of reference points, respec-
tively. We also set SNR = 30dB. It can be observed that
CrowdWiFi and Skyhook brings much lower error than other
algorithms due to the adoption of crowdsourcing. In ad-
dition, because CrowdWiFi employs compressive sensing for
sparse signal processing and reliability based crowdsourcing
evaluation, it can achieve better performance on AP lookup
than Skyhook. When k = 30, both counting and localiza-
tion errors are almost zero, while other algorithms produce
a counting error of at least 21% and a localization error of
more than 200% under the same scenario. Even when k is
as small as 10, the localization error of LGMM, MDS, and
Skyhook is still above 60%, though their counting errors are
relatively small (0.03 or higher). When k = 40, CrowdWiFi
achieves a counting accuracy of around 10% and a local-
ization error of less than 100% (inside a grid) while other
algorithms result in a much lower accuracy.
Fig. 8 (c) and (d) depict the counting and localization er-

ror vs. the number of measurements M when N = 900, k =
10 and SNR = 30dB. As an overall trend, the larger the
M is, the smaller the error for all algorithms. Note that
both the counting error and localization error of CrowdWiFi
are almost zero when M ≥ 40, while other algorithms yield
much higher errors when M < 100. This clearly indicates
that CrowdWiFi does not need a large number of measure-
ments to precisely estimate the number and location of the
APs, and thus has considerable values in practical scenarios.

6.2 Testbed Experiment Results
In our real testbed experiments, we used Open-Mesh wire-

less mesh nodes that run the IEEE 802.11b/g standards as
APs [11]. Each node is an integrated access point, mesh
gateway and repeater, all in one tiny reliable package. The
node model is OM1P and its price is as cheap as 30 US dol-
lars. Our CrowdWiFi system and results of these experiments
can similarly apply to other kinds of roadside APs.
We deployed six Open-Mesh nodes at six different loca-

tions: two in Graduate Division Office, one in Irvine Barclay
Theatre, one in The Hill Bookstore, one in Starbucks and
one in UCI Student Center, over a 100× 100 square meters
area on UCI campus as shown in Fig. 9. The blue icons in-
dicate the real location, the red icons indicate the estimated
location, and the green solid line indicates the moving path
of our vehicle. The lattice size in grid structure is set as
10m× 10m. As the RSS-collector, a ThinkPad X61 Laptop
with Intel(R) PRO/Wireless 3945ABG Network Connection
was used to collect the RSS values along the moving path
of our vehicle. The transmission radius of the Open-Mesh
nodes is approximately 30 meters.
For crowdsourcing of APs lookup results, the vehicle col-

lected RSS values from nearby APs at three different aver-
age moving speeds around 20mph, 35mph, and 45mph. We
present the location estimation results for each moving speed
at two different moments of the experiment, namely those
when the RSS-collector collected 20-th and 40-th RSS sam-
ples, as shown in Fig. 9(b) and Fig. 9(c) for the case with
speed 45mph. The offline crowdsourcing platform aggre-
gated the AP lookup results of the three moving speeds, and
obtained corresponding reliability of the crowd-vehicle. Af-
ter the centroid processing of crowdsourced AP information
weighted by crowd-vehicle’s reliability, the crowdsourced re-
sult shows more accurate estimation than individual vehicle.
CrowdWiFi can look up all six Open-Mesh nodes to match
with actual locations, and the average estimation error in the
real testbed experiments is 2.2509m, as shown in Fig. 9(d).
We also downloaded the Skyhook software, which is an

existing system built upon fingerprinting and crowdsourc-
ing, from the Internet to compare it with CrowdWiFi. Sky-
hook relies on war-driving to create current radio map, and
then updates lookup results according to its previous records
within university campuses and other driving paths. We
tested Skyhook in the same area and the estimation error
is 11.6028m, which is less accurate than CrowdWiFi, due to
disadvantages both in its localization scheme and crowd-
sourcing evaluation.
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Figure 10: APs lookup in VanLan trace studies.

6.3 Network Handoff and Connectivity
We use VanLan [2] traces, consisting of 11 APs and 2 vans

performing as crowd-vehicles. User-vehicles use the crowd-
sensed lookup results to connect nearby APs. APs are de-
ployed across five buildings in the Microsoft campus, as illus-
trated in Fig. 10, covering a 828m×559m area. All vehicles
travel with a speed limit of 25mph. Each crowd-vehicle visits
the region with AP deployment about ten times a day. All
APs and vehicles are equipped with Atheros 5213 chipset ra-
dios. Their output power is around 26.02 dBm. All vehicles
are equipped with a GPS unit that outputs location infor-
mation once every second. During the evaluation, each AP
and vehicle broadcasts a 500-byte packet at 1 Mbps every
100 ms. For the VanLan dataset in our experiment, there
are 12544 RSS data associated with the beacon messages col-
lected by the moving crowd-vehicle from nearby APs. Since
compressive sensing can recover sparse signals from a small
number of measurements, we chose 300 RSS data from the
dataset to evaluate the lookup performance of CrowdWiFi.
We also propose two handoff policies to evaluate the im-

pacts of CrowdWiFi on the network connectivity,

• BRR, where the vehicle connects to the AP with the
highest exponentially averaged beacon reception ratio.
It is a hard handoff policy, since the vehicle can only
communicate with the associated AP.

• AllAP, where the vehicle opportunistically uses all
APs in the vicinity. A transmission by the vehicle is
considered successful if at least one AP receives the
packet. The probabilities that a vehicle associates with
nearby APs are related to their locations.

Moving vehicles are often within the communication range
of multiple APs, and packet loss events are usually bursty
and generally independent across senders and receivers. Since
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Figure 11: Impacts of AP lookup accuracies on the
network connectivity.

in the CrowdWiFi framework, user-vehicle can download the
crowdsensed AP lookup results from the crowd-server in ad-
vance, AllAP can fully exploit multi-user diversity between
the user-vehicle and the set of nearby APs. Therefore, Al-
lAP is significantly more effective than BRR scheme that
uses only one AP even when that AP is judiciously chosen.
Fig. 10 shows the behavior of BRR and AllAP during an

example path segment in VanLan. Black lines represent re-
gions of adequate connectivity, i.e., more than 50% reception
ratio in a one-second interval. Dark dots represent interrup-
tions in connectivity. Blue circles represent the associated
APs in two schemes. As shown in Fig. 10(a), BRR scheme
contains several regions of inadequate connectivities due to
the hard handoff to only one AP. In contrast, AllAP scheme
in Fig. 10(b) performs far better since it uses multiple APs
to further reduce the number of interruptions. It makes full
use of all nearby APs, and the average localization error is
just 2.0658m. This effect becomes clearer in Fig. 10(c) that
compares the two handoff policies with regard to cumula-
tive time users spend in an uninterrupted session of a given
length. Cumulative distrusting probability (CDF) of time is
used to describe the probability that the real uninterrupted
length is less than or equal to the given length. Based on it,
we can correspondingly derive a probability that the real un-
interrupted length is more than the given length. For median
session length given in this scenario, we see the probability
of AllAP is seven times more than that of BRR, suggesting
its superiority over hard handoff on wireless connectivity.
We next conduct an experiment transferring a 10 KB file

over TCP among user-vehicles and APs, to evaluate the
network connectivity in terms of median transfer time and
throughput, under various counting and localization errors.
Transfers that make no progress for 10s are terminated and
re-started afresh.
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Fig. 11 (a) and (b) show the median time to complete
a transfer under various counting and localization errors.
The results show that given the accurate AP lookup re-
sults, the median TCP transfer time of AllAP scheme is
about 0.61s, i.e., 50% improvement over BRR. Even under
certain counting and localization errors, AllAP still outper-
forms BRR, due to the multi-user diversity gain achieved
from nearby APs. Fig. 11 (c) and (d) show the throughput,
or average number of completed transfers per session, un-
der various counting and localization errors. It is observed
that AllAP achieves almost twice the throughput of BRR if
there are no counting and localization errors. However, the
superiority does not diminish even if the system experiences
tolerable estimation errors. Therefore, given the typically
shorter transfer periods, users of the AllAP scheme will ex-
perience fewer disrupted transfers and better performance
for individual transfers.

7. CONCLUSION
CrowdWiFi is vehicular middleware for roadside AP lookup

using online CS and offline crowdsourcing techniques. The
CS-based coarse-grained lookup approach includes completed
online steps to make the CS operation efficient and effective
for crowd-vehicles to recover sparse APs along the driving
route. Online CS also reduces the number of RSS readings
needed in CrowdWiFi, while maintaining good estimation re-
sults. The crowdsourcing-based fine-grained lookup can gen-
erate accurate estimation of APs based on an efficient aggre-
gation of sensing results using bipartite graph, and provide
feasible analysis of reliability of each crowd-vehicle using an
iterative inference. Through extensive simulation and real
testbed results, we have showed the superiority of Crowd-

WiFi over existing approaches with respect to lookup errors
(e.g. around 80% improvement on localization in compar-
ison with the state-of-the-art Skyhook). We also verified
the efficiency of CrowdWiFi middleware on some vehicular
applications, such as WiFi handoff and data transmission.
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APPENDIX
A. PROOF OF PROPOSITION 1
From the assumption, Y ′ can be written as: Y ′ = QA†Y =

QA†AΘ + QA†ε = QΘ + ε′. Since Q is an orthogonal ma-
trix, Θ can be well recovered from Y ′ via an �1-minimization
based on the CS theory.

B. PROOF OF PROPOSITION 2
The matrix Y of compressive noisy RSS measurements

is not given. If we were to test exhaustively for the value
of Y , we would need to examine each of the possible com-
binations of K AP and M RSS measurements. Each RSS
value can belong to only one AP, and thus K ≤ M . If K
was known, for a given K and M , there are KM possible
combinations in total. In the worst case K = M , and there
can then be MM combinations. If K is not known, then in
the worst case we must exhaustively test each assignment

of K = 1, 2, . . . ,M . There are
∑

K∈1:M

KM such combina-

tions. Since it is clear that
∑

K∈1:M

KM <
∑

K∈1:M

MM and

∑
K∈1:M

MM = M×MM = MM+1, then we have:
∑

K∈1:M

KM ,

and it is of complexity O(KM+1). Furthermore, since the
last term of the combination sequences is MM , the calcula-
tion complexity of combination on (AP, RSS) is Ω(MM ).
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