
UbiFlow: Mobility Management in Urban-scale

Software Defined IoT

Di Wu†, Dmitri I. Arkhipov‡, Eskindir Asmare†, Zhijing Qin‡, Julie A. McCann†

†Department of Computing, Imperial College London, UK
‡Department of Computer Science, University of California, Irvine, USA

Abstract—The growing of Internet of Things (IoT) devices has
resulted in a number of urban-scale deployments of IoT multi-
networks, where heterogeneous wireless communication solutions
coexist. Managing the multinetworks for mobile IoT access is a
key challenge. Software-defined networking (SDN) is emerging as
a promising paradigm for quick configuration of network devices,
but its application in multinetworks with frequent IoT access is
not well studied. In this paper we present UbiFlow, the first
software-defined IoT system for ubiquitous flow control and mo-
bility management in multinetworks. UbiFlow adopts distributed
controllers to divide urban-scale SDN into different geographic
partitions. A distributed hashing based overlay structure is
proposed to maintain network scalability and consistency. Based
on this UbiFlow overlay structure, relevant issues pertaining to
mobility management such as scalable control, fault tolerance,
and load balancing have been carefully examined and studied.
The UbiFlow controller differentiates flow scheduling based
on the per-device requirement and whole-partition capability.
Therefore, it can present a network status view and optimized
selection of access points in multinetworks to satisfy IoT flow
requests, while guaranteeing network performance in each par-
tition. Simulation and realistic testbed experiments confirm that
UbiFlow can successfully achieve scalable mobility management
and robust flow scheduling in IoT multinetworks.

I. INTRODUCTION

Recent developments in wireless communications and em-

bedded systems have resulted in consumer devices becoming

highly ubiquitous creating a strong interest in the Internet of

Things (IoT) as part of smart city solutions. Real world urban

IoT applications are expected to be heterogeneous, due to

various access networks and connectivity capabilities, resulting

in geographically wide-scale multinetworks [1] where there is

a coexistence of multiple wireless communication solutions

(e.g. WiFi, Bluetooth, Cellular). Given the heterogeneity of IoT

multinetworks, it is challenging to coordinate and optimize the

use of the heterogeneous resources in mobile environments.

A. Motivations

Software Defined Networking (SDN) [2] is a relatively

new paradigm for communication networks which separates

the control plane (that makes decisions about how traffic

is managed) from the data plane (actual mechanisms for

forwarding traffic to the desired destinations); where control

is handled by the SDN controller. This decoupling abstracts

low-level network functionalities into higher level services,

This work was partially supported by the Intel Collaborative Research
Institute for Sustainable Connected Cities (ICRI Cities).

therefore allowing quick and flexible configuration for flow-

based routing and enabling rescheduling over the network

components. SDN is particularly useful when networks have

to be adapted to ever changing traffic volumes with different

demands. It is for this reason that we believe that SDN is a

good approach to solving the resource management and access

control issues in urban-scale IoT multinetworks.

OpenFlow [2] is the most prominent approach which im-

plements the SDN concept, where the controller takes charge

of all the functions in control plane, while the OpenFlow

switch retains only the basic data forwarding functions. In the

OpenFlow centralized control model, all routes are determined

by the controller taking a global view of the network status.

However, the request processing capability of a single con-

troller is limited; for example NOX [3] can process about 30K

requests per second. In fact, large-scale network environments

(e.g. IoT applications in smart cities) have the potential to

provide vast amounts of data flows; according to the report

from Cisco, by 2016, there will be over 10 billion mobile-

connected IoT devices and the monthly global mobile data

traffic will surpass 10 exabytes [4]. With the increasing scale

of IoT deployments, centralized controllers will have serious

implications for scalability and reliability. Hence the next

logical step is to build a distributed control plane with multiple

physical controllers, which can provide the scalability and

reliability yet preserves the simplicity of the control function.

Data

Server

Internet

Gateway

Controller 2 Controller 3Controller 1

AP1 AP2
AP3

Switch

1

Switch

2

t2

Switch

3

partition partition partition

t1

Io
T
M
u
lt
in
e
tw

o
rk
s Task resource

matching

Flow Scheduling

Communications Layer

Data Collection

Admin/Analyst

Solution Spec.

Device

DB

Service

DB

Task

DB

Network

DB

Controller Architecture

Fig. 1. UbiFlow system architecture.

Fig. 1 presents a software defined IoT system with the

support of distributed controllers and partially connected

OpenFlow switches in multinetworks with heterogeneous ac-

cess points. However, the current implementations of SDN

technologies are still far from addressing the heterogeneous

and dynamic needs of ubiquitous IoT applications, especially

in mobile environments. The popular use of SDN technologies

today is in Data Center Networks (DCNs) [5], [6], where

the focus is on the optimization of network behaviours (e.g.,

bandwidth consumption) where nodes are linked via fast

interconnections within a data center. In contrast, as shown

in Fig. 1, in the urban-scale IoT multinetwork setting, state

information is gathered from devices distributed over a more

loosely coupled ubiquitous network.

Therefore, the main issues related to the application of soft-

ware defined IoT are: (1) The operation of a distributed control

plane requiring scalable control combined with consistent

management to coordinate multiple controllers and switches

for message exchange, while providing data replication and

maintaining flow scheduling. This is especially challenging

given IoT devices roam frequently in urban environments

and each controller needs a network view about the mobility

of these IoT devices to manage their spatio-temporal access

requests and collaborate with other controllers for adaptive

handover and dynamic flow scheduling over multinetworks.

Where component failure or traffic congestion occurs, dis-

tributed controllers are required to be fault tolerant and able

to load balance. (2) Unlike the DCN situation, link and node

capabilities in IoT multinetworks are highly heterogeneous

and application requirements are correspondingly different.

This implies that single objective optimization techniques of

typical DCN flow scheduling are not directly applicable in IoT

multinetworks. Controllers should schedule the access point

to transmit IoT flows based on specific per-device service

requirements, while providing network traffic balance through

the interactions between controllers and devices. (3) The per-

formance metrics of interest in IoT multinetworks go beyond

bandwidth consumption. With more heterogeneous and time-

sensitive traffics; unlike DCNs, whose network requirements

primarily focus on utilization and throughput, IoT multinet-

works’ metrics are delay, jitter, packet loss, and throughput.

B. Summary of Prior Work

Two popular approaches have been used in scalable SDN

management. One is to design a distributed SDN architecture,

such as Onix [7], where the network view is distributed among

multiple controller instances. The alternative approach is to

offload the partial workload of controllers to switches, as

DevoFlow [5]. This approach can improve scalability to some

extent, however the switch hardware is required to be modified.

Nevertheless, all of the above scalable techniques are designed

specifically for DCN, not designed for IoT multinetworks.

More recently, SDN techniques are being applied to hetero-

geneous wireless networks, differently from traditional flow

and access scheduling schemes for specific networks [8], [9].

OpenRadio [10] suggests the idea of decoupling the control

plane from the data plane to support ease of migration for

users from one type of network to another, in the PHY and

MAC layers. The flow scheduling between WiFi and Bluetooth

networks when video data is streamed has been prototyped

in MINA [11], using centralized controller. OpenFlow based

vertical handover is also discussed and implemented in the

GENI testbed [12]. These wireless SDN solutions provide the

necessary building blocks for managing IoT multinetworks,

but they are not sufficient. Two important functions absent in

these wireless SDN solutions are mobility management and

distributed control.

C. Our Approach

In this paper, we present UbiFlow, the first software-

defined IoT system for ubiquitous flow control and mobility

management in urban heterogeneous networks. To achieve

light-weight processing in IoT devices, in UbiFlow all jobs

related to mobility management, handover optimization, access

point selection, and flow scheduling are executed by the

coordination of distributed controllers. Specifically, UbiFlow

adopts multiple controllers to divide an urban-scale SDN into

different geographic partitions to achieve distributed control

of IoT flows. A distributed hashing based overlay structure

is proposed to maintain network scalability and consistency.

Based on this UbiFlow overlay structure, relevant issues in

mobility management such as scalable control, fault tolerance,

and load balancing have been carefully examined and studied.

The UbiFlow controller differentiates flow scheduling based

on per-device equirements as well as whole-partition capabil-

ities. Therefore, it can present a network status view for the

optimized selection of access points in multinetworks to satisfy

flow requests, while guaranteeing the network performance in

each partition. The key contributions of UbiFlow are:

• A novel overlay structure to achieve mobility manage-

ment and fault tolerance in software-defined IoT.

• An optimal assignment algorithm for the controller to

match the best available access points to IoT devices,

with network status analysis and flow requests as inputs.

• A load balancing scheme for distributed controllers by

analysing the variations in flow traffic characteristics.

The rest of this paper is organized as follows. Section II

gives a system overview. Section III addresses mobility man-

agement. Section IV addresses flow scheduling. Section V

evaluates the performance. Section VI concludes our paper.

II. SYSTEM OVERVIEW

The system architecture of UbiFlow is illustrated in Fig. 1,

where the data server, controllers, switches, access points and

IoT devices act as its core components. Multiple controllers

are deployed to divide the network into several partitions,

which represent different geographical areas. All IoT devices

in a single partition associate with different types of access

points (e.g. WiFi, WiMAX, Cellular), which are connected

to local switches to request various types of data flow (e.g.

text, audio, video) from the corresponding data server. Infor-

mation pertaining to service requests and flow transmissions

C (13)

C (16)

C (20)

C (3)

C (4)

C (6)

C (9)

C (10)

Point Controller

3+20 C (4)

3+21 C (6)

3+22 C (9)

Finger Table of C (3)

Point Controller

3+20 C (4)

3+21 C (6)

3+22
C (9)

C (10)
C (13)

C (16)

C (20)

C (3)

C (4)

C (6)

C (9)

C (10)

Finger Table of C (3)

M1

M1t1

t2

Supervisory Controller of M1

C (13)

C (16)

C (20)

C (3)

C (4)

C (6)

C (9)

C (10)

M1

User Previous Current Time

M1 C (10) C (16) t1

M1 C (16) C (3) t2

Supervised Mobility of M1 in C (10)

(a) Overlay (b) Mobility (c) Handover

Fig. 2. Mobility management in UbiFlow overlay network.

can be analyzed and administrated by the partition-dependent

controller. For urban-scale SDN, mobile IoT devices roam

across different partitions at different times. Newly joining and

leaving IoT devices are also recorded in the local controller

to indicate user density and resource usage. Therefore, each

controller has a partitioned view of its local network status.

The architecture of UbiFlow controller is also illustrated in

Fig. 1. The data collection component collects network/device

information from the IoT multinetwork environment and stores

it in databases. This information is then utilized by the layered

components in the controller. The task-resource matching com-

ponent maps the task request (e.g. flow requirements) onto the

existing resources (e.g. available access points) in the multi-

network. Once candidate resources are selected, the solution

specification component adds more network characteristics and

constraints (e.g. partition view) to filter resources. Finally,

the flow scheduling component takes these requirements and

schedules flows that satisfy them.

In UbiFlow architecture, switches from different partitions

are partially interconnected, so that the network information

recorded in different controllers can be exchanged through

these connected switches to achieve network consistency and

robust maintenance. In addition, connected switches can also

facilitate the inter-controller flow migration over the IoT

multinetwork for load balancing purpose. In general, there are

two types of IoT flows in the context of a distributed SDN

as shown in Fig. 1. The first one is the IoT flow between the

data server and the IoT device. This is scheduled through intra-

partition communication, with the assistance of a local access

point, switch and controller. The second one is the IoT flow

between IoT devices located with different partitions. This

type of IoT flow needs to be scheduled through inter-partition

communication. Utilizing the connected switches, controllers

can coordinate to direct the flow initiated from one partition

to a different access point in another partition. Note that IoT

device to IoT device multi-hop wireless communication (e.g.

ZigBee, WiFiDirect) also exists in the UbiFlow system. If this

happens in the same partition and the last hop is directed to

an access point, then it can be classified as the first type

of IoT flow. Otherwise, if it is purely multi-hop wireless

communication without SDN support, it does not belong to

the discussion of this paper, since we focus on using SDN to

improve the network performance.

Given the UbiFlow architecture, we will discuss its mobility

management and flow scheduling in the following sections.

III. MOBILITY MANAGEMENT IN UBIFLOW

When IoT devices roam from one partition to another, a

consistent scheme to coordinate controllers is required for the

mobility management of IoT devices. UbiFlow presents an

overlay structure based mobility solution, as shown in Fig.2.

We will illustrate its key functions in the following sections.

A. Overlay Structure

Two types of IDs are used in the mobility management:

• Mobile ID: the ID of a mobile IoT device (e.g. IP v6

address or MAC address);

• Controller ID: the ID of a controller in distributed SDN.

To provide scalable and efficient mobility management,

UbiFlow maintains a controller network based on structured

overlays (e.g. Chord DHT [13]), where a consistent hash-

ing [13] is maintained based on an ordered ring overlay,

as shown in Fig.2 (a). In the consistent hashing framework,

distributed controllers are configured as overlay nodes with

unique integer identifiers in the range of [0, 2m−1]. Each

controller ID can be represented by m bits. The consistent

hashing also matches each mobile ID with an m-bit integer

as a “key” using a base hash function h, such as SHA-1 [13];

therefore key = h (Mobile ID). The key can be later used for

the lookup of controllers, as explained in Section III-B.

Each controller C(n) with ID n maintains a routing table,

namely the “finger table”, to achieve scalable key lookup in

this overlay structure. Each finger table has up to k entries.

The ith entry in the table indicates the closest controller to the

corresponding point, where the controller ID ≥ (n+2i−1). A

query for a given key is forwarded to the nearest node that

most immediately precedes the key, among the k entries at

the controller. Finger tables are used for the case where there

is no controller with the exact ID as the key value. In that

case, we designate the closest successor of the key as the

expected controller. For example, in Fig.2 (a), we represent

the controller with ID n as C(n), and there are 3 entries in

the finger table of C(3). The 3rd entry of the finger table

points the successor of the key (3 + 22), which is C(9).
Theorem 1: In an N -controller overlay network based on

consistent hashing, the lookup cost to find a successor is

bounded by O(logN).
Proof: The lookup cost in an N -controller overlay net-

work indicates the number of nodes that must be contacted to

find a successor. The above theorem has been proved in the

Chord structure [13], also based on consistent hashing.

B. Mobile Handover

In the SDN based mobility management, we achieve effi-

cient handover through the coordination between controllers.

Specifically, we classify SDN controllers as two types:

• Associated Controller: the current controller that the

mobile IoT device is associated with;

• Supervisory Controller: the controller that is assigned

to a newly joined IoT device as its initially associated

controller. Note that each supervisory controller also

functions as an associated controller but with additional

information to record the mobility behaviour of its su-

pervised IoT devices. The updated mobile information

of an IoT device could be collected through information

exchange with its current associated controller, following

our UbiFlow architecture as described in Section II

When a new IoT device joins the distributed SDN network,

as a bootstrapping step, it will be assigned to a supervisory

controller as its initially associated controller, based on the

hash result of its mobile ID. In the mobility scenario, for

each IoT device with its mobile ID as the original value, the

UbiFlow overlay structure can hash the mobile ID to get an

integer key, and use this to localize its supervisory controller.

Both the controller ID and the hashed key of the mobile

user are required to be placed in the same ID space ranging

[0, 2m−1]. Specifically, to localize the supervisory controller,

we follow the rule to assign a hashed key to the controller that

has the closest ID, namely the immediate successor of the key.

Since every controller can use consistent hashing to localize

an IoT device’s supervisory controller, the supervisory con-

troller is used in UbiFlow to record the previous and current

associated controllers of the mobile IoT device. Using this

scheme for distributed SDN, the new associated controller can

localize the previous associated controller of the IoT device.

As shown in Fig.2 (b), mobile IoT device 1, denoted as M1,

was previously associated with controller C(16) at time t1,

and its supervisory controller is C(10). When M1 moves to

the geographical partition of C(3) at time t2, C(3) needs to

localize its previous associated controller and reroute flows to

its current partition. To do this, C(3) first tries to localize

the supervisory controller according to the hashed key of

M1. Based on the finger table, C(3) can forward the lookup

request to the furthest controller C(9) that is closer to the

supervisory controller. Then C(9) can help to localize C(10)
as the expected supervisory controller. As shown in Fig.2

(c), once C(3) localizes C(10) from the traceback route, as

C(10) → C(9) → C(3), it can later directly communicate

with C(10) to learn previous associated controller of M1 is

C(16) at t1. After this, C(3) can directly communicate with

C(16) to fetch the previous session between M1 and C(16)
and reroute flows to current partitions. As for C(10), it will

also update the current associated controller of M1 to be C(3)
at t2, and notify C(16) to end the previous session for M1.

Note that as a mobile IoT device in the urban scenario,

M1 may leave the partition of C(3) and re-enter again

with unpredictable mobility, therefore in the UbiFlow overlay

structure, there is an extra entry in the finger table of each

controller to label all the supervisory controllers of its current

and previously associated IoT devices with a TTL (time-to-

live). Hence, when previously associated IoT device enters

its partition again, the controller does not need to initiate an-

other multi-hop request to localize the supervisory controller.

Instead, the controller can localize the supervisory controller

using fast lookup in its finger table, which will further save the

communication cost and improve the efficiency of handover.

Proposition 1: The mobile lookup cost to find the previous

associated controller for an IoT device in UbiFlow could be

either O(logN) + 1 or O(2).
Proof: Theorem 1 has proven that the usually lookup cost

in a consistent hashing is bounded to O(logN). Since super-

visory controller records previous association of supervised

devices, the normal mobile lookup cost to find the previous

associated controller for an IoT device is O(logN) + 1,

by localizing supervisory controller first and then requesting

local lookup in the supervisory controller. If the supervisory

controller was found before and has been recorded in the local

finger table as the additional information, the lookup cost for

the corresponding mobile device is then just a local lookup as

O(2), with one step to reach the supervisory controller and

one step to request local lookup in the supervisory controller.

C. Scalable Control

To achieve scalable mobility management by multiple con-

trollers in distributed SDN, we focus on the Join and Leave

operations of controllers, as follows:

• Join: When a new controller with ID n joins an existing

SDN, it first identifies its successor by performing a

lookup in the SDN according to its ID. Once it localizes

the successor, it selects the successor’s keys that the new

controller is responsible for. After this, the new controller

sets its predecessor to its successor’s former predecessor,

and sets its successor’s predecessor to itself. Meanwhile,

an initial finger table will be built in the joined controller

by performing lookup points (n + 2i − 1), for i=1, 2,

. . . k, where k is the number of finger print entries.

• Leave: When a controller with ID n wants to leave an

existing SDN, it first moves all keys that the controller

is responsible for to its successor. After this, it sets its

successor’s predecessor to its predecessor, and sets its

predecessor’s successor to its successor. For consistency

purposes, before the controller leaves the distributed net-

work, the SDN related control information (e.g. network

status and flow status) in the controller will be copied

to its successor by default, and other controllers can

later update their finger tables by replacing controller

n with its successor in the corresponding entry. If the

controller also performs as the supervisory controller for

some IoT devices, its successor will be also designated

as the new supervisory controller for these IoT devices,

and it records the existing mobility information from the

leaving controller.

D. Fault Tolerance

To handle failure in the distributed SDN, we tackle failures

of different components in UbiFlow. As for controller level

failure, we adopt data replication to achieve robust control.

That is, we copy the data from local controller n to its r live

successors in UbiFlow overlay, by searching key (n+ 2i−1),
for i=1, 2, . . . r. The r successors also update these replications

periodically. So, if the local controller fails, we can find a new

successor that still can provide the control service.

As for finger-table level failure, we adaptively choose alter-

nate paths while routing. If a finger does not respond, we take

previous fingers in the local table, or finger-table replicas from

one of the r successors. The local finger table also performs

self-check to refresh all fingers by periodically looking-up the

key (n+2i−1) for a random finger entry i. The periodic cost

is O(logN) per controller due to the finger refresh.

As for access-point failure, we designate an associated

controller to detect the failure and redirect flows going through

failed access points to others in its partition. We address the

optimal assignment of access point to IoT device in Section IV.

IV. FLOW SCHEDULING IN UBIFLOW

Given flow requirements from an IoT device, the UbiFlow

controller needs to find an access point that can both satisfy the

flow request of the IoT device and guarantee optimal network

performance of the whole partition. The relevant design to

achieve robust flow scheduling is described in this section.

A. Network Calculus based Partition View

The UbiFlow controller of each partition needs a partition

view via obtaining current network status within this partition

for flow scheduling. To guarantee the performance of software

defined IoT flow scheduling with various flow requirements,

UbiFlow controller employs Network Calculus [14] to describe

the arrival traffic pattern(A(t)), served traffic pattern(S(t)),
and departure traffic pattern(D(t)) on a network node during

the time interval [0,t) as the partition view in its partition.

We assume that each node has a constant bandwidth capac-

ity (transmission rate) R and can provide a service curve

S(t) = R[t − T]+, where [x]+ = max{0, x}, and T is the

transmission delay, which is the time between the first bit of

the packet received and the last bit of the packet sent by this

node. T depends on R, the length of this packet, and the

amount of data currently in the node queue. We can use min-

plus convolution on arrival and service curves, to generate

a departure curve: as D(t) = A(t) ⊗ S(t), which means:

D(t) ≥ inf
s≤t

(A(s) + S(t− s)).

If there are multiple flows going through a node, all flows

share the same transmission service. Here each intermediate

node is assumed to have a FIFO scheduler–packets are served

in the sequence as they arrived. Flow i will have a leftover

service curve: Si =
θi

∑

j 6=i θ
j
R[t − T]+, where R is the

transmission rate, and θ is the weight of each flow; In a

multi-hop path, the departure curve of the current hop is the

arrival curve of the next hop, and a combination service curve

along the path S(t) can be obtained by iteratively adding each

node’s service curve using the associative operation in min-

plus convolution, as: S(t) = S1 ⊗ S2 ⊗ . . .⊗ Sn.

In order to provide a better partition view of the traffic,

UbiFlow models the traffic as a set of disjoint points (each

point represents a packet) in Network Calculus. It assumes

that the profile of each flow (e.g., packet length and sending

time) is known at each sender, and each packet is served by

the service curve S(t) with a constant packet rate R and a

delay T . Upon packet arrival, we check the current queue

state in terms of the number of packets in the queue and their

lengths. The delay T is the time needed for sending out all

packets that are already in the queue. Hence the total delay of

a packet consists of two parts: one is T and the other is the

transmission (service) time of the packet itself. In this way,

we can get an approximate end-to-end delay for each packet.

In our verification, we examine three QoS parameters: delay,

throughput, and jitter. For each flow, we use the profile points

at the sender side to plot the curve. We can get the arrival curve

D(t) of flow i at the destination node by the modified Network

Calculus model, and then we compare it with flow i’s initial

arrival curve A(t). Each point (packet) will have a delay and

a recorded arrival time at the destination node. The average

delay, average jitter, and total throughput for each flow can be

calculated by UbiFlow controller accordingly. Therefore, the

modified Network Calculus model can be used by UbiFlow

controller to obtain the partition view.

B. IoT Multinetworks Matching

After obtaining the partition view of current network status

from the network calculus model, the UbiFlow controller

can manage handover between heterogeneous access networks

by assigning newly joined mobile IoT devices to the best

access point, based on the current multinetwork capacity in the

controlled partition, the supported radio access technologies

and the types of services the mobile devices are requesting.

We formulate the assignment of a set of newly joined mobile

IoT devices MD to a set of access points AP as a generalized

assignment problem (GAP). Each access point j is charac-

terized by a residual bandwidth capacity function B(j), and

each mobile device i is characterized by a bandwidth demand

function d(i, j) that describes the bandwidth demand of device

i when assigned to access point j. A utility function u(i, j)
measures the benefit obtained by the system as a result of

assigning a mobile device i to access point j. The assignment

problem is formulated as:

maximize
∑

j∈AP

∑

i∈MD

u(i, j)x(i, j)

subject to
∑

i∈MD

d(i, j)x(i, j) ≤ B(j), ∀j ∈ AP

∑

j∈AP

x(i, j) ≤ 1, ∀i ∈ MD

x(i, j) = 0 or 1, ∀i ∈ MD, ∀j ∈ AP

where x(i, j) = 1 if device i is assigned to access point j or

0 otherwise.

As the set of access points and especially the set of

mobile devices changes dynamically, the assignment is done

in an adaptive time-window based manner. The assignment is

performed at the end of each window using (1) the capacity,

demand and utility functions evaluated at that time, (2) the set

of newly joined mobile devices within the window of time, and

(3) the set of active access points at that time. Algorithm 1 is an

adaptation of the GAP approximation in [15] combined with

a greedy heuristics for the Knapsack problem that sorts items

based on their utility-to-demand ratio and tries to pack as much

high-ratio items as possible. It takes the sets of access points

and devices, a matrix of utilities and demands, and a vector

of capacities as an input. It starts by checking the residual

capacity (capacity at the end of the time window) of the set

of access points (AP) against the demand vector (D∗[ap]) of

mobile devices with respect to that access point type, and

creating a feasible set of access points (APf) by selecting

those that can at least satisfy the minimum demand. It then

initialises the assignment vector (X) and iteratively computes

the assignment as follows. For each access point, it creates a

utility vector from the utility matrix using either the original

utility value or the difference in utility depending on whether

the mobile device is assigned to an access point in the previous

iteration. The utility-to-demand ratio is then computed using

the utility vector, and the set of mobile devices (MD) is sorted

in non-decreasing order based on this ratio. Using this ratio

and a greedy Knapsack packing scheme, the mobile devices

are assigned to the current access point. This is repeated until

all access points are exhausted. The vector X is the result of

the assignment where X[md] indicates that mobile device md

is assigned to access point X[md] if X[md] is not -1.

The UbiFlow controller determines each mobile device’s

compatibility (i.e. support for the radio access technology used

by the access point) with access points and requirement with

respect to quality of service such as bandwidth demand (d)

and the maximum tolerable latency (lt) based on the types of

services the device is trying to access. The demands of IoT

devices can be obtained during their request processes, and

the partition status can be derived from the network calculus

model, as described in Section IV-A. If there is compatibility

between a device and an access point, the degree of satisfaction

of a mobile device, if assigned to the access point, with respect

to these requirements is modeled by utility functions namely

ud and ul respectively. In addition, a utility function ua that

measures the load (i.e. the number of mobile devices) on an

access point is used in order to take the degree of distribution

of load into consideration so that one capable access point will

not be overloaded. Given an access point with latency l and

N mobile devices already assigned to it, the utility functions

are:

ud(i, j) = log

(

1 +
B(j)

d(i, j)

)

, d(i, j) > 0

ul(i, j) = log
(

1 +
lt

l

)

, l > 0

ua(j) = log

(

1 +
|MD|

N + |MD|

)

,MD 6= ∅

Using these utility functions, the controller computes the

utilities for each potential assignment, normalizes them and

then computes the total system utility using predefined positive

weights that capture the significance of each type of utility as:

u(i, j) =

{

wdûd(i, j) + wlûl(i, j) + waua(j) compatible

0 otherwise

where ûd and ûl are the normalized utilities and wd + wl +
wa = 1. It then performs assignments that would maximize

the overall system utility.

Algorithm 1 Mobile Device to Access Point Assignment

Input: AP, MD, U, D, C
Output: X
1: for ap ∈ AP do
2: if C[ap] ≥ min{D∗[ap]} then
3: Add ap to APf
4: end if
5: end for
6: for r = 1 to |MD| do
7: X[r] = −1
8: end for
9: for ap ∈ APf do

10: for md ∈ MD do
11: if X[md] == −1 then
12: Uap[md]← U [md][ap]
13: else
14: Uap[md]← U [md][ap]− U [md][X[md]]
15: end if

16: Compute utility-to-demand ratio vector: Rap[md] =
Uap[md]

D[md][ap]
17: end for
18: Sort MD such that Rap[md] is in non-increasing order

19: b = min{q ∈ {1, ..., |MD|} :

q∑

r=1

Dap[r] > C[ap]}

20: for q = 1 to b− 1 do
21: X[md] = ap
22: end for
23: end for

The algorithm has a time complexity of

O(|AP||MD| log(MD)) when an |MD| log(MD) algorithm

is used to sort the utility-to-demand ratio vector. The proof

directly follows from [15].

C. Load Balancing

One key limitation of existing SDN systems is that the

mapping between a switch and a controller is statically con-

figured, making it difficult for the control plane to adapt to

temporal and spatial traffic load variations. As load imbalance

occurs, it is desirable to migrate a switch from a heavily-loaded

controller to a lightly-loaded one. Following our architecture

as illustrated in Fig.1, UbiFlow consists of a cluster of

autonomous controllers that coordinate amongst themselves

to provide a consistent control logic for the entire network.

We can design a robust load balancing scheme based on

the UbiFlow architecture to dynamically shift the load across

switches and controllers.

Given a controller n, if new flow requests, collected from

local IoT devices, cause traffic imbalance (e.g. over maximum

capacity, longer process delay) controller n needs to switch

the flow to a lightly-loaded controller. However, the usual

linear balancing scheme that relays the flow request to one

of its r successors is not robust enough in the mobile SDN

scenario, because the r successors have locally loaded flows

and these may be heavily-loaded as well. Furthermore, the

fault tolerant scheme presented in Section III-D will generate

redundant data in the r successors, so additional flow requests

from other partitions tend to cluster the requests of the flows

into contiguous runs, which may even overlap in our circular

overlay structure. In addition, because of the importance of the

supervisory controller, if the supervisory controller is heavily-

loaded and cannot accept other newly joined IoT devices,

we also need a scheme to mitigate the traffic flow on this

supervisory controller by directing the flows for new IoT

devices to other controllers as a backup supervisory controller.

Meanwhile, we need a consistent scheme for other controllers

to be able to localize these backup supervisory controllers.

To avoid the linear clustering of heavily-loaded controllers

and guarantee system consistency in the UbiFlow overlay, we

use double hashing to balance a large number of flow requests

and distribute them fairly in the overlay structure. Specifically,

different from the hash function h used in the finger key

search, we choose a secondary hash function, h′ for collision

handling. If h maps some finger key k to a controller C[i], with

i = h(k), that is already heavily-loaded, then we iteratively try

the controllers C[(i+f(j)) mod P] next, for j = 1, 2, 3, . . .,
where f(j) = jh′(k). In this scheme, the secondary hash

function is not allowed to evaluate to zero; a common choice

is h′(k) = q − (k mod q), for some prime number q < P .

Also, P should be a prime number.

Note that, for supervisory controller, the heavy load status

may cause local failure, but its mobility records for IoT devices

are important for the mobility management. When UbiFlow

observes the load imbalance in a supervisory controller, it

also uses the double-hashing scheme to copy the mobility

information to other controllers as a backup. By this way,

UbiFlow can effectively protect the mobility information, in

case consecutive failures happen and the redundancy scheme

in Section III-D fails.

V. PERFORMANCE EVALUATIONS

We have implemented a prototype of UbiFlow, and evalu-

ated its performance on flow scheduling and mobility man-

agement by both simulation and real testbed experiments.

A. Simulation Results

Recently, OMNeT++ [16] has incorporated the OpenFlow

module for SDN simulation. However, its controller only

supports the wired data center networks and lacks mobility

management. We have extended the functions of the SDN con-

troller with UbiFlow framework, and used it for the evaluation

of mobility management in heterogeneous IoT multinetworks.

To verify the performance of UbiFlow in urban scenario, our

simulation is based on a popular South Kensington area in the

city of London, which consists of several parks, universities,

and museums, as shown in Fig. 3 (a). This area is usually

crowded by high density of tourists, students and workers, with

large number of IoT devices and various types of flow requests.

Therefore, in our first set of evaluation, three controllers

have been deployed in park partition, university partition

and museum partition, respectively, for flow scheduling and

mobility management. The backbone topology consists of 3

data servers (each of the three data servers provides either

file sharing, audio, or video streaming services), 3 switches

(each switch has a 1Gbps Ethernet link to one server; each

controller directly controls one switch), and 20 access points

(each access point has one 100Mbps Ethernet link to every

switch). There are three types of access points: WiMAX, WiFi

and Femtocell, with data rates 30Mbps, 10Mbps, and 2Mbps

respectively. Each IoT device has three network interfaces to

directly connect with corresponding access points, and at each

time instance only one interface can be used.

5 10 15 20 25 30 35 40 45 50 55 60
0

100

200

300

400

500

600

Flow ID

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

UbiFlow

DevoFlow

Hedera

(a) Urban Scenario (b) End-to-End Throughput

5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

6

7

8

9

10

Flow ID

D
e
la

y
 (

s
)

UbiFlow

DevoFlow

Hedera

5 10 15 20 25 30 35 40 45 50 55 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Flow ID

J
it
te

r
(s

)

UbiFlow

DevoFlow

Hedera

(c) End-to-End Delay (d) End-to-End Jitter

Fig. 3. Mobile flow scheduling in UbiFlow.

1) Handover in UbiFlow: In our first set of simulation, as

shown in Fig. 3 (a), there are 5 access points (orange dots) in

the park partition, 9 access points (green dots) in the university

partition, and 6 access points (blue dots) in the museum

partition. Some of these access points are already under heavy

traffic load, and others still have enough capacity. Assume

there are 60 IoT devices sending new flow requests at a time,

and they are moving along the red path. 10 of them request

file sharing services, 20 of them request audio services, and 30

of them request video streaming services. In our evaluation,

file sharing flows are modeled by sending Constant Bit Rate

with packet length uniformly distributed in [100, 1000] bytes

with period T, the latter uniformly distributed in [0.01, 0.1]

seconds. Audio and video streaming flows are from real traffic

traces [17], [18]. For practical applications, the file sharing

service requires large throughput, the audio service requires

low delay, while the video streaming service requires low

jitter. We evaluate our UbiFlow scheduling and compare it

with other two common scheduling algorithms used in SDN

world: DevoFlow [5] and Hedera [6]. The former tries to

accommodate as many flows as possible into a single link to

maximize the link utilization. Instead, the latter assigns flows

into a link so that the total amount of the flows are proportional

to the capacity of the link.

As shown in Fig. 3, we have totally 60 flows (each of 60

end devices has one flow): flows 1-10 are file sharing, flows

11-30 are audio, and flows 31-60 are video streaming. Fig. 3

(b) shows the comparison of flow throughput. For file sharing

flows, UbiFlow outperforms DevoFlow by an average of

67.21%, while it has an average of 15.91% throughput increase

if compared with Hedera. The reason is that in wireless links

when link utilization exceeds a threshold, the packet drop

rate increases dramatically. The load balancing scheme in

UbiFlow uses the controller to schedule flows according to the

utilization status of each access point; therefore it can achieve

comparably fair allocation of flow traffic to decrease packet

drop rate. Fig. 3 (c) shows that for audio flows, our proposed

algorithm can improve the end-to-end delay performance by

72.99% and 66.79%, compared to DevoFlow and Hedera

respectively. Audio flows have bursty traffic patterns; it might

not have big data volume, but if two flows are scheduled with

similar bursty patterns in the same link, a large delay occurs.

Due to the traffic-aware dynamic flow scheduling scheme,

UbiFlow can schedule flows both by the consideration of

partition load and device requirement; therefore it can reduce

the impact of flow interference. Fig. 3 (d) shows that video

streaming flows have an average 69.59% and 49.72% less jitter

with UbiFlow than DevoFlow and Hedera. Because of the

holistic solution in flow scheduling and mobility management,

distributed controllers in UbiFlow can provide more stable

video flow for IoT devices.

2) Scalability in UbiFlow: In the implementation of Open-

Flow, the Packet-In message is a way for the OpenFlow switch

to send a captured packet to the controller. A flow arrival

resulting in sending a Packet-In message to the controller. In

the second set of simulation, we use Packet-In message to

evaluate the scalability of flow scheduling by UbiFlow.

1 2 4 8
0

50

100

150

Number of Controllers

T
h
ro

u
g
h
p
u
t
(x

1
0

3
 f
lo

w
s
/s

e
c
o
n
d
s
)

1 Controller

2 Controllers

4 Controllers

8 Controllers

500 1000 1500 2000 2500
0

20

40

60

80

Packet Arrival Rate

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

2 Controllers

4 Controllers

8 Controllers

(a) Flow Throughput (b) Flow Delay

Fig. 4. Scalability in UbiFlow.

For better scalability evaluation, we add more controllers

in the above urban scenario. In addition, for every controller

in its partition, the controller is directly connected with 3

to 5 switches, and controls 20 to 50 access points with

various heterogeneous interfaces. For each controller, we send

10000 consecutive Packet-In messages to it and plot the

throughput of UbiFlow with varying number of controllers,

as shown in Fig. 4 (a). We observe that adding controller

nodes increases the throughput almost linearly. This is because

in the architecture of UbiFlow, as shown in Fig. 1, each

controller mainly controls the traffic flows in its own partition.

However, if there is an imbalance in one controller, other

controllers with light-weight traffic also can help to migrate

the flows to their partitions by physically partial connected

switch and the UbiFlow overlay structure. To further illustrate

the scalability of UbiFlow, we also plot the response time

behaviour for Packet-In messages with changing flow arrival

rate, as shown in Fig. 4 (b). We repeat the experiment while

changing the number of controller nodes. As expected, we

observe that response time increases marginally up to a certain

point. Once the packet generation rate exceeds the capacity

of the processor, queuing causes response time to shoot up.

This point is reached at a higher packet-generation rate when

UbiFlow has more number of nodes.

B. Testbed Experiment Results

In our real testbed experiments, we use ORBIT [19] as

the wireless network testbed to evaluate UbiFlow. ORBIT is

composed of 400 radio nodes, where a number of experimental

“sandboxes” can be accessed via its management framework.

Available sandboxes include WiFi, WiMAX, USRP2, etc.

ORBIT supports Floodlight [20] based OpenFlow controller to

switch access between the WiFi and WiMAX interfaces, and

uses Open vSwitch (OVS) [21] to allow a network interface

to be OpenFlow-enabled.

We choose an ORBIT sandbox with 1 WiMAX node and

7 WiFi nodes in our experiments. We are aware that real

mobile access pattern of IoT devices in urban scenario does not

follow the random waypoint model. Actually, the urban-scale

access of multinetworks is more like event or motivation driven

behaviour. To better evaluate UbiFlow in this kind of mobile

scenario, we collected a campus-wide mobile trace driven by

class events, and use it in our evaluation. Specifically, the trace

is collected during a period (10 minutes) between two consecu-

tive classes around a lecture building. During that period, some

students leave the building after previous class, some students

come to the building for incoming class, and some students

still stay in the building. Therefore, the wireless access of

their IoT devices can be classified as “leaving”, “joining”, and

“staying”. We match the 8 OpenFlow-enabled ORBIT nodes

as corresponding access points in the building, and use two

Floodlight based OpenFlow controllers to scheduling different

service requests from more than 300 IoT devices during that

period, according to the mobile trace file.

3 6 9 12 15 18 21 24 27 30
0

3

6

9

12

15

Flow ID

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

UbiFlow

GENI

3 6 9 12 15 18 21 24 27 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Flow ID

D
e

la
y
 (

s
)

UbiFlow

GENI

(a) End-to-End Throughput (b) End-to-End Delay

Fig. 5. Mobile flow scheduling in real testbed.

We compare UbiFlow with an OpenFlow-based handover

scheme proposed by GENI [22] (namely GENI). The GENI

handover [12] is a vanilla implementation of SDN in wireless

environment, without ubiquitous flow scheduling and mobility

management. As shown in Fig. 5, we select 30 flows from

the hundreds of active IoT devices, where flows 1-5 are file

sharing, flows 6-15 are audio, and flows 16-30 are video

streaming. The performance shows the similar results as

previous simulation results with various flow types. Generally,

UbiFlow outperforms GENI handover both on end-to-end

throughput and delay evaluation. For the 30 flows, UbiFlow

can achieve an average throughput as 7.24 Mbps, while GENI

only can provide 5.09 Mbps; UbiFlow improves the average

throughput performance by 42.24%. The average delay in

UbiFlow is around 0.11 s, while the delay in GENI is 0.29 s;

UbiFlow reduces the average delay by 62.07%. In comparison

with GENI, UbiFlow adopts dynamic flow scheduling scheme

from the views of partition and device aspects, therefore can

achieve better assignment of access points to satisfy different

flow requirements of IoT devices. In addition, the overlay

structure based load balancing can effectively allocate flows

in UbiFlow, by the coordination of controllers and switches. It

also can help to improve the throughput and reduce the delay.

10 20 30 40 50 60
0

5

10

15

Time (s)

M
o
b
ile

 T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

WiFiWiMAXWiFi

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time (s)

M
o

b
ile

 D
e

la
y
 (

s
)

WiMAX WiFiWiFi

(a) Mobile Throughput (b) Mobile Delay

Fig. 6. Mobility management in real testbed.

To test the mobility management of UbiFlow in real testbed,

we choose one mobile device and evaluate the change of its

multinetwork access in a period of one minute, while associat-

ing with different types of access points. The performance of

throughput and delay of its access is shown in Fig. 5 (a) and (b)

respectively. As we can see, since there is only one WiMAX

node in our testbed, and it is crowded by other mobile users,

the throughput provided by WiMAX is much lower than WiFi

nodes. According to this situation, the SDN controller only

assigns the mobile device to access WiMAX when there is no

available WiFi access points providing higher data rate. Once

the controller finds a WiFi access point with better capacity

and the mobile device sends flow request in its range, it will

assign the mobile device to access the WiFi node. In mobile

scenario, we notice that the average flow transmission delay

for this mobile device is below 0.4s, which presents stable

performance of our mobility management, considering there

are hundreds of active IoT devices and only 8 working access

points. Mobile delay only increases obviously when UbiFlow

runs handover steps to assign new access point to the mobile

device, which happens at the 25th second and 40th second

of this period. Usually, when a mobile device requests an

access point, it will initially send the request to the controller,

and then controller sends the assignment decision back. This

process results in the extra delay for message exchange and

computation, which cannot be avoided if we use the controller

to match access points with mobile devices. However, in these

special cases, UbiFlow still can achieve a handover delay less

than 0.9 seconds, therefore shows satisfactory results.

VI. CONCLUSION

UbiFlow is a software-defined IoT system for efficient flow

control and mobility management in urban multinetworks. In

addition to flow scheduling, it shifts mobility management,

handover optimization, and access point selection functions

from the relatively resource constrained IoT devices to more

capable distributed controllers. The distributed controllers are

organized in a scalable and fault tolerant manner. The system

was evaluated through simulation and testbed.

REFERENCES

[1] Z. Qin, L. Iannario, C. Giannelli, P. Bellavista, G. Denker, and
N. Venkatasubramanian, “Mina: A reflective middleware for managing
dynamic multinetwork environment,” in IEEE/IFIP NOMS, 2014.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 2, pp. 69–74, 2008.

[3] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: towards an operating system for networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[4] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2011-2016 ,” Tech. Rep., 2012.

[5] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in ACM SIGCOMM, 2011, pp. 254–265.

[6] M. Al-Fares, S. Radhakrishnanl, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in USENIX

NSDI, 2010.
[7] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
USENIX OSDI, 2010, pp. 351–364.

[8] D. Wu, L. Bao, and C. H. Liu, “Scalable Channel Allocation and Access
Scheduling for Wireless Internet-of-Things,” IEEE Sensors Journal,
vol. 13, no. 10, pp. 3596–3604, 2013.

[9] D. Wu, S. Yang, L. Bao, and C. H. Liu, “Joint multi-radio multi-
channel assignment, scheduling, and routing in wireless mesh networks,”
Wireless Networks, vol. 20, no. 1, pp. 11–24, 2014.

[10] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “Openradio: a pro-
grammable wireless dataplane,” in ACM HotSDN, 2012, pp. 109–114.

[11] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubrama-
nian, “A software defined networking architecture for the internet-of-
things,” in IEEE/IFIP NOMS, 2014, pp. 1–9.

[12] R. Izard, A. Hodges, J. Liu, J. Martin, K. Wang, and K. Xu, “An
OpenFlowTestbed for the Evaluation of Vertical Handover Decision
Algorithms in Heterogeneous Wireless Networks,” in Proc. of the 9th

International Conference on Testbeds and Research Infrastructures for

the Development of Networks & Communities, 2014.
[13] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,

“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” in Proc. ACM SIGCOMM, San Diego, CA, Aug. 2001.

[14] J.-Y. L. Boudec and P. Thiran, Network calculus: a theory of determin-

istic queuing systems for the internet. Springer, 2001.
[15] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the

Generalized Assignment Problem,” Information Processing Letters, vol.
100, no. 4, pp. 162–166, 2006.

[16] OMNeT++, http://www.omnetpp.org.
[17] Skype tele audio trace files, http://tstat.polito.it/traces-skype.shtml.
[18] Video streaming trace files, http://trace.eas.asu.edu/TRACE/ltvt.html.
[19] ORBIT, https://www.orbit-lab.org.
[20] Project Floodlight, http://www.projectfloodlight.org/floodlight.
[21] Open vSwitch, http://openvswitch.org.
[22] GENI, http://www.geni.net.

